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Abstract 

Remote sensing is an attractive source of data for land cover mapping applications. 

Mapping is generally achieved through the application of a conventional statistical 

classification, which allocates each image pixel to a land cover class. Such approaches are 

inappropriate for mixed pixels, which contain two or more land cover classes, and a fuzzy 

classification approach is required. When pixels may have multiple and partial class 

membership measures of the strength of class membership may be output and, if strongly 

related to the land cover composition, mapped to represent such fuzzy land cover. This 

type of representation can be derived by softening the output of a conventional 'hard' 

classification or using a fuzzy classification. The accuracy of the representation provided 

by a fuzzy classification is, however, difficult to evaluate. Conventional measures of 

classification accuracy cannot be used as they are appropriate only for 'hard' classifications. 

The accuracy of a classification may, however, be indicated by the way in which the 

strength of class membership is partitioned between the classes and how closely this 

represents the partitioning of class membership on the ground. In this paper two measures 

of the closeness of the land cover representation derived from a classification to that on the 

ground were used to evaluate a set of fuzzy classifications. The latter were based on 

measures of the strength of class membership output from classifications by a discriminant 

analysis, artificial neural network and fuzzy c-means classifiers. The results show the 

importance of recognising and accommodating for the fuzziness of the land cover on the 

ground. The accuracy assessment methods used were applicable to pure and mixed pixels 

and enabled the identification of the most accurate land cover representation derived. The 

results showed that the fuzzy representations were more accurate than the 'hard' 

classifications. Moreover, the outputs derived from the artificial neural network and the 
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fuzzy c-means algorithm in particular were strongly related to the land cover on the ground 

and provided the most accurate land cover representations. The ability to appropriately 

represent fuzzy land cover and evaluate the accuracy of the representation should facilitate 

the use of remote sensing as a source of land cover data. 

1. Introduction 

Land cover is one of the most fundamental geographical variables. It plays a role in 

a broad spectrum of geographical inquiry including, inter alia, control of the Earth's 

albedo, erosion rates, species dispersion routes, resource planning and utilization. Although 

the importance of land cover is a recognised, data on land cover are often out-of-date, of 

poor quality or inappropriate for a particular application (Townshend et al., 1991; DeFries 

and Townshend, 1994; Estes and Mooneyhan, 1994). Furthermore, land cover data are not, 

contrary to popular belief in some quarters, easy to acquire (Rhind and Hudson, 1980; 

Estes and Mooneyhan, 1994). This is particularly the case if data are required for large areas 

or if frequent up-dating is required. Often the only feasible approach to map land cover is 

through the use of remotely sensed data, especially for mapping at regional to global scales. 

Relative to traditional mapping methods remotely sensed data are an attractive source of 

land cover data. This is mainly a result of their map-like format combined with favourable 

coverage, consistency, availability and cost. As a result land cover mapping has become one 

of the most common applications of remote sensing. This application has, however, not 

yet reached operational status (Townshend, 1992). A number of reasons may be cited for 

the failure to realise the full potential of remote sensing as a source of land cover data. One 

set of factors relate to the methods used to map land cover from the remotely sensed data. 
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Typically a supervised digital image classification is used in the mapping of land 

cover from remotely sensed data. This type of classification is generally applied on a per-

pixel basis and has three distinct stages. First, the training stage, in which pixels of known 

class membership in the remotely sensed data are characterised and class 'signatures' 

derived. In the second stage, these training statistics are used to allocate pixels of unknown 

class membership to a class in accordance to some decision rule. Third, the quality of the 

classification is evaluated. This is generally based on the accuracy of the classification which 

is assessed by comparing the actual and predicted class of membership for a set of pixels 

not used in training the classification. 

Of the many classification techniques available the most widely used are 

conventional statistical algorithms such as discriminant analysis and the maximum 

likelihood classification. These aim to allocate each pixel in the image to the class with 

which it has the highest probability of membership (Mather, 1987; Thomas et al., 1987). 

Problems with this type of classification, particularly in relation to distribution assumptions 

and the integration of ancillary data, particularly if incomplete or acquired at a low level 

of measurement precision (Moon, 1993; Peddle, 1993), prompted the development of 

alternative classification approaches. Thus, for instance, attention has turned recently to 

approaches such as those based on evidential reasoning (Srinivasan and Richards, 1990; 

Peddle, 1993) and artificial neural networks (Benediktsson et al., 1990; Foody et al., 1995). 

Although there are many instances when the conventional and alternative classification 

techniques have been used successfully in the accurate mapping of land cover, they are not 

always appropriate for land cover mapping applications. One important limitation of the 

classification approaches to land cover mapping is that the output derived consists only of 

the code of the allocated class. This type of output is often referred to as being 'hard' or 
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'crisp' and is wasteful of information on the strength of class membership generated in the 

classification (Wang, 1990a). This information on the strength of class membership may, 

for instance, be used to indicate the confidence that may be associated with an allocation 

on a per-pixel basis, indicating classification reliability (Foody et al., 1992; Maselli et al., 

1994; Corves and Place, 1994), or be used in post-classification processing (Harris, 1985; 

Wang and Civco, 1992) and enable more appropriate and informed analysis by later users, 

particularly within a geographical information system (Hall et al., 1992). Perhaps a more 

important limitation of 'hard' classifications is that they were developed for the 

classification of classes that may be considered to be discrete and mutually exclusive, and 

assume each pixel to be pure, that is comprised of a single class. Often this is not the 

situation. Frequently, for example, pixels of mixed land cover class composition may be 

abundant in an image. Thus, for instance, the classes may be continuous and inter-grade 

gradually with many areas of mixed class composition, particularly near imprecise or fuzzy 

class boundaries (McBratney and Moore, 1985; Wood and Foody, 1989). Alternatively, a 

pixel may represent an area on the ground which comprises more than one discrete land 

cover class. This may occur when the area represented by the pixel straddles the boundaries 

of two or more classes and is common in coarse spatial resolution data sets (Townshend 

and Justice, 1981; Crapper, 1984; Campbell, 1987). Despite having a mixed land cover 

composition a conventional classification will force the allocation of a mixed pixel to one 

class, and this class need not even be one of the component classes (Campbell, 1987). 

Conventional classification approaches therefore may not provide a realistic or accurate 

representation of land cover. 

