
ELECTRONIC PUBLISHING, VOL. 6(4), 315–326 (DECEMBER 1993)

Separate compilation of structured documents
MICHAEL J. GROVES AND DAVID F. BRAILSFORD

Department of Computer Science
University of Nottingham
University Park
Nottingham, NG7 2RD
UK

SUMMARY
This paper draws a parallel between document preparation and the traditional processes of
compilation and link editing for computer programs. A block-based document model is de-
scribed which allows for separate compilation of various portions of a document. These portions
are brought together and merged by a linker program, called dlink, whose pilot implemen-
tation is based on ditroff and on its underlying intermediate code. In the light of experiences
with dlink the requirements for a universal ‘object-module language’ for documents are dis-
cussed. These requirements often resemble the characteristics of the intermediate codes used
by programming-language compilers but with interesting extra constraints which arise from
the way documents are ‘executed’.

KEY WORDS Link editing Separate compilation Structured documents Formatting Troff PDF

1 INTRODUCTION

The printed page is the most common physical manifestation of a document but electronic
publishing, in all its forms, has demonstrated the value of regarding the computer as being
more than just an aid to producing printed output via ‘new technology’. Documents can
usefully be regarded as computer programs of a new and different kind which possess
some fascinating properties when compared to traditional computer software. One obvious
parallel is that documents tend to undergo constant development and incremental change,
just as computer programs do. Consequently, one might expect that a document could be
built from pre-processed modules in much the same sort of way that software development
systems support separate compilation and link-editingof object modules. However, it turns
out that there are some subtle difficulties in carrying over this analogy completely.

This paper examines how far the processing of documents can be made to resemble
the compilation and linking of computer programs. It then examines what is required for a
generalised link-editing language for documents.

2 STRUCTURED DOCUMENTS

Documents may be analysed at a number of different levels. For example, a document
may be seen as a series of alphanumeric characters, interspersed with punctuation and laid
out on physical pages. In a sense, this corresponds to the final executable machine-code

0894–3982/93/040315–12$11.00 Received 15 August 1993
1993 by John Wiley & Sons, Ltd. Transferred (1998) to Univ. of Nottingham Revised 1 December 1993

316 M. J. GROVES AND D. F. BRAILSFORD

of a computer program. The difference is that humans can directly ‘execute’ a document
by reading it, usually in a serial fashion but with occasional ‘subroutine calls’ when
references are encountered to footnotes, figures, bibliography citations and so on. The
various languages of the world, and their character sets, can be compared to different
instructionsets for various types of computer hardware. But whereas all computers share the
common ground of representing their programs, ultimately, as unadorned ones and zeroes,
the analogy, in the world of documents, would be the adoption of a fixed-pitch single-
typeface representation for all the world’s character shapes. Happily for us documents do
not exhibit such tedious orthodoxy. We scan a document not just for its meaning but also for
the elegance of its type size and typefaces, the quality of its hyphenation and justification,
the appropriate use of bold-face type for headings, the absence of widows and orphans
and so on. All of this adds an extra layer of interest and complexity to the process of
understanding or ‘executing’ a document.

At a higher level, a document may be described according to the logical structure
of its components — chapters, sections, paragraphs, etc. — with physical attributes being
ignored. Here, it is not difficult to see the connection with the data structures, classes and
procedures of a high-level computer language where, again, the final ‘physical’ attributes
of the eventual machine code are not relevant. And just as procedure libraries are set up so
that frequently-needed code can be used many times, so also may parts of a document be
easily reused, or the whole document may be reformatted in a different way, without the
logical structure and content having to be changed. This method of document specification
using generic markup was first popularised by the Scribe document formatter [1] and
subsequently by LATEX [2]. It has also been incorporated into SGML [3] and ODA [4].
Documents represented in this way may be termed structured documents [5]. Shaw [6]
associates three distinct representations of a document with a document processing system;

• The document model representation specifies the logical structure of the document.
• The output model representation describes the physical appearance of the document,

for example, the fonts, character positions, point sizes, line breaks etc.
• The display model representation is the form usually displayed on the output device

(usually the printed page or displayed on screen).

The document model representation is mapped to the output model representation by
formatting which is mapped to the display model representation by viewing. The main areas
of interest for us are first, the structured document representation itself, and second, the
way in which the mapping between the document model and output model is carried out.
There is a clear parallel here between the formatting of documents and the compilation of
computer programs.

