
Proceedings of the Fourth IEEE International Conference on Electronics, Circuits and Systems,
Cairo, Egypt, December 15-18 1997, Volume 1, pp 254-258.

Copyright © 1997 by the Institute of Electrical and Electronic Engineers Inc.

A FASTER LEARNING NEURAL NETWORK CLASSIFIER
USING SELECTIVE BACKPROPAGATION

M.P.Craven

University of Nottingham, Department of Electrical and Electronic Engineering,
University Park, Nottingham, NG7 2RD, UK.

Tel: +44 115 9515151 x2060, Fax: +44 115 9515616, E-mail: mpc@eee.nott.ac.uk

ABSTRACT

The problem of saturation in neural network classification
problems is discussed. The listprop algorithm is presented
which reduces saturation and dramatically increases the
rate of convergence. The technique uses selective
application of the backpropagation algorithm, such that
training is only carried out for patterns which have not yet
been learnt to a desired output activation tolerance.
Furthermore, in the output layer, training is only carried
out for weights connected to those output neurons in the
output vector which are still in error, which further reduces
neuron saturation and learning time. Results are presented
for a 196-100-46 Multi-Layer Perceptron (MLP) neural
network used for text-to-speech conversion, which show
that convergence is achieved for up to 99.7% of the
training set compared to at best 94.8% for standard
backpropagation. Convergence is achieved in 38% of the
time taken by the standard algorithm.

I. INTRODUCTION

It is well known that standard feed-forward multi-layer
neural networks (NN) trained with gradient descent
algorithms such as backpropagation often fail to converge
completely in classification problems for a variety of
reasons, and much work has been carried out to attempt to
improve this situation[1,2]. Failure to converge may be due
to an incorrect architecture with too few layers of weights
(or too many), or too few hidden neurons. However, in
many cases convergence is not achieved for a particular
training set because certain neurons saturate before others.
In the case of the Multi-Layer Perceptron (MLP) NN with
sigmoidal outputs using the logistic function 1/(1+e-x)

which has outputs within the range [0,1] or tanh(x) with
range [-1,1], the backpropagation algorithm requires
multiplication by the derivative of the function in order to
make a change in a weight connected to that neuron, and
thus carry out gradient descent. Saturation occurs if the
output is pushed towards its extremes at some point before
convergence is reached, so that the derivative is too small
to make further significant weight changes, causing the
network to settle in an incorrect local minimum or reach a
state of network paralysis (see Figure 1). This saturation
may occur for a number of reasons, most of which are
easily avoided.

Five common reasons for saturation occurring are as
follows:

1. Magnitude of the initial weight range is too large
2. Weight quantisation is too coarse
3. The learning rate is too large
4. The training set is not normalised
5. Overtraining

The first of these can be a problem if the initial random
weight range i.e. the distribution of initial weights, is not
appropriate to the NN architecture. A neuron can saturate
immediately if the associated initial random weight vector
is unluckily chosen, which becomes more likely for any
particular weight range as the number of inputs is
increased. Care must thus be taken to reduce the initial
weight range as the number of neuron inputs grows.

The second reason, which is often relevant in limited
precision implementations[3], is avoided by making sure
that enough bits are used for the weight changes.

The third reason for saturation is avoided by keeping the
learning rate as small as possible, which also ensures a
better approximation to steepest descent. In this case,
however, there is a trade-off with speed of convergence.
This problem can be compounded by the use of momentum
or some similar second-order technique commonly used in
modified forms of backpropagation, which can produce
larger weight changes than would be expected from the use
of a constant learning rate. Thus it may also be necessary
to take care not to make the momentum term too large.
The fourth reason is more subtle. In classification
problems, if there are more examples of one class than

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Neuron Sum-of-products

N
eu

ro
n

O

u
tp

u
t

A
ct

iv
at

io
n

Output
Activation
Tolerance
(Upper)

Lower
Saturation
Region

Output
Activation
Tolerance
(Lower)

Upper
Saturation
Region

Saturation
Tolerance
(Upper)

Saturation
Tolerance
(Lower)

Figure 1 Logistic function 1/(1+e-x) showing typical saturation limits
for a neuron output, and an example output activation tolerance (χ = 0.3)
which is below these limits

Proceedings of the Fourth IEEE International Conference on Electronics, Circuits and Systems,
Cairo, Egypt, December 15-18 1997, Volume 1, pp 254-258.