A 'hard' classification output can therefore fail to appropriately represent land 

cover. An alternative to the 'hard' classification representation of land cover is therefore 
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often required and should allow for partial and multiple class membership (Wang, 1990a). 

This could be achieved by 'softening' the output of a 'hard' classification. For instance, 

measures of the strength of class membership, rather than just the code of the most likely 

class of membership, may be output. Thus, for example, with a probability based 

classification a probability vector containing the probability of membership a pixel has to 

each defined class could be output. In this probability distribution the partitioning of the 

class membership probabilities between the classes would, ideally, reflect to some extent 

the land cover composition of a mixed pixel (Wang, 1990b; Foody et al., 1992). This type 

of output may be considered to be fuzzy, as an imprecise allocation may be made and a 

pixel can display membership to all classes. The data must still, however, satisfy the 

assumptions and requirements of the classification technique used, which is often unlikely 

with the widely used probability based classifiers. The lack of distribution assumptions is 

one major attraction of alternative classifiers such as artificial neural networks. Although 

generally used to produce a hard classification (Kanellopoulos et al., 1992) the output may 

be softened to provide measures of the strength of class membership (Foody et al., 1995) 

which may better model fuzzy land cover than a 'hard' classification. 

Since the concept of multiple and partial class membership is fundamental to fuzzy 

sets techniques (Bosserman and Ragade, 1982; Hisdal, 1994) these may, however, be more 

appropriate for land cover representation than softened classifications. One technique which 

has been used widely in the classification of remotely sensed data is the fuzzy c-means 

algorithm. This is a clustering algorithm which may be used for either unsupervised (e.g. 

Cannon et at., 1986) or supervised classification (e.g. Key et al., 1989). In the course of the 

classification fuzzy membership functions are calculated from which membership values 

which indicate the relat ive strength of class membership a pixel has to each class may be 
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derived. These fuzzy memberships may be used to derive information on the land cover 

composition of mixed pixels (Fisher and Pathirana, 1990; Foody and Cox, 1994). One 

significant problem in the use of such a technique is the lack of methods for the evaluation 

of the accuracy of the fuzzy classification output and this is a major barrier to the adoption 

of fuzzy classifications (Goodchild, 1994). An accuracy statement is required not only to 

describe the accuracy of the land cover representation derived but also to aid the selection 

of the most accurate land cover representation as the degree of fuzziness is variable in the 

fuzzy c-means classification. 

Although fuzzy classifications have been used to provide a more appropriate 

representation of land cover that may be considered to be fuzzy, the fuzziness of the land 

cover being represented has often been overlooked in the assessment of the accuracy of the 

representation derived. This problem stems largely from the use of the pixel as the basic 

spatial unit. In terms of factors such as size, shape and location on the ground, the pixel 

is largely an arbitrary spatial unit (Rhind and Hudson, 1980; Fisher, 1995). Often the area 

represented by a pixel crosses the boundaries of classes resulting in a pixel of mixed land 

cover composition. It is important, however, to recognise that this problem is not 

restricted to just the remotely sensed data set but applies also to the ground data as these 

are related to the classification output at the scale of the pixel. Since a pixel may represent 

an area containing more than one land cover class it is desirable that this should be 

reflected in the classification output and, if the classification is to be appropriately 

evaluated, it should also be included in the assessment of classification accuracy. Thus the 

fuzziness of both the classification output and the land cover on the ground at the scale of 

the pixel both need to be recognised. 

Ground data on class membership are required to both train the classification and 
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evaluate its accuracy (Campbell, 1987; Mather, 1987). Since the pixel size of data from 

many remote sensing systems is relatively large (e.g. around 1.2km2  for NOAA AVHRR 

data used in regional/global scale mapping) many pixels are of mixed composition; most 

image pixels may be mixed but the exact proportion of mixed pixels in an image is a 

function of the sensor's spatial resolution and the fabric of the landscape (Crapper, 1984; 

Campbell, 1987). Since it is impractical to collect ground data at a scale directly comparable 

to the remotely sensed data analysts often sample from large homogeneous regions of each 

class where it can be assumed that pixels are pure in order to minimise the problem of 

training site contamination by other classes. Care is, however, required to ensure that the 

training data are representative of the class (Campbell, 1987); the problems of relating 

ground and remotely sensed data sets acquired at differently sized supports is a major 

problem in the use of remotely sensed data for the scaling-up of information and is 

currently the focus of considerable effort (Atkinson, 1995). 

In evaluating the accuracy of a classification the ground data must again relate to 

the same spatial unit as the remotely sensed data for a meaningful comparison. As in 

training the classification 'pure' pixels only are often used to reduce the mixed pixel 

problem. However, since a large proportion of pixels in an image may be mixed an 

accuracy statement based on pure pixels only will not provide a full or adequate description 

of the overall classification performance. It is therefore important that mixed pixels be 

included in an accuracy assessment. While the assessment of classification accuracy for 

pixels that are pure in the remotely sensed and ground data sets has been the subject of 

considerable research and a range of methods exist (e.g. Rosenfield and Fitzpatrick-Lins, 

1986; Congalton, 1991) relatively little attention has addressed the problems of assessing the 

accuracy of classifications which include mixed pixels. However, if a fuzzy classification is 
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used to map land cover that may be considered to be fuzzy the assessment of the accuracy 

of the representation derived must accommodate for the fuzziness of both the land cover 

classification derived and the actual land cover on the ground. 

The aim of this paper was to illustrate the fuzzy classification of land cover from 

remotely sensed data. It was based on three algorithms used widely for the classification 

of remotely sensed data. These were a discriminant analysis, an artificial neural network 

and the fuzzy c-means algorithm. It should be noted that the first two techniques have been 

widely used for the 'hard' classification of remotely sensed data. Although the softening of 

probabilistic classifications has been reported in the literature (e.g. Foody et al., 1992) little 

attention has focused on artificial neural network classifications. A secondary aim of the 

paper was therefore to illustrate an approach for the derivation of a fuzzy classification 

from an artificial neural network. In contrast to the two other classification techniques, the 

fuzzy c-means algorithm has been used extensively for fuzzy classification and is 

particularly interesting as the degree of fuzziness is controlled by the analyst. Here 

attention was also focused on the assessment of the accuracy of the land cover 

representation derived as this is an essential part of any land cover mapping programme. 