3 COMPILERS AND LINKERS

A translator is a program that takes as input a program written in one programming language
(the source language), and produces as output, a program in another language (the object
or target language). If the translator is translating a high-level language into a low-level
language, such as assembly language or machine code, then the translator is called a
compiler [7].

When writing a large software system it is convenient to break the program up into
separate modules and to compile each module, in turn, into object code. A linker is then used

SEPARATE COMPILATION OF DOCUMENTS 317

to link together all the modules to form an executable program. On modifying a program,
only the modules that have changed need to be recompiled. This separate compilation
facility has greatly decreased program development time, especially when used with a
program maintenance utility such as the UNIX make [8] program.

For most high-level languages, translating source programs into executable code in-
volves two steps: compiling and linking. Compilers translate source code directly to object
code or to assembly language that is then compiled into object code. The role of the
linker [9] is;

1. to combine object modules and run-time libraries into a stand-alone executable
program with a uniform linear address space.

2. to resolve all cross-references between modules, and,
3. to set the run-time addresses of all symbols.

Linking is usually carried out after compilation but before loading. This last-named
process is where an executable program, produced by the linker, is placed in memory by
a loader [10]. Once the loaded program begins to execute, its linear address space may
be mapped onto ‘pages’ within the computer. These pages are imposed by the hardware,
and organised by operating system software, so as to improve memory performance and
utilisation. The applications programmer need not be concerned with them.

The input to the linker consists of one or more subprograms in binary symbolic form
which are called object modules. Addresses in an object module are usually offset from
zero. When linked these addresses must have a relocation constant added. A relocation
dictionary contains a list of those addresses that need to be relocated.

Linking usually requires two passes. During the first pass the linker reads all object
modules and builds a table of module names and lengths, and a global symbol table
containing all external references. During the second pass the object modules are read,
relocated, and linked — a module at a time.

It is instructive to relate all of these processes to the activities involved in document
creation. A document can be split into parts such as chapters, sections etc. These are often
kept in separate files so that each part can be worked upon and processed separately from
the rest of the document. When the whole document is to be processed, all the parts are
formatted together to resolve page numbers, section numbers, cross-references etc. But here
lies the important difference between the separate compilation of programs and document
processing. To combine parts of a document, and to resolve cross-references, the vast
majority of text processing systems will require the whole document to be re-processed.
With some formatters such as Scribe and LATEX the formatting process can take two or even
three runs to resolve all references. It might be thought that the formatter is fulfilling the role
of compiler and linker for the document, but the analogy would be misleading. In fact, the
formatter re-compiles the entire document and the various portions of it are re-combined
and re-formatted from a document’s source code rather than from ‘semi-compiled’ object
modules.

It is now clear that the preparation of large and complex documents would be greatly
helped if document preparation systems offered genuine link-editing facilities, but the
fact remains that the overwhelming majority of systems choose to recompile the entire
document. This shortcoming is due, in part, to the fact that link-editing of document
components, and checking their consistency, can be much harder than the process of

318 M. J. GROVES AND D. F. BRAILSFORD

combining object modules for a program. The first requirement for successful document
link-editing is to analyse the requirements for a suitable intermediate language in which
the ‘document object modules’ can be expressed.

4 DATA ABSTRACTION LEVEL FOR A DOCUMENT LINKER

In the previous section we drew a parallel between the pages of a printed document and the
pages of a computer program when it executes on paged and segmented computer hardware.
The key difference is that the precise layout of machine code within a hardware page is
seldom the subject of aesthetic scrutiny. Moreover, when a call is made to a procedure
most modern hardware will implement a fixed-length instruction for the call itself and a
fixed-length address structure to contain the destination address of the procedure. If by any
chance the precise length of an instruction, or a data structure, is hard to work out then there
are various ways to get round the problem, and any infelicity is ultimately concealed within
a binary program which is not directly visible to human eyes. Only with the determined
use of a debugging tool can one discover the ‘padding’ of a data structure with extra zeroes
or the insertion of benign ‘no-op’ instructions. Contrast this with the situation where a
forward reference (c.f. ‘procedure call’) within a document will certainly cause a small but
significant change in page layout if it says “see section 2.1.1” as opposed to “see section
2.1” and in pathological cases it may alter entirely the hyphenation and pagination of the
document from that point on. In other words, if we add new sections to a document they
may affect the ‘address length’ of the ‘procedure call’ at the place where the section is
cited.

