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ABSTRACT 
Limited connectivity neural network architectures are 
investigated for the removal of crosstalk in systems 
using mutually overlapping sub-channels for the 
communication of multiple signals, either analogue or 
digital. The crosstalk error is modelled such that a fixed 
proportion of the signals in adjacent channels is added 
to the main signal. Different types of neural networks, 
trained using gradient descent algorithms, are tested as 
to their suitability for reducing the errors caused by a 
combination of crosstalk and additional gaussian noise. 
In particular we propose a single layer limited 
connectivity neural network since it promises to be the 
most easily implemented in hardware. A variable gain 
neuron structure is described which can be used for 
both analogue and digital data. 
 
 

1. INTRODUCTION 
This paper is concerned with the use of mutually 
overlapping sub-channels for communication of 
multiple signals in electronic systems. Such a method 
was originally intended for the task of reducing the pin-
out in VLSI inter-chip connections using Frequency 
Division Multiplexing (FDM), since the signals 
generated by a set of outputs may be combined on-chip 
and transmitted off-chip via a single wire.  However, 
the method is equally applicable to the general case of 
crosstalk in multiple channel communications, with or 
without FDM. Previous work carried out at the 
University of Nottingham has demonstrated that 
multiple sub-channel analogue FDM is feasible only if 
deliberate overlapping of the sub-channels is allowed[1]. 
This overlapping inevitably introduces adjacent channel 
(or cross-channel) interference which reduces the SNR 
in the receiver unless steps are taken to remove it. 
  A multiple channel communication model is described 
by Van Etten[2] which uses an MxM interference matrix 
so that received signals are linear combinations of the 
wanted and interfering signals. In this paper the 
interference is considered to be resulting entirely from 
nearest adjacent sub-channels and the amount of 
interference is a fixed fraction ε of each of the adjacent 
signals, which is called the fractional crosstalk (or 
fractional overlap) parameter. This situation would 
arise in an FDM channel when receiver filter responses 
are overlapped by equal amounts, or in some kinds of 
multicore cable. It is necessary to examine the increase 
in error in the received signals caused by increasing this 
crosstalk, and thus compare methods for reducing the 
errors. 
  Consider a channel with M transmitters with signals 
denoted by the vector x at a particular time. Thus the M 

received signals denoted by the vector y are given by    
y = R x  where R is the interference matrix of form, 

 
 
 
 
 
 
                           (1) 
 

shown here for M=5.    
 

2. NEURAL NETWORK ERROR REDUCTION 
The aim is to find the inverse of R in order to regain (or 
equalise) the original signals. This is can be written in 
the form of a single layer feedforward neural network, 
where the elements of the inverse matrix are 
approximated as closely as possible by the weights of 
the network  i.e. z  = W y  where W ≈ R-1,  so  z ≈ x. 
Direct calculation of the inverse is possible, and a result 
is obtained analytically except for certain values of ε 
which make the matrix singular. The weights wji are 
also readily calculated iteratively by the µ-LMS 
algorithm[3]  as follows, 
 
                           ∆wji = 2µ (xi - zi)yj                         (2) 
 
However, such a network requires M2 weights so a 
hardware architecture based on this scheme would scale 
rather badly with M. It has been demonstrated[4] that the 
area of a fully connected neural network architecture 
scales with order M3. The use of limited connectivity 
neural networks are thus proposed here where many of 
the weight matrix elements are zero. 
 
2.1.  Limited connectivity architecture 
  A limited connectivity architecture simplifies the 
network and allows the number of weights to be scaled 
linearly with M, which is important both in reducing the 
overall size of network and in providing a extendable 
modular structure. In the case where connectivity is 
limited to three receivers, the number of weights 
required is ≈3M and the optimum weight matrix has the 
form, 
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which is a limited connectivity neural network with 3 
inputs per neuron. Clearly, W will only be an 
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approximation to R-1. For clarity, the signal to be 
corrected is given index 0 and the other transmitted 
signals are indexed ±1 and ±2. The input signals to 
each neuron yj comprise the received signal from the 
original receiving node and its nearest neighbours, 
which are then multiplied by the weights wi and 
summed to give output z0. Thus, a maximum of 5 
transmitted signals xi have an effect on any one received 
signal. 
 