Methods for evaluating the accuracy of fuzzy classifications would help fill the gap in this 

part of the classification procedure which currently inhibits the wider adoption of fuzzy 

classifications (Goodchild, 1994) . Furthermore, an ability to assess the accuracy of a fuzzy 

land cover classification will assist in the selection of most appropriate degree of fuzziness 

for use in the fuzzy c-means algorithm. 

2. Approaches for fuzzy land cover mapping 

A range of approaches may be used to derive a fuzzy classification of remotely 
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sensed data. In addition to the use of fuzzy classifiers it is possible to soften the output of 

conventional 'hard' classifiers to derive a fuzzy land cover representation. In general, fuzzy 

land cover may be represented by mapping measures of the strength of class membership, 

which may be output from conventional 'hard' classifications or from fuzzy classification 

techniques. These measures of the strength of class membership derived for a pixel are 

taken to reflect the relative proportion of the classes in the area represented by the pixel. 

Here three classification approaches were used to map land cover that may be considered 

to be fuzzy. Two of these approaches, a discriminant analysis and an artificial neural 

network, are normally used for 'hard' classifications while the other, the fuzzy c-means 

algorithm, is a fuzzy classifier. The salient features of each of these classifications and the 

measures of the strength of class membership which may be derived from them are briefly 

outlined in this section. 

Discriminant analysis is widely used in the classification of remotely sensed data 

(Tom and Miller, 1984; Lark, 1994). It is a conventional statistical classifier which allocates 

each case to the class with which it displays the highest a posteriori probability of 

membership. The latter may be derived from, 

L(z IX) = Pi p(xl i)/k p(xli) 	 (1) 

where L(i (X) is the posterior probability of case X belonging to class i, p(Xli) is the 

typicality probability (the probability that case X would be a member of class i given the 

distance it is from the centroid of class t), P, the a priori probability for class i, and c the 

total number of classes. These posterior probabilities lie on a 0-1 scale and sum to 1.0 for 
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each pixel. Further details on the algorithm used are given in Klecka (1980). 

Problems, especially in relation to distribution assumptions, with statistical classifiers 

such as discriminant analysis have led to increased use of alternative approaches. One 

particularly attractive alternative for the supervised classification of remotely sensed data 

is the use of artificial neural networks. An artificial neural network is constructed from a 

set of simple processing units interconnected by weighted channels according to some 

architecture (Aleksander and Morton, 1990; Fischer and Gopal, 1993). Typically a layered 

architecture is used for classification (Figure 1). In this type of network each unit in a layer 

is connected to every unit in the next layer. The data are entered at the input layer, pass 

through one or more hidden layers to the output layer. The latter comprises one unit for 

each class in the classification and is where class allocation may be determined. 

Each unit in the network consists of a number of input channels, an activation 

function and an output channel. Signals impinging on a unit's inputs are multiplied by the 

inter-connecting channel's weight and are summed to derive the unit's net input. Thus for 

the unit s the net input may be determined from, 

nets  = Ea,w, 	 (2) 

where a, is the magnitude of the rth  input and qv, the weight of the interconnection 

channel. This net input (nets) is then transformed by the activation function to produce an 

output for the unit (Schalkoff, 1992). Typically a sigmoid activation function such as, 

1 
os  = 1 + exp 

 nets 	
(3) 

where X is a gain parameter is used. The output of a network unit is sometimes referred 
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to as its activation level. The magnitude of the activation level of a unit in the output layer 

is a measure of the strength of membership to the class associated with the unit. A 'hard' 

classification is achieved by allocating each pixel to the class associated with the unit in the 

output layer with the highest activation level. 

Classification with an artificial neural network usually begins with the network 

weights connecting the units set at random. Generally a backpropagation learning 

algorithm (Rumelhart et al., 1986) is used to train the network to correctly characterise the 

classes. Network training begins with the input of the training data from which an output 

may be computed. Since the desired output is known for the training data the error in the 

computed output may be determined. This is then fed backward through the network to 

the input layer with the weights connecting units changed in proportion to the calculated 

error (Aleksander and Morton, 1990; Schalkoff, 1992). The training data are then entered 

again and the process repeated. Thus with backpropagation learning the aim is to iteratively 

minimize an error function over the network outputs and a set of target outputs, taken 

from a training data set. The process continues until the error value converges to a 

(possibly local) minima. Conventionally the error function is given as, 

E = 	- 0)2 	 (4) 

where Ti  is the target output vector for the training set 	T) and 0, is the output 

vector from the network for the given training set. On each iteration backpropagation 

recursively computes the gradient or change in error with respect to each weight (dE/dw) 

in the network and these values are used to modify the weights between network units. 

The weight change on the eh  iteration is achieved by, 
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Ow, = -n(dE/dw), + 	 (5) 

where n and a are parameters which define the learning rate and momentum which 

facilitate network learning (Schalkoff, 1992). Once trained the network may be used for the 

classification of cases of unknown class membership. 

The fuzzy c-means clustering algorithm may be used to subdivide a data set into c 

clusters or classes. It is a non-hierarchical clustering technique. It begins by randomly 

assigning cases (pixels) to classes and then, iteratively, moves cases to other classes with the 

aim of minimizing the generalised least-squared error, 

n c 

	

im(U,v) = E E (tiJm  II Yivill2 	 (6) 
k - 1 1-.1 	 A 

where U is a fuzzy c-partition of the data set Y containing n cases (y„ y2,.., y,,), c is the 

number of classes, II Li  is an inner product norm, v is a vector of cluster centres, v, is the 

centre of cluster i, and in is a weighting component that lies within the range 1:5 771...c. co 

which determines the degree of fuzziness. The squared distance between yk  and v, is derived 

from, 

II yk-vi II 2  = FIT A (yk-v) 
	

(7) A 

-1 
A number of norms may be selected. Here the Mahalanobis norm, A = Cy, was used, where 

Cy  is the covariance matrix of the data set Y. The elements of U, uik , represent the grade 

of membership of a case to a class. These membership values satisfy the constraints, 
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UtkE X0,1] (8a)  

ht ik> 0, 	i=1...c (8b)  

Euik = 1, 	k= 1...n (8c)  
i-1 

In a fuzzy c-partition of a data set membership functions characterise the 

membership of each case in all classes. These memberships lie on a 0-1 scale and the 

memberships for each case sum to unity. These membership values indicate the degree of 

similarity between a case and a class. Memberships close to unity indicate a high degree of 

similarity between a case and a class whereas memberships close to zero indicate little 

similarity between a case and a class. Further details and examples of the use of this 

algorithm may be found in the literature such as Cannon et al. (1986), Fisher and Pathirana 

(1990) and Key et al. (1989) and a listing of the fuzzy c-means clustering (unsupervised) 

algorithm may be found in Bezdek et al. (1984). Since the classes are known a priori in a 

supervised classification the fuzzy c-means clustering algorithm may be modified so that the 

classification is based on class centres provided by the analyst from training samples (Key 

et al., 1989). 