This is not to imply that hardware pagination of computer programs is entirely a free-
for-all. Occasionally there may be particular data structures which must reside in some
particular page (e.g Page 0) or which must not straddle a page boundary, but for the most
part the uniform address space of the linked program can be mapped onto hardware pages
without having to worry about the machine-code equivalents of footnotes, page headers,
‘floating’ material, widows, orphans and the like.

In the case of documents the precise mapping of modules, or ‘blocks’, of pre-formatted
code onto pages has to take into account all of the features just mentioned. It follows,
therefore, that the mapping of printed material onto pages requires an intermediate language,
at the link-editor stage, which has easy access to low-level details of typefaces, point size,
leading, size of tables, current positionon page and so on. But if we did have such a language
there still remains the question of the size and nature of the document components that
should be separately compiled and stored as ‘object modules’.

In other words, if a document were to be link edited then at what level of granularity
should link editing take place? A linker usually works at the procedure level and it resolves
external references and relocates addresses. A document linker must also resolve cross-
references, page numbers, and it must ‘relocate’ component numbers such as chapter and
section numbers. An additional problem for a document linker, which we have already
noted, is that changes in the formatted width of a reference will affect the formatting and
justification of the page itself.

The document model representation describes the logical structure of the document.
The typical example is the tree structure of a book with chapters, sections, paragraphs etc.
A problem in the structured document model representation is the level of granularity of

SEPARATE COMPILATION OF DOCUMENTS 319

the most primitive objects. Granularity, or where the document content takes over from the
document structure [11], is identified in our model with features such as paragraphs, tables,
figures, footnotes etc.

5 THE BLOCK MODEL

The block model describes a method for the mapping from the document model represen-
tation to the output model representation as defined in section 2.

A block is taken to be some ‘rectangular’ part of a document: for example, a paragraph,
table, figure etc. It may be of arbitrary size. Blocks can have two main properties — they
can float and/or they can be broken. This results in four general block types;

1. A breakable block (i.e. unable to float).
2. An unbreakable block.
3. A breakable float.
4. An unbreakable float.

Blocks also have several other properties. They have a need which is the minimum
amount of space required for the block on the page. This could be the space required to
prevent a widow from being formed if the block is split, or it could be the height of an
unbreakable block. The height of the block is, naturally, the amount of vertical space taken
up by the block on the page. The block may also be referenced by other blocks. The most
common example of this is that of a footnote being referenced within a text block.

Blocks are separated on the page by glue. This is analogous to the glue in TEX [12] and
each block has a value for the glue separating the block from the previous block and the
amount by which it may be stretched or shrunk to justify the page.

An important point to note with the block model is that it separates the process of line
breaking which is part of the formatting/compilation phase from page breaking which is
now part of the linking phase. Text is formatted into blocks relative to some local zero of
page coordinates. The linker then relocates these blocks onto pages in the linking process
and makes their positions absolute (this is analogous to readjusting the run-time addresses
of all symbols, in a program link-editor, once the address spaces have been merged and
linearised).

Some previous work by Kernighan and van Wyk for the pm macro package and post-
processor [13] helped us greatly in the design phase of our document linker. Two other
pieces of work have also implemented block models in a form which has been useful to
us. ParTexT [14], a parallel processing system for documents, implemented block-based
page layout: text is split up into blocks which are then formatted separately in parallel and
a post-processor creates the page layout using the formatted blocks. The Quill document
editor [15] has implemented a more sophisticated version of a block-based formatting sys-
tem [16]. In Quill blocks may be nested inside each other, forming a hierarchy in which the
root block is the document itself.

The block model described here is based upon the model used inpm and ParTexT where
a document is viewed as a linked-list of blocks. Blocks may not be nested but may float
forwards or backwards or be broken, depending on the page layout.

320 M. J. GROVES AND D. F. BRAILSFORD

6 IMPLEMENTATION

We wanted to base our link-editing experiments on an existing native code or intermediate
language of some sort but it was not easy to find one that offered high-level structural
information without losing the low-level details vital to the correct placement, floating and
splitting of blocks.

In the end we adopted as our experimental link-editing language the intermediate code
from ditroff [17], which is the device-independent version of the UNIX troff [18] batch text
formatter. The document linker — imaginatively called dlink — processes the output from
ditroff (hereafter referred to as ditroff intermediate code or DIC) to create a document by
merging and linking the pre-formatted code from the various input blocks. Extra semantic
information is passed to the linker by means of comments inserted into the DIC by a special
set of macros.