2.2. Analogue data 
Error correction can be carried out independently for 
each neuron by finding its optimal weights. In the case 
of analogue signals, the output must follow the 
amplitude of the corresponding transmitted signal node 
as closely as possible, in spite of the crosstalk errors 
introduced, for an arbitrary combination of signals from 
the 5 transmitting nodes. In this implementation the five 
transmitted values were random numbers in a uniform 
distribution of range [0,V] (representing an analogue 
voltage range of 0 to V volts). Before the correction 
network the error is, 
 
        (y0-x0)  =  ε x-1 + ε x+1       
(4) 

 
and at the output of the neuron, the error expression is, 
 

 (z0-x0)  =  (w0+ε w-1 + ε w+1-1)x0 + (w-1+ε w0)x-1  

                              + (w+1+ε w0)x+1 + ε w-1x-2+ ε w+1x+2           (5) 
 

The expectation E[Z0-X0] and variance Var[Z0-X0] can 
then be derived and minimised (by partial 
differentiation with respect to w0 and w1,  setting 
w+1=w-1=w1 since the mean input vector is symmetrical) 
to yield the optimal values of w0 and w1 which are 
found to be, 
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The weights may also be found iteratively as before by 
approximate steepest descent using the µ-LMS rule[3], 
computing the standard error at the output of the central 
neuron in the row as, 

 
 
                            (7) 
 

where N is the number of samples used.  
  Software was designed to simulate the crosstalk and 
correction technique using the µ-LMS rule, coded in C. 
A neuron was trained on 500 sets of random signal 
samples for each value of fractional crosstalk from 0.0 
to 0.5, using a learning rate µ of 0.005. Then, the 
generalisation performance of the network was 
measured for a further 500 sets of samples. Curves of 
standard error for various degrees of fractional crosstalk 
are shown in Fig 1, for an input range [0,5]. The top 
trace is the error before the network i.e. if a neural 
network is not used. This error increases linearly as the 
amount of crosstalk is increased, as predicted.  

The middle pair of curves show the error achieved for 
the 3-input neuron, which is significantly less than that 
before correction. The ability of the network to reduce 
the error is best for smaller fractional crosstalk. With 
ε=0.1 the error reduction is 26.3dB. Comparison with 
theory shows that the µ-LMS rule is able to achieve 
nearly the optimum set of weights as obtained from 
equation 6. 

Fig 1. Crosstalk errors after training 3-input and 
 5-input neurons, compared with theory  

 
The results for a further investigation using a 5-input 
neuron (lower curves in Fig 1) were found to be even 
better than those in the 3-input case with an error 
reduction of 48.6dB for ε=0.1. The improvement is due 
to removal of the 'error-in-the-error' by the extra 
weighted inputs. A numerical computation of the 
minimum showed that the µ-LMS algorithm was again 
able to achieve nearly the optimum set of weights. 
Simulations with 7 and 9 input neurons were also 
carried out and the error was reduced even further. It is 
noted, however, that the use of a larger number of 
synapses is likely to increase the amount of random 
noise in a hardware implementation, and complicates 
the system by increasing the number of synapses 
needed. Therefore the 3-input neuron is to be preferred 
in practice.  
 
2.3. Analogue data with additional random noise 
We now consider the case where random noise is 
introduced into each of the transmitters such that we 
replace xi  by (xi + ni), where ni is a sample of gaussian 
noise added to transmitted sample xi. We can now 
investigate the combined effects of crosstalk and noise. 
It is useful to define a Signal-to-Noise Power Ratio 
(SNR) at the output which includes the crosstalk as a 
type of noise. Thus, 
 
          SNR(dB)out = 20 log (V(rms)signal/ V(rms)noise)         (8) 
 
Although the noise in each transmitter is independent, 
the output from the 3-input neural network is a 
weighted sum from 3 different receivers, so some of the 
random noise will be correlated at the output. However, 
the amount of correlation will depend on the values of 
the weights. For small amounts of crosstalk requiring 
small weights w-1 and w+1 and a value of w0≈1, the 
amount of correlated noise will be small and the output 
SNR will be similar to that of the noiseless case. With 
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an input signal of peak amplitude 5v and a root-mean-
square (RMS) value of Vinputnoise = 0.01v, the input SNR 
is 51.0dB, corresponding to 0.94 bits of error in a 
signal coded using 8 bits, which is a reasonable 
resolution for an analogue signal. Results were 
generated in the same way as before, this time using 
5000 samples of signal plus noise. As seen in Table 1 
the crosstalk dominates such that the output SNR is 
virtually unchanged for all but the smallest fractional 
crosstalk values, where random noise dominates.  
 