In performing a classification with the fuzzy c-means algorithm the analyst must 

select the value of the weighting component m. When in =1 a 'hard' or conventional 

classification may be obtained in which each pixel is associated unequivocally with just one 

class. There is no optimal value of m and most studies have used a value in the range 

1.5 < m < 3.0 (Bezdek et al., 1984; McBratney and Moore, 1985). To aid the selection an 

appropriate value of in and describe the quality of the land cover representation derived 

from an analysis a measure of classification accuracy is required. 
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The posterior probabilities, output unit activation levels and fuzzy membership 

values derived from the discriminant analysis, artificial neural network and fuzzy c-means 

classifications respectively are all measures of the strength of class membership that may 

be mapped to represent fuzzy land cover. The use of each measure for the representation 

of fuzzy land cover is outlined below in section 6. First the procedures for the evaluation 

of the accuracy of the land cover representation provided by a classification will be 

discussed. 

3. Evaluation of classification accuracy 

A statement of classification accuracy is an essential accompaniment to a land cover 

map derived from remotely sensed data. Many methods for assessing classification accuracy 

have been proposed (e.g. Hay, 1979; Aronoff, 1985; Congalton, 1991; Foody, 1992). Ideally 

classification accuracy should be expressed in the form of a single index which is readily 

interpretable and which allows the relative performance of different classifications to be 

evaluated. The most widely used measures are derived from a classification confusion or 

error matrix. This matrix shows the predicted and actual class of membership for a set of 

pixels sampled from the classification. In this matrix the main diagonal illustrates those 

pixels which have been allocated correctly whilst the off-diagonal elements represent 

incorrect allocations. A range of measures of classification accuracy may be derived from 

the matrix. For instance, the percentage correct allocation may be derived as an index of 

the overall accuracy of the classification. If desired this could be calculated for individual 

classes from the producer's and users's perspectives (Story and Congalton, 1986). To make 

more use of the information contained in the confusion matrix a statistic such as the kappa 

coefficient of agreement may be used for the assessment of the accuracy of the classification 
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as a whole and for individual classes after making some compensation for chance agreement 

(Cohen, 1960; Congalton, 1991). 

One fundamental problem with the use of accuracy measures derived from the 

classification confusion matrix is that they are only appropriate for use with a 'hard' 

classification. Thus these measures of classification accuracy may be derived when each 

pixel is associated with only one class in the classification and only one class in the ground 

data (Congalton et al., 1983; Gong and Howarth, 1990). Consequently, an allocation is 

either correct or incorrect. Although account may be made for factors such as varying 

degrees of severity of error (Cohen, 1968), the measures of classification accuracy derived 

from the confusion matrix are inappropriate for the evaluation of fuzzy classifications. In 

some investigations a fuzzy classification has been produced but in order to evaluate the 

accuracy of the classification it has been necessary to 'harden' the classification output 

and/or focus only on pure pixels in the data set to enable a conventional measure of 

classification accuracy to be calculated (e.g. Foody and Trodd, 1993). The resulting accuracy 

statement is not, however, a good measure of the accuracy of a fuzzy classification. 

Furthermore, as the pixel is generally the spatial unit used in accuracy assessment and as 

the majority of image pixels may be mixed (Crapper, 1984), multiple and partial class 

membership may therefore be considered to be a function of both the remotely sensed and 

ground data sets. The ground data used also are often not error-free (Curran and 

Williamson, 1985; Curran and Hay, 1986; Bauer et al., 1994) and may be based on 

subjective assessments which can be a source of ambiguity and confusion within them. 

There may therefore also be occasions when the ground data are fuzzy or where there is 

ambiguity in the ground data (Gopal and Woodcock, 1994). Again it may be possible to 

'harden' these data to enable the accuracy to be assessed by a conventional measure derived 
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from a confusion matrix but the end result is not an evaluation of the fuzzy classification. 

There is therefore a need to derive measures of classification accuracy which go 

beyond the confusion matrix (Congalton, 1994). A number of approaches have been 

suggested with emphasis on fuzzy measures. Gopal and Woodcock (1994), for instance, 

show how a number of fuzzy sets techniques may be used to derive a range of indicators 

of classification performance. The methods used, however, are only appropriate for the 

situation in which there is ambiguity in the ground data but not the classification output 

(i.e., the ground data are fuzzy and the classification is 'hard'). Furthermore, the methods 

do not allow the comparison of classifications, which is relatively easy with conventional 

measures such as the kappa coefficient (Cohen, 1960). Other approaches that have been 

used are based on measures of entropy (e.g. Finn, 1993; Maselli et al., 1994; Foody, 1995a). 

Entropy is a measure of uncertainty and information formulated in terms of probability 

theory, which expresses the relative support associated with mutually exclusive alternative 

classes (Klir and Folger, 1988). When two or more alternative classes have non-zero 

probabilities associated with them then each probability is in conflict with the others. 

When there is a finite set of alternative classes the expected value of conflict is given by the 

Shannon entropy (Klir, 1994). This may be used to describe the variations in class 

membership probabilities associated with each pixel. Entropy is therefore particularly 

attractive as an indicator of classification quality in situations where ambiguity exists as it 

indicates the degree to which the class membership probabilities are partitioned between 

the defined classes. The entropy, H, of a probability distribution, p, may be calculated from 

the class membership probabilities, p(x), contained through, 

H(p) = -R(x)log2p(x) 
	

(9) 
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The choice of logarithm base is arbitrary but the logarithm.  base 2 is widely used. With this 

base the uncertainty is measured in bits (Klir and Folger, 1988). 