6.1 dlink

Document components to be link edited are written using the mlink set of troff macros
which are compatible with the well-known ms macros [19]. The mlink macros impose the
block model upon documents by inserting start- and end-block markers into the text which
are passed through ditroff as comments using the \! construct. From the markup used in
the document the block type can be determined. For example, a simple new paragraph.LP
or .PP command is converted into a ‘start breakable block’ command. A.KS is indicative
of an unbreakable float.

Link editing then takes place in two stages. Pass one reads the DIC, picking up the block
delimiters inserted by the macro package. From these delimiters it writes an auxiliary file
containing a descriptive header for each block. This includes the block number, block type,
the height of the block, its ‘need’, a value for the ‘glue’ between blocks, links to any other
blocks dependent on it (e.g. footnotes) and the byte offset of the start of the block within
the intermediate file.

Each document has an overall project or document name as well as an individual
filename. For example a document project name may be ‘thesis’ which is made up of a
number of chapters, e.g. chap1.doc, chap2.doc, etc. All files are processed by the
first pass of dlink and their block header information is stored in the project auxiliary file.

The DIC output from ditroff contains absolute vertical and horizontal motions for the
placement of text on the page. However, one of the factors behind the choice of DIC is that
it also allows for relative motions which greatly eases the task of relocating and splitting
document blocks. Thus, during the first pass of dlink, all absolute vertical and horizontal
motions are converted to relative motions, based on an origin at the top lefthand corner
of the block. The setting of text in DIC is represented as a series of relative horizontal
escapements, which is well-suited to our task. Converting to relative coordinates allows
the positioning of the block on the page by dlink with just one vertical motion command
which is issued just before the block is output.

The second pass of dlink reads the block header information from the project auxiliary
file and uses this information to lay out the blocks on the page. The auxiliary file provides
dlink with the type, height and need of each block. The page layout algorithm uses this
information to lay out the page. Blocks that do not fit on the page are split, or if they can
not be split they are either floated or a new page is begun. Pages are justified vertically

SEPARATE COMPILATION OF DOCUMENTS 321

using the values stored in the block header for inter-block glue. The space between blocks
is stretched or shrunk accordingly to justify the page.

If a block is to be split, the DIC for the block is read into a buffer and all break points for
the block are calculated. The page layout algorithm then decides where to split the block
taking into consideration the ‘need’ of the block and the desirability of avoiding widows
and orphans.

Finally the page is output as DIC. Positioning of blocks on the page is straightforward
by virtue of the relative vertical motions. The position of each block is calculated during
vertical justification of the page and each value is output, just before its corresponding
block, as a DIC vertical motion command.

6.2 Separate compilation

A facility for separate compilation exists with dlink. Consider an example where a document
is split into four separate files. After the initial processing of all the files, the second file is
modified and so has to be reprocessed. File two is first passed through ditroff and piped to
the first pass of dlink, where the file is reprocessed and the block information is recalculated
and stored in the project auxiliary file. Pass two of dlink may now be invoked to format the
pages of the document. Since file one is unchanged page layout begins on the page where
file one ends and file two will begin.

6.3 Component numbering

We have already hinted at some of the difficulties which arise when section numbering
changes as a result of revising a document. We now look in more detail at what needs to be
done.

Numbered components of a document can be divided into two categories, structural
components include chapters, sections, subsections etc., and non-structural components,
for example footnotes, tables and figures. A full discussion of component numbering may
be found in [20]. Both categories of numbered components are treated in a similar way with
each component having a ‘number slot’. This stores the level of the number (for example
this subsection has a level two number of 6.3). The physical position of the numbers is
marked in the text by a template. The template acts as a marker for each number. The
template has the same width as the number, so when the block is processed by ditroff
the block is correctly formatted. During linking, component numbers are resolved and the
templates are replaced with the correct number.

The use of a template reduces the number of times the block has to be formatted.
In most cases the block is only formatted once but if a number has been formatted with
a single-figure template and the number, when resolved at the linking stage, becomes a
two-figure number then the block will require reformatting with a larger template — to take
into account the increase in width of the number.

Cross-references are handled in a similar way. In contrast to batch formatting systems
such as LATEX and Scribe which require two full passes over the document to resolve
cross-references, dlink requires only one pass. This is the result of undertaking page layout
in memory using solely the information from the block headers in the project auxiliary file.
Forward references may be resolved after page layout but before the blocks are actually
output as DIC.