Copyright © 1997 by the Institute of Electrical and Electronic Engineers Inc.

another, the network becomes biased towards the largest
class. In terms of probability this may be desirable, but it
may also mean that certain training patterns are simply not
learnt if they are in a very small class compared to the
others, as the network quickly converges and saturates in
favour of the dominant class or classes. This can be
avoided in principle by a process of normalisation, which
can be carried out by increasing on average the number of
times certain patterns are presented per epoch so that all
classes are fairly represented. However, this is at the
expense of an increase in size of the training set or the
number of epochs (e.g. presentations of the entire training
set) required for convergence.

The fifth reason for saturation is the most difficult to
prevent and is related to the problem of how to decide
when to stop the training procedure. It is desirable to stop
training before saturation occurs not least because there is
no point training for more epochs than is necessary to
separate the classes by a desired margin, even if
convergence can be easily achieved, but also to ensure
good generalisation since overtraining also has the effect
of making the network too finely tuned to idiosyncrasies in
the training set. A widely used method of doing this is to
stop when all the network outputs have achieved their
required target state for all patterns to within a specified
tolerance[4]. This is to be preferred over waiting for a
minimum total Mean Squared Error to be reached as it is
clearer how well the MLP is classifying the input set. For
the logistic function an output activation tolerance of
χ=0.1 means that an output of 0.1 or smaller is considered
to be a logical 0 if that is the desired output, and one of 0.9
or greater is considered to be a logical 1. This works
adequately for some training sets like in the EXOR
problem where all four patterns are learnt after a similar
number of epochs (in fact {(1,1),(0)} is learnt last, but not
very long after the others), but quite badly if some classes
are easily distinguished when others are separated by
complex decision boundaries. In these cases some patterns
are always learnt to within the specified tolerance long
before others, even if the training set is normalised,
resulting in overtraining with the easier ones.

One method for avoiding saturation directly, proposed by
Fahlman[2], is to bound the weight step away from zero by
adding a constant term thus ensuring a minimum weight
step. Another method is to use a probabilistic update
strategy[5] which is particularly useful in hardware
implementations with limited precision. The alternative
method of selective backpropagation presented in this
paper reduces saturation, and also reduces the number of
epochs to convergence and increases the overall number of
training patterns which can be learnt over the standard
method. It also removes the need for normalisation and
improves the speed of convergence in terms of
computational steps required.

Σ

Σ

Σ

Σ

Σ

Σ

Σ

F

F

F

F

F

F

F

xk yi wji xj wkj yj yk

M HIDDEN

LAYER NEURONS

N OUTPUT

LAYER NEURONS L INPUTS

Θk Θj

Figure 2 L-M-N multi-layer perceptron neural network architecture

II. METHOD

The typical L-M-N fully interconnected MLP architecture
with two layers of weights is shown in Figure 2. The
network has L inputs, M hidden layer neurons and N output
layer neurons. The output function F is the sigmoidal non-
linearity, or logistic function 1/(1+e-x) which limits the
output range between 0 and 1. The inputs and outputs of
each layer are denoted by yi for the inputs to the hidden
layer (1≤i≤L), yj for the inputs to the output layer
(1≤j≤M), and yk for the final outputs (1≤k≤N). The neuron
sums-of-products are denoted by xj and xk. The hidden
layer weights are denoted by wji, the output layer weights
by wkj and the corresponding threshold biases are θj and θk.

The usual implementation of the backpropagation
algorithm (backprop)[6] consists of two phases; a forward
pass (or recall phase) in which an input pattern is presented
to the network and the actual outputs are calculated, and a
backward pass (or learning phase) in which the errors are
calculated and the weights are adjusted. A backward pass
is always carried out after each forward pass. The weight
changes for each neuron are determined by multiplying the
learning rate η (constant for the entire network) by the
error term δj or δk (constant for that neuron in any one
pass) and the corresponding inputs. When all patterns in
the training set have been presented to the network this is
recorded as one training epoch.

The forward pass is,

,
1






 += ∑

=

L

i
jijij ywFy θ j∀

(1)

y F w yk kj j k
j

M

= +










=
∑ θ

1

, ∀k

(2)

Proceedings of the Fourth IEEE International Conference on Electronics, Circuits and Systems,
Cairo, Egypt, December 15-18 1997, Volume 1, pp 254-258.

Copyright © 1997 by the Institute of Electrical and Electronic Engineers Inc.

The number of multiplications per pattern for the sum-of-
products in the forward pass is MN+LM. Note however
that in practice many