Entropy is maximised in the situation when the probability of class membership is 

partitioned evenly between all defined classes in the classification and minimized when it 

is associated entirely with one class. Entropy and related measures are becoming popular 

in a range of applications in remote sensing (Conese and Maselli, 1993; Finn, 1993; Maselli 

et al., 1994). For instance, the relative entropy (ratio of observed to maximum entropy) has 

been used to indicate the confidence that may be associated with a classification output - 

with pixels showing a low relative entropy assumed to be well classified and those with a 

high relative entropy poorly classified (Maselli et al., 1994). Its value as an indicator of 

classification accuracy is therefore based implicitly on the assumption that in an accurate 

classification each pixel will have a high probability of membership with only one class. 

This is, however, only appropriate for situations in which the output of the classification 

is fuzzy (i.e., the probabilities of membership to all defined classes are output for each 

pixel) and the ground data are 'hard' (i.e., the code of the single class of membership). 

When the land cover may be considered to be fuzzy at the scale of the pixel, as may exist 

for a classification of continuous classes or an image with a high proportion of mixed 

pixels, then the direct use of entropy is no longer appropriate as an accurate classification 

output for a pixel could involve the total probability of class membership being partitioned 

among several classes (Foody, 1995a). In such a situation a more appropriate index of 

accuracy may be a measure of the closeness of the classification output to the ground data. 

4. Measures of closeness 

One approach which could be used in the evaluation of classification accuracy is to 
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measure the distancebetween land cover on the ground the fuzzy land cover representation 

derived from the classification (Kent and Mardia, 1988). This distance may be determined 

in a number of ways (Klir and Folger, 1988; Altman, 1994). One simple approach would 

be to use the Euclidean distance between the representation of the land cover from the 

classification and ground data. This would measure the separation of the two data sets and 

could be based on the relative extent or proportion of each class in the pixel. This measure 

could be derived for each pixel from, 

S = E(1et  - 262/c 	 (10) 

where let  is the proportion of class i in a pixel from the ground data and 2e, is the measure 

of the strength of membership to class i taken to represent the proportion of the class in 

the pixel from the fuzzy classification. 

Since the classification problem is essentially one of uncertainty in the class 

allocation, measures of closeness based on information uncertainty may, however, be the 

most appropriate to use in classification evaluation. Two broad categories of uncertainty 

may be identified. These are vagueness and ambiguity (Klir and Folger, 1988). Vagueness 

is associated with the difficulties of making precise distinctions. In mapping it may be 

associated therefore with the problem of locating a sharp dividing line between two 

continuous classes which, rather than lying as two distinct classes adjacent to each other, 

gradually inter-grade. Ambiguity is associated with one-to-many situations and conflicts of 

evidence (Klir and Folger, 1988). The concept of a fuzzy set and fuzzy measure provide the 

framework for dealing with vagueness and ambiguity respectively. 

In mapping land cover from remotely sensed data uncertainty issues often arise. 
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Uncertainty may be quantified in a number of ways (Klir and Folger, 1988; Pal and 

Bezdek, 1994). In probabilistic systems entropy has been used successfully to illustrate the 

accuracy of a classification (Maselli et al., 1994; Foody, 1995a). However, it was noted 

above that entropy may not be a good indicator of classification quality if multiple and 

partial class membership is a feature of both the classification output and ground data. 

However, since there is ambiguity in both the fuzzy classification and ground data the 

entropy of each may be calculated. It is then possible to assess the closeness of the two 

probability distributions for each pixel, derived from the fuzzy classification output and 

the fuzzy ground data. One approach could be to assess the similarity of the land cover 

representation provided by the classification output to the ground data through an 

evaluation of their mutual information content (Conese and Maselli, 1993; Finn, 1993). 

Alternatively the distance between the two data sets could be assessed. Essentially the aim 

is to express the information closeness of a pair of probability distributions, 'p and 2p. In 

the evaluation of the accuracy of a fuzzy land cover map the probability distribution of the 

ground data ('p) and that of the fuzzy classification output (2p) for a pixel would be used. 

An approach which may be used is to calculate the directed divergence or cross-entropy. 

Directed divergence may be derived from, 

d('r), 2p) = - 1p(x)log2p(x) + 1p(x)log, tp(x) 	 (11) 

This provides a measure of the closeness of the classification to the ground data. A small 

difference would, for instance, indicate that the classification was an accurate representation 

of the land cover (Foody, 1995a). This measure may be used as a criterion to evaluate the 

degree of similarity between two data sets (Chang et al., 1994). Directed divergence, 
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however, may only be derived when the supports of the probability distributions to be 

compared are compatible. Specifically the support 1p g support 2p. Higashi and Klir 

(1983); however, present a measure of information closeness which is applicable to any pair 

of probability distributions. This generalised measure of information closeness, D, may be 

derived from, 

D('p, 2p) = d('p, 1 P  +2  213  ) + d(2 p, 113 2  2P  ) 

,,(x) 	2
F
.„(x ) 
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(12) 

and used to assess the closeness of pairs of probability distributions. 

The measures S and D should enable the closeness of the fuzzy land cover 

representation, derived from the three classification techniques, to the fuzzy ground data 

to be assessed. Both S and D are used here to evaluate the accuracy of a set of fuzzy 

classifications derived from remotely sensed data, although D was developed for use with 

probability distributions. 

5. Test sites and data 

The test site was a 0.5 km2  area located adjacent to the University campus on the 

fringe of the City of Swansea, UK. Airborne thematic mapper (ATM) data in eleven 

spectral wavebands were acquired for the site with a Daedalus 1268 sensor with a spatial 

resolution of approximately 1.5m in 1990. The advantage of using fine spatial resolution 

data for a small test site was that the composition of image pixels could be evaluated 

accurately. 
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This test-site was comprised of mainly three land cover classes, trees, grass and 

asphalt (car park), and these could be readily identified from the imagery. For the purpose 

of this investigation each pixel in this fine spatial resolution image was assumed to be pure 

and classified visually into the three classes. This classification was verified in the field and 

used as ground/reference data on the distribution of the three land cover classes. To 

simplify the analysis of this data set, only the data from three wavebands, which account 

for much of the dimensionality and information content of ATM data (Townshend, 1984), 

were used. These were the data in the 605-625nm, 695-750nm and 1550-1750nm wavebands. 