322 M. J. GROVES AND D. F. BRAILSFORD

It will be clear that the processing of cross-references in documents strongly echoes
that in the link-editing of programs. Once again, though, there are some interesting new
twists. A call of a subroutine in a high-level language might appear in the source text as
CALL FRED. When compiled link-edited and loaded it loses all trace of the logical tag
FRED and would appear, in the machine code, as something like ‘JSR 1028’ to denote a
jump to a subroutine at location 1028 in memory. In a document, on the other hand, our
‘subroutine calls’ can be left in logical form, (‘see section on widgets’) in numbered logical
form (‘see section 2.1.1’), in absolute positional form (‘see second paragraph on page 128’)
or in some combination of these (‘see section 2.1.1 about widgets on page 128’).

7 DISCUSSION AND CONCLUSIONS

At the purely physical level of document appearance dlink provides improved layout
compared to the standard ms macros of ditroff. Pages are vertically justified and widows
and orphans are avoided. We have already mentioned Kernighan and van Wyk’spm which
does a good job in vertically justifying text and removing widows and orphans, especially
when producing one and two-column page layouts. In a similar way to dlink, the pm macro
package inserts special comments in the DIC which are used by the postprocessor to lay out
each page. It then splits the document up into groups, called streams and floats, with each
group made up of a series of slugs or lines of text. But although it may seem superficially
similar to dlink’s blocks, pm does not implement a true block model. It still uses a line-based
approach to page layout and, as a result, it is unable to handle the splitting of footnotes
and generation of footnote rules correctly. It also does not offer the separate compilation
facilities of dlink.

The block model simplifies the task of formatting by taking away a large part of the
formattingprocess from the formatter. In this example, ditroff is used purely as an assembler
of the marked up document into blocks of DIC with the page layout being carried out by
dlink. This approach has several advantages. All the formatted blocks are available for
manipulation by the page layout algorithm and manipulating lists of objects is much easier
than incorporating a complex page-layout algorithm into a line-based formatter.

One of the main advantages of separate compilationof programs is that of decreasing the
time spent compiling and linking. This benefit is also seen with dlink. First time processing
of a document with dlink is slower than processing the document in one file with ditroff
because of the time needed to create the auxiliary file. However, after initial processing
reasonable speedups are achieved. For example, a 30,000 word document marked up with
the ms macros and split into four separate files of roughly equal size takes approximately
1.2 times longer than plain ditroff for initialprocessing with dlink. Reprocessing and linking
one file is approximately three times faster than formatting the whole document with ditroff.
Greater speedups may be obtained by splitting the document up into smaller files. However,
the restricting factor is that each file has to be processed by ditroff before linking. In the
example given, over three quarters of the time is taken by ditroff in the reprocessing and
linking of one file. One level of complexity is removed by using the mlink macro package.
Because page makeup is undertaken by dlink the mlink macros are able to avoid complex
ditroff commands such as diversions and environments.

The block-based formatting model also has advantages for the writer. A block represents
a logical part of the document and can be easily understood. The use of the block model
provides dlink with a certain amount of knowledge about the document’s structure. This

SEPARATE COMPILATION OF DOCUMENTS 323

information allows dlink to lay out the page in a more intelligent manner than plain ditroff
with the ms macros.

7.1 A revised document model

The block model and dlink can be seen to follow the document model described in section 2.
However, the mapping between the document model representation and the output model
representation has been split into two parts by dlink. The mapping, or ‘formatting’, first
involves a ‘low-level’ assembling of text into blocks. The second part of the output model
representation is the page makeup. From this we have split the output model representation
into two distinct representations. First, the block model representation and second, the page
model representation. These correspond almost exactly to the compilation and link-editing
phases of a computer program.

Thus, with dlink we can now associate four distinct representations of a document;

• the document model representation,
• the block model representation,
• the page model representation,
• the display model representation.

The document model representation is mapped to the block model representation by
formatting the document model representation into blocks. Each block is a separate entity,
described in an intermediate language with vertical coordinates relative to a particular
origin. The block model representation is mapped to the page model representation by the
page layout process. The blocks are laid out on the page. Also cross-references, component
numbers and page numbers are resolved. By a suitable extension of the structured com-
ments inserted into the DIC it would be possible to reify the various cross-references as
hypertextual links to other objects in the same document, or within other documents.