 

Fractional 
Crosstalk 

SNR(dB)out 
Vinputnoise= 0v 

SNR(dB)out 
Vinputnoise=0.01v 

0.0 - 51.0 

0.1 43.1 42.5 

0.2 31.0 31.0 

0.3 23.8 23.8 

0.4 18.5 18.5 

0.5 14.6 14.6 

Table 1. Signal-to-noise ratios for crosstalk only, and 
crosstalk plus gaussian noise (RMS 0.01v) 

 
 

Vinputnoise 
/Volts 

0.1   
   

0.2 0.3  0.4 0.5 

SNR(dB)in 

/dB 
31.0 24.9 21.4 18.9 17.0 

Fractional 
Crosstalk 

SNR(dB)out  /dB                                 (for 
the above input noise values) 

0.0 31.0 25.1 21.6 19.2 17.4 

0.1 30.5 24.7 21.3 19.0 17.2 

0.2 27.4 23.1 20.1 18.0 16.4 

0.3 22.6 20.3 18.1 16.4 15.1 

0.4 18.1 16.9 15.6 14.5 13.6 

0.5 14.5 14.0 13.3 12.7 12.1 

Table 2. Signal-to-noise ratios for larger amounts of 
input noise (RMS 0.1-0.5v) 

 
The next set of results, shown in Table 2, illustrates the 
effect of larger amounts of random noise (larger than 
would normally be encountered in an analogue system). 
It is seen that the larger amounts of random noise 
account for a significant lowering of SNR at the output 
for ε  between 0.0 and 0.2, and a moderate reduction in 
SNR for ε=0.3, whereas the loss due to random noise is 
at most 4.5dB for ε=0.4 and higher. It was also noted 
that the absolute values of the weights were decreased 
as Vinputnoise was increased, for any fixed value of 
fractional crosstalk. 
 
 

2.4. Binary data 
The previous results were obtained for transmission of 
analogue data with a uniform distribution. If data is 
digital, the multiplexed communication may use On/Off 
Keying (OOK) or Binary Phase Shift Keying (BPSK) 
modulation schemes. Equalisation in a  BPSK system 
has been investigated by Wilson and Cioffi[5] so OOK 
is considered here where the transmitted symbols are in 
the set {0,V}. The neural network architectures 
considered here are required to produce a digital 
output. Therefore, a neuron can be thought of as a 
series combination of a linear or non-linear neuron 
transfer function and a quantiser (hard-limiter). 
However, it is more useful to examine the error 
reduction before the quantiser, since hard-limiting the 
output masks the relative noise tolerances. If the 
interference matrix for adjacent channel interference is 
the same as before, the inputs to the neurons are in the 
set {0,ε,2ε,1,1+ε,1+2ε}. Thus, the 32 possible input 
patterns and corresponding outputs give rise to 17 
unique non-trivial error expressions E(ε,w1,w0) to be 
minimised. Solving for zero error is impossible since it 
is not possible to satisfy all the error equations 
|E(ε,w1,w0)|=0 simultaneously. However, it is possible 
to satisfy inequalities |E(ε,w1,w0)|<m for certain values 
of ε, where m is an acceptable margin of error greater 
than zero. Training was carried out as before for 
different values of ε, using the µ-LMS algorithm with 
µ=0.005 and 500 training samples. Errors were 
measured at the network input, at the network output 
and after hard-limiting the output to 0 (if z0<=V/2) or V 
(if z0>V/2), which is analogous to using m=0.5 above. 
Initial results showed that error reduction was possible 
up to around ε=0.3, but the reduction was nothing like 
as good as for continuous inputs, and for ε=0.3 the 
error was found to be worse than if the neuron is not 
used.  Hard-limiting the outputs, however, had the 
result of reducing the error to zero for values of ε up to 
0.3 whereas hard-limiting before the neuron was only 
effective up to ε=0.2. Closer examination of the 
standard error during training showed that the network 
had not converged satisfactorily after 500 epochs, so it 
was necessary to increase the number of training 
epochs. These initial results also suggested that other 
neuron structures might be better at reducing the error. 
  The set of curves in Fig. 2 shows the standard errors 
obtained for four different networks with increasing 
amounts of fractional crosstalk, using 30000 training 
samples and a learning rate of 0.005; a linear limited 
connectivity network with 3 inputs per neuron, as 
above, then a network of with an extra bias input per 
neuron, denoted by vector b, such that  z = W y + b, a 
non-linear network with z = F(W y + b), where 
F(x)=1/(1+e-x), and a 3-3-1 multilayer perceptron 
(MLP) network consisting of two non-linear layers. 
Also shown is the error obtained if no network is used. 
The two linear networks were trained using the µ-LMS 
algorithm, the single layer non-linear network was 
trained with the Delta Rule and the MLP was trained 
with the backpropagation (BP) algorithm (also called 
Generalised Delta Rule) respectively. The Delta Rule 
simply involves multiplying the previous weight change 
equation (2) by F’(zi) = zi(1-zi). The well known BP 
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algorithm for MLP neural networks is described in the 
literature[6].  
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Fig 2. Separation of binary signals using various 
supervised neural networks 