The ATM data were then spatially degraded with an 11x11 low pass (mean) filter to 

simulate an image with a relatively coarse spatial resolution; further details on these data 

and the test site may be found in Foody and Cox (1994). For each pixel in this simulated 

coarse spatial resolution image the proportion of three land cover classes contained within 

it could be derived from the classification of the spatially undegraded image. Using 5 pure 

pixels of each class as training sites the simulated coarse spatial resolution image was then 

classified into the three classes by the discriminant analysis, artificial neural network and 

fuzzy c-means algorithm. To vary the degree of fuzziness in the land cover representations 

derived from the fuzzy c-means algorithm the analysis was repeated with different values 

for the weighting parameter m. In addition to the conventional 'hard' classification outputs 

the posterior probabilities of class membership from the discriminant analysis, output unit 

activation levels from the artificial neural network and fuzzy memberships generated from 

the analyses with the fuzzy c-means algorithm were output for each pixel. The accuracy 

of the classification outputs derived were assessed relative to ground data on class 

membership for a sample of 35 pixels. Although this is a relatively small sample it is large 

enough to illustrate the methods. The ground data for each pixel comprised the proportion 
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of each land cover class in the 35 pixels sampled from the simulated coarse spatial 

resolution image. These lie on a 0-1 scale and sum to unity for each pixel. Although not 

strictly probabilities they may reasonably be considered as such and forming a probability 

distribution for each pixel. 

Thus the data for each pixel used to evaluate the accuracy of the land cover 

representations derived from the fuzzy classifications comprised the strength of membership 

to all classes derived from the three classification techniques together with ground data in 

the form of the proportion of each class in the area represented by the pixel. The closeness 

of each fuzzy land cover representation derived to the ground data was assessed by 

correlation analysis as well as with measures S and D. 

6. Results and discussion 

The discriminant analysis was used to produce a conventional statistical classification 

of the data. The mean entropy of the 35 testing pixels was 0.095 with a corresponding 

mean relative entropy of 0.059. These values could be interpreted as indicating a fairly 

good classification. However, as the entropy value was greater than the minimum value this 

indicated the posterior probability of class membership for all pixels was not associated 

solely with a single class. This is desirable for a fuzzy classification. However, the posterior 

probabilities of class membership output from the analysis were generally either high or 

low with little variation between these extremes. Thus although the magnitude of 

probabilities did to some extent reflect the composition of the pixels the relationships were 

not strong (Figure 2). Relative to the 'hard' classification output, however, the land cover 

representation portrayed by the probabilities was closer, as measured by both S and D, to 

the ground data (Table 1). These results show two main features. Firstly, they reinforce the 
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danger of using entropy as a measure of classification accuracy when mixed pixels are 

present and secondly, that a conventional 'hard' statistical classification may be softened 

to provide a more appropriate representation of fuzzy land cover than the 'hard' 

classification. 

Although both S and D may be derived for the probabilities output from the 

discriminant analysis the use of D at first seems inappropriate for the evaluation of the 

accuracy of the non-probabilistic fuzzy land cover representations based on fuzzy 

memberships and the activation level of artificial neural network output units. Although 

similar in some ways to posterior probabilities of class membership, fuzzy membership 

values and artificial neural network output unit activation levels are not probabilities and 

should not be treated as such (Bezdek, 1993). One obvious difference is that fuzzy 

memberships, in general, and the activation level of artificial neural network output units 

need not sum to 1.0 for each pixel. However, because of the constraints (8) in the fuzzy 

c-means algorithm the vector of fuzzy memberships for each pixel is mathematically 

identical to a probability vector enabling a complete formal analogy to Shannon's entropy 

for a fuzzy c-partition (Bezdek, 1981). With the artificial neural network, the output unit 

activation levels were on a scale 0-1 but need not sum to 1.0 for a pixel. Moreover, the 

sigmoid transfer function of the output units imposed a bias toward high or low values 

which results in a non-linear relationship between the activation level of a class and the 

proportion of the pixel composed of that class. Since the nature of the transfer function 

was known (equation 3) its effect was removed, which resulted in activation levels which 

should be more linearly related to the proportion cover of a class (Foody, 1995b). These 

transfer-function corrected activation levels were then rescaled and normalised so that they 

lay on a C-1 scale sum to 1.0 for each pixel and only these rescaled activation levels were 
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used in the research. Although neither these rescaled activation levels or fuzzy memberships 

are probabilities both are mathematically similar and, for comparative purposes, were used 

in the 'calculation of the distance measure D. The closeness of all the classification outputs 

to the ground data were also assessed with the generally applicable distance measure S. 

As with the discriminant analysis the artificial neural network was used to derive 

a 'hard' classification of the data. The artificial neural network used was a four-layered 

feedforward network with three input units, twelve hidden units arranged in two equally 

sized hidden layers and three output units (Figure 1); the number of input and output units 

was determined by the number of discriminating variables and classes respectively. The 

number of hidden units is generally determined subjectively. Here the number of hidden 

units was selected after a series of trial runs and with the aim of ensuring both a high 

learning and generalisation capacity. Each unit had a sigmoid activation function and an 

external bias unit. A stochastic backpropagation learning algorithm was used with X= 1.0 

and the parameters n and a were set at 0.1 and 0.9 respectively. Training the artificial 

neural network involved 2000 iterations, by the end of which the average root sum squared 

error was 0.000521. 

The rescaled activation level of the units in the output layer were derived for each 

of the 35 testing pixels. As with the probabilities of class membership derived from the 

discriminant analysis these were then related to the ground data (Figure 3). The activation 

level of an output unit was found to be strongly related to the proportion of the pixel area 

covered by the class associated with that unit. This indicated that although artificial neural 

networks have generally been used to drive a 'hard' classification the activation levels of 

the output units may, as measures of the strength of class membership, be mapped to 

provide a softened representation of land cover. The closeness of this representation to the 
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ground data was assessed with both S and D. The results showed that the softened network 

classification output provided a more accurate representation of the fuzzy land cover than 

the 'hard' classification. Moreover, the softened artificial neural network classification was 

more accurate than the softened classification from the discriminant analysis (Table 1) with 

a strong relationship between the output unit activation level and the proportion of the 

pixel area covered by the class associated with the unit (Figure 3). 