7.2 Why use ditroff and DIC?

Why did we use ditroff and DIC instead of the more recent and technically superior TEX [21]?
This question is answered, in full, in a recent paper by Srouji and Berry [22], but an outline
of the reasons is as follows. First, troff and it’s plethora of pre- and postprocessors provides
a modular approach to formatting. New functionality may be added to troff by writing an
appropriate preprocessor. This ability of troff to adapt so as to meet ever more sophisticated
demands is a large part of the success of the UNIX typesetting system.

TEX takes the opposite approach and provides a unified system with many of the
features provided by troff’s preprocessors incorporated into the main program. However, it
is difficult to add extra features with pre- and postprocessors.

A second, and more serious problem with TEX is the lack of information generated by
TEX in its output. The DIC output from ditroff provides end-of-word and end-of-line markers.
This feature is absent in TEX’s device independent output code (DVI) [23]. Knowing where
line breaks occur within the text is crucial to the block model method of formatting.

Just as a linker will link object modules produced from more than one compiler each
using a different source language, so dlink should be able to link ditroff documents with
documents produced by other text processing systems. To illustrate this point a DVI to DIC

converter, called dvi2dic was written enabling the linking of parts of a document written

324 M. J. GROVES AND D. F. BRAILSFORD

with LATEX to be linked with ditroff parts. Although DVI does not provide end of line
markers it is possible, for relatively simple documents, to infer where line endings occur
provided the point size and vertical line spacing are known. To achieve this and to enable
linking by dlink a subset of the LATEX article style has been modified to provide the extra
information required by dlink. Information is passed through LATEX in a similar way to
that used by ditroff by the using of comments with the \special command. This facility
enables LATEX articles to be linked with ditroff documents whilst preserving component
numbers, page numbers etc. LATEX documents processed by dvi2dic must use PostScript
fonts that are already installed for ditroff. All horizontal and vertical motions within the
DVI file are converted to relative motions and output at the resolution of the ditroff output
device as specified in the ditroff DESC file.

7.3 The way forward

As described in the previous section it is possible to convert DVI to DIC and it may also
be possible to convert other formatter output languages to DIC, but it is clear that DIC is
not an ideal intermediate language for the linking of documents. Its advantages are that it
uses 7-bit ASCII, is well designed, supports relative positioning and can have comments
inserted into it to convey some semantic information about the text. Its big drawback is that
it is highly resolution dependent. All horizontal and vertical movements are based upon
the resolution of the output device. Therefore it is impossible to link two files produced for
two different output devices. This creates problems when linking documents from different
text processing systems.

We need an intermediate language for document link editors which possesses the
following attributes:

• Independent of application, hardware and operating system
• Structured and therefore capable of containing document structural information
• Full retention of low-level information (fonts, point size, page length etc.)
• Portable (e.g. 7-bit ASCII)
• Easily converted to a form suitable for previewing and printing
• Easy to correlate display-model ‘objects’ with corresponding source-code objects
• Support for explicit intra- and inter-document hypertext links
• Easy to revise and with full support for indirection and relative addressing when ac-

cessing document objects — in particular all objects should be accessible by relative
byte offsets within the file and by relative page displacements when being viewed or
typeset

Many languages, ranging from Office Document Interchange Format (ODIF) through
to PostScript, via Computer Graphics Metafile (CGM) and Rich Text Format (RTF) can
address some, but not all, of these needs. However, the recent announcement from Adobe
Systems Inc. of their Acrobat software, and its underlying Portable Document Format
(PDF) [24], is particularly exciting because it can potentially address all of the above
issues.

Adobe’s PDF is based on Level II PostScript [25] for its imaging model and this
enables it to describe documents containing any combination of text, graphics and images
in a device- and resolution-independent format. Moreover, a PDF file describes not only
the visual aspects of a document, but also additional elements such as annotations, outlines,

SEPARATE COMPILATION OF DOCUMENTS 325

hypertext links and thumbnail views of each page. Internal tables enable objects to be
addressed indirectly and it is possible that future releases of the software will support an
extension of these tables to allow blocks of low-level PDF, which image the page on screen
or on a printer, to be cross-correlated with the embedded, tagged source code that produced
them. Research is currently under way at Nottingham to evaluate PDF as a candidate for a
universal document link-editor language.