 
All networks tested were found to reduce the error 
compared with the situation where no network was 
used (straight line in Fig 2). Increasing the number of 
training epochs (30000) improved convergence in the 
3-input limited connectivity case compared to the 
previous simulation with only 500 epochs, which 
shows that convergence is achieved more slowly than 
with analogue data with the same learning rate. 
Addition of a bias gave a small improvement in the case 
of the linear network, although this requires ≈4M 
weights compared to ≈3M without the bias. For 
fractional crosstalk up to 0.2, both linear networks have 
a slightly lower error than the non-linear ones. 
However, a combination of bias and sigmoidal function 
reduces the error considerably using a limited 
connectivity network with ≈4M weights. The best 
overall error reduction was obtained for the 3-3-1 
multilayer network, where errors were small for all 
values of crosstalk. However, the number of weights 
required for the multilayer network is ≈16M. In 
practice, for a hardware system, neither a multilayer nor 
a fully connected network are likely to be feasible, and 
after hard-limiting, the limited connectivity network has 
as good a performance as either of these for fractional 
crosstalk up to 0.4. 
 
2.5. Binary data with additional random noise 
A system with binary data is inherently more tolerant to 
noise since it is acting as a classifier. We considered 
On/Off keying of sinusoidal signals of amplitude V=5v, 
with Vinputnoise ranging from 0.0v to 0.5v. The neural 
network used was the best previously considered single 
layer limited connectivity network, using a three input 
neuron with bias weight (i.e. 4 weights per neuron) and 
sigmoidal output. The output was then thresholded to 
binary values. At the output, the Bit Error Rate (BER) 
was computed based on 30000 samples, as defined by 
BER = Number of errors/30000, using a decision 
threshold of z0 = 2.5v. 
  BER was found to be zero for ε≤0.2 for all noise 
values considered. With ε=0.3, BER was zero for 
Vinputnoise≤0.3v, 0.0001 at 0.4v and 0.0006 at 0.5v. With 
ε=0.4, BER was zero for Vinputnoise≤0.2v, 0.002 at 0.3v, 
0.004 at 0.4v and 0.01 at 0.5v. The cases with ε≥0.5 

were not resolvable even in the noiseless case with a 
BER>0.03 for all noise values, since the neural network 
cannot define suitable decision boundaries. As crosstalk 
is increased, the position of the decision boundaries 
becomes more critical so that a decision is more greatly 
affected by the random noise. Of course, the situation 
may be improved by suitable coding and error 
correction techniques. 
 

3. CONCLUSIONS 
We have used limited connectivity architectures for 
crosstalk removal, such that the number of weights 
scales linearly with the number of signals. Each sub-
channel has its own neuron which can be trained 
independently of the others. Thus a modular hardware 
implementation of the network could include separate 
learning hardware and weight storage for each neuron. 
Whilst a simple three weight neuron with a linear 
transfer function was adequate for error reduction with 
analogue signals, it is seen that an extra weight was 
required for biasing the transfer function in the binary 
case, and a sigmoidal output was also necessary to train 
the network with the Delta Rule. For binary data it is 
desirable to use hard-limiting outputs after the weights 
have been trained. The need to accommodate both 
types of signal suggests the use of a 3-input neuron 
with bias and a variable transfer function, which can be 
either linear, sigmoidal or hard-limiting. All these types 
of transfer function can be implemented using a 
variable gain sigmoid function F(x)=1/(1+e-kx), which 
has an almost linear response for small k and an almost 
hard-limiting response for large k. 
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