Four fuzzy classifications with the fuzzy c-means algorithm were performed with 

different values for the weighting parameter m. These were a fairly 'hard' analysis with 

m =1.2 and three fuzzier classifications with m=1.5, 2.0 and 2.5. From each classification 

the fuzzy membership values for each pixel to each class were output. For completeness 

the end points of the continuum of fuzzy classifications were also simulated and their 

closeness to the ground data assessed. The 'hard' classification, equivalent to m =1.0, had 

been derived by allocating each pixel to the class with which it had highest membership 

value in the analysis with m =1.2. The fuzziest classification output would be derived with 

m = co in which class membership would be partitioned evenly between the classes. This 

was therefore simulated by dividing the total membership for each pixel equally between 

the classes. Combined with the reference data on the land cover composition of each pixel 

this enabled an assessment of the accuracy of the fuzzy land cover representations derived 

from the fuzzy c-means classifications. 

With the weighting parameter m=1.2 the fuzzy membership values derived tended 

towards 1.0 and 0.0, characteristic of a fairly 'hard' classification (Figure 4). These fuzzy 

memberships were relatively poorly related to the land cover class composition of the 

pixels, with the relationship between the membership values and coverage of a class having 

some similarity to the results from the discriminant analysis (Figure 2). The membership 
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values derived with m > 1.2 were, as expected, less constrained to relatively high or low 

values. As expected the degree of fuzziness increased positively with m with the values 

showing the general trend towards class membership being partitioned equally between the 

classes with increasing m; ultimately the membership values will tend to 1/c as m—>oo 

(Bezdek et aL, 1984). More importantly, the fuzzy memberships derived from the three 

fuzzier classifications were more strongly correlated with the composition of the pixels 

(Figures 5-7). The problem now faced by the analyst is that of selecting the classification 

which most closely models the actual land cover distribution. The relationships between 

fuzzy membership values and land cover composition (Figures 4-7) indicated that the 

memberships from the classification with m=2.0 were most strongly related to the ground 

conditions and so that this was the most accurate representation of the land cover. 

Although correlations could be used as an index of classification quality a set of correlation 

coefficients are required when ideally a single index of classification quality is desired and 

the data may not always be appropriate for correlation analysis (e.g. Figure 4). 

On the basis of the membership values from each fuzzy classification the closeness 

of the fuzzy land cover representations to the ground data were assessed by correlation -- 

analysis and with measures S and D. The results are summarised in Figures 4-7 and Table 

1. It is worth noting that although the sample size was small the correlations coefficients 

derived (Figures 4-7) were all significant at the 99% level of confidence. From the results 

it was apparent that, overall, the classification closest to the ground data, and so indicating 

the most accurate representation of the land cover, was derived with m=2.0 and the 

conventional 'hard' classification provided the least accurate representation. These results 

concur with the interpretation of the correlations between the fuzzy memberships and class 

cover above. They also show that the fuzzy representation is more accurate than a 'hard' 
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one and allow the selection of the most appropriate representation. 

Interpretation of the measures S and D, however, requires information on the 

sample used in its definition. Although the fuzzy classification derived from the fuzzy c-

means algorithm with m = 2.0 appeared to be the closest of all the classifications produced 

to the ground data the results were more variable on a per-pixel basis. This is illustrated 

in Table 2 which summarises the results for a pure pixel and one of mixed land cover 

composition. Note how the 'hard' classifications generally provided the most accurate 

representation of the pure pixel and the closeness of the fuzzy representations derived from 

the classifications based on the fuzzy c-means algorithm to the ground data declined as m 

increased. Conversely, for the mixed pixel the 'hard' representations were generally furthest 

from ground data and, for this pixel, the closest representation derived with the fuzzy c-

means algorithm was derived with m= cc, a consequence of its area being split fairly evenly 

between the three classes. Therefore if S and D are to be used as indicators of overall 

classification accuracy the testing sample of pixels acquired to assess classification accuracy 

should be drawn from a random sample. Information on the sampling design used in the 

acquisition of testing cases should therefore be included in accuracy statements (Janssen and 

van der Wel, 1994) to help their correct interpretation. 

7. Summary and conclusions 

Land cover is generally mapped from remotely sensed data through the application 

of a conventional 'hard' classification technique. In the output of this type of classification 

each pixel is associated unambiguously with a single class. Recognition that pixels in an 

image may have multiple and partial class membership, however, severely limits the 

appropriateness of such approaches to land cover mapping. Since the majority of pixels in 
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an image may have a mixed land cover composition there is therefore a need for conceptual 

and methodological change in mapping land cover from remotely sensed data. 

Fuzzy classification approaches may, however, enable a more accurate and realistic 

representation of land cover than conventional 'hard' classification techniques. A fuzzy 

classification output may be derived by softening the output of a 'hard' classifier or 

through the use of a fuzzy classifier. Although fuzzy classifications appear to provide a 

more appropriate representation of land cover a major limitation to their use and 

interpretation is the evaluation of the accuracy of the land cover representation derived 

(Goodchild, 1994) . The measures of accuracy usually used in the evaluation of a 

classification were derived for application to 'hard' classification outputs in which cases are 

associated unambiguously with one class. Such measures are inappropriate for the 

evaluation of a classification in which multiple and partial class membership is a feature. 

Measures which show how the strength of class membership in the classification output is 

partitioned between the classes, such as entropy, are also inappropriate as the fuzziness of 

the land cover on the ground is overlooked. An approach is therefore required which 

accommodates for the fuzziness in both the classification output and the ground data 

against which the accuracy of the representation is assessed. This may be achieved by 

measuring the closeness of the land cover composition in the fuzzy classification, as 

reflected by the strengths of class membership, to the composition measured on the 

ground. This may be achieved with the use of a simple measures of distance such as the 

euclidean distance (measure S) or through the use of a measure of information closeness for 

probability distributions (measure D) . These two measures were used to assess the accuracy 

of fuzzy classifications derived from three classification approaches. Two of these, a 

discriminant analysis and an artificial neural network, are usually used to derive 'hard' 
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classifications. Fuzzy classifications were derived from these classifiers by outputting 

measures of the strength of class membership generated in the conventional 'hard' 

classification. The third classification approach was based on the fuzzy c-means algorithm 

with measures of the strength of class membership again output to illustrate land cover 

composition. The fuzzy c-mean algorithm was used to derive a series of fuzzy classifications 

of differing degrees of fuzziness. 