REFERENCES

1. B. K. Reid, Scribe: A Document Specification Language and its Compiler , 1980.
2. Leslie Lamport, LATEX: A Document Preparation System , Addison-Wesley, 1986.
3. GCA standard 101-1983, Document Markup Metalanguage: GENCODE and the Standard

Generalized Markup Language (SGML) , ed., Charles F. Goldfarb, Graphic Communications
Association, 1983.

4. ISO/DIS 8613 Information processing, Office Document Architecture (ODA), 1986.
5. Structured Documents , eds., J. André, R. Furuta, and V. Quint, Cambridge University Press,

1989.
6. R. Furuta, J. Scofield, and A. Shaw, ‘Document formatting systems: survey, concepts, and

issues’, Computing Surveys, 14(3), 417–472, (1982).
7. Alfred V. Aho and Jeffrey D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading,

Massachusetts, 1977.
8. S. I. Feldman, Make — A Program for Maintaining Computer Programs , AT&T Bell Laborato-

ries, Murray Hill, New Jersey 07974, August 1978.
9. Leon Presser and John R. White, ‘Linkers and loaders’, Computing Surveys, 4(3), 149–167,

(September 1972).
10. D. W. Barron, Assemblers and Loaders , Macdonald and Jane’s, Macdonald & Co. (Publishers)

Ltd., 1972.
11. Frans C. Heeman, ‘Granularity in structured documents’, Electronic Publishing — Origination,

Dissemination and Design, 5(3), 143–155, (September 1992).
12. Donald E. Knuth and Michael F. Plass, ‘Breaking paragraphs into lines’, Software — Practice

and Experience , 11, 1119–1184, (1981).
13. Brian W. Kernighan and Christopher J. Van Wyk, ‘Page makeup by postprocessingtext formatter

output’, Computing Systems, 2(1), 103–132, (Spring 1989).
14. David R. Evans, An Investigation of Parallelism in Document Processing, Ph.D. dissertation,

University of Nottingham, Nottingham, NG7 2RD, November 1990.
15. Donald D. Chamberlin, Helmut F. Hasselmeier, A. W. Luniewski, Dieter P. Paris, B. W. Wade,

and M. L. Zolliker, ‘Quill: An extensible system for editing documents of mixed type’, in
Proceedings of the 21st Hawaii International Conference on System Sciences , Washington DC,
(1987). IEEE Computer Society Press.

16. Allen W. Luniewski, ‘Intent-based page modelling using blocks in the Quill document editor’,
in Proceedings of the EP90 Conference , pp. 205–221. Cambridge University Press, (September
1990).

17. Brian W. Kernighan, ‘A typesetter-independent TROFF’, Computing Science Report No. 97 ,
(March 1982).

18. Joseph F. Ossanna, ‘NROFF / TROFF user’s manual’, Computing Science Technical Report
No. 54, (October 1976).

19. M. E. Lesk, Typing Documents on the UNIX System: Using the -ms Macros with Troff and Nroff,
Bell Laboratories, Murray Hill, New Jersey 07974, 1978.

20. Michael A. Harrison and Ethan V. Munson, ‘Numbering document components’, Electronic
Publishing — Origination, Dissemination and Design, 4(1), 1–19, (January 1991).

21. D. E. Knuth, The TEXbook, Addison-Wesley, Reading MA, 1984.
22. Johny Srouji and Daniel Berry, ‘Arabic formatting with ditroff/ffortid’, Electronic Publishing —

Origination, Dissemination and Design, 5(4), 163–208, (December 1992).
23. D. E. Knuth, ‘Device-independent file format’, TUGboat, 3(2), 14–19, (1982).

326 M. J. GROVES AND D. F. BRAILSFORD

24. Adobe Systems Inc., Portable Document Format Reference Manual , Addison-Wesley, Reading,
Massachusetts, June 1993.

25. Adobe Systems Inc., PostScript Language Reference Manual , Addison-Wesley, Reading, Mas-
sachusetts, second edition, December 1990.

	SUMMARY
	1 INTRODUCTION
	2 STRUCTURED DOCUMENTS
	3 COMPILERS AND LINKERS
	4 DATA ABSTRACTION LEVEL FOR A DOCUMENT LINKER
	5 THE BLOCK MODEL
	6 IMPLEMENTATION
	6.1 {	bi dlink}
	6.2 Separate compilation
	6.3 Component numbering

	7 DISCUSSION AND CONCLUSIONS
	7.1 A revised document model
	7.2 Why use ditroff and {Dic}?
	7.3 The way forward

	REFERENCES