The measures of the strength of class membership derived from all three 

classification approaches were related to data on the land cover composition on the ground 

and the closeness of each classification to the ground data measured by both S and D. 

Three main points may be noted from the results. First, the results reinforce the danger 

of using entropy as a measure of classification accuracy if multiple and partial class 

membership is a feature of both the classification output and ground data. Second, 

conventional 'hard' classifications may be softened to derive more accurate and appropriate 

representations of land cover. The softened outputs of the discriminant analysis and, in 

particular, the artificial neural network were more accurate than the 'hard' classifications 

from which they were derived. This further supports the view that conventional 

classification techniques are wasteful of information on class membership generated in the 

analysis. Third, the measures of closeness, S and D, provided similar results and enabled the 

identification of the most accurate land cover representation. The use and interpretation 

of S and D, however, does require information on the sampling design used in the 

acquisition of testing cases. 

Since S and D may be used to measure the closeness of the land cover representation 

to the ground data for pure and mixed pixels they may in some situations be more general 

and appropriate indices of classification accuracy than conventional measures based on 
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classification confusion matrices. Before they could be adopted, research on their properties, 

especially in terms of identifying significant differences between classification outputs would 

be required. None-the-less these measures do enable the assessment of the accuracy of fuzzy 

classifications and this should help further develop the use of fuzzy land cover mapping 

approaches. Given the significance of the mixed pixel problem the recognition and 

accommodation of fuzziness in the classification output and assessment of accuracy should 

provide later users of the land cover classification derived with more appropriate and useful 

information. Further advances may be made when fuzziness is accommodated in the 

training stage in addition to the class allocation and testing stages of the supervised 

classification. 
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Table 1. 	Overall closeness of the land cover representations derived from all three 

classification algorithms. The mean and median values are given since the 

distributions were generally positively skewed 

Classifier 
(measure of strength 
of class membership) 

Measure of closeness 

Mean Median 	Mean Median 

Discriminant analysis Hard 0.0997 0.0633 0.4508 0.4112 
(posterior probabilities) Softened 0.0834 0.0602 0.3848 0.3384 

Neural network (output Hard 0.0904 0.0612 0.3779 0.3135 
unit activation level) Softened 0.0303 0.0141 0.1710 0.1269 

Fuzzy c-means (fuzzy m=1.0 0.1223 0.0689 0.5181 0.4175 
membership) m =1.2 0.0632 0.0450 0.2818 0.2673 

m=1.5 0.0368 0.0294 0.1667 0.1410 
m=2.0 0.0253 0.0138 0.1376 0.1032 
m=2.5 0.0294 0.0166 0.1672 0.1347 
m= 00 0.0910 0.0651 0.3757 0.3614 
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Figure captions 

Figure 1. An overview of the classification of remotely sensed data by a feedfoward artificial neural 

network. The network architecture comprises one unit in the input layer for each 

discriminating variable and one unit in the output layer for each class. The number of 

hidden layers and units is subjectively determined, often on the basis of a set of trial runs. 

Each unit in the network is connected to every unit in adjacent layers by a weighted 

channel. Together the network units and weighted channel act to classify the remotely 

sensed data, with each case allocated to the class associated with the unit in the output layer 

with the highest activation level. The network used in the research had three input units 

(one for each waveband), two hidden layers each containing six units, and three output 

units (one for each class). 

Figure 2. Results from the discriminant analysis. (a) the relationship between the probability of 

membership to trees with the proportion of the pixel area covered by trees (r=0.774); (b) 

the relationship between the probability of membership to grass with the proportion of the 

pixel area covered by grass (r=0.838); (c) the relationship between the probability of 

membership to asphalt with the proportion of the pixel area covered by asphalt (r= 806); 

(d) histogram showing the closeness of the two representations measured by S; and (e) 

histogram showing the closeness of the two representations measured by D. 

Figure 3. Results from the artificial neural network. (a) the relationship between the activation level 

of the output unit associated with trees with the proportion of the pixel area covered by 

trees (r= 0.873); (b) the relationship between the activation level of the output unit 

associated with grass with the proportion of the pixel area covered by grass (r=0.866); (c) 

the relationship between the activation level of the output unit associated with asphalt with 
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the proportion of the pixel area covered by asphalt (r=0.809); (d) histogram showing the 

closeness of the two representations measured by S; and (e) histogram showing the closeness 

of the two representations measured by D. 

Figure 4. Results from the fuzzy c-means classification with m=1.2. (a) the relationship between the 

fuzzy membership to trees with the proportion of the pixel area covered by trees (r= 0.828); 

(b) the relationship between the fuzzy membership to grass with the proportion of the pixel 

area covered by grass (r= 0.851); (c) the relationship between the fuzzy membership to 

asphalt with the proportion of the pixel area covered by asphalt (r= 0.785); (d) histogram 

showing the closeness of the two representations measured by S; and (e) histogram showing 

the closeness of the two representations measured by D. 

Figure 5. Results from the fuzzy c-means classification with m=1.5. The correlations coefficients 

(r) for the relationships between the fuzzy membership and proportion of pixel area 

covered by a class were 0.877, 0.867 and 0.822 for trees, grass and asphalt respectively (see 

Figure 4 for further details). 

Figure 6. Results from the fuzzy c-means classification with m=2.0. The correlations coefficients 

(r) for the relationships between the fuzzy membership and proportion of pixel area 

covered by a class were 0.881, 0.875 and 0.834 for trees, grass and asphalt respectively (see 

Figure 4 for further details). 

Figure 7. Results from the fuzzy c-means classification with m=2.5. The correlations coefficients 

(r) for the relationships between the fuzzy membership and proportion of pixel area 

covered by a class were 0.877, 0.874 and 0.832 for trees, grass and asphalt respectively (see 

Figure 4 for further details). 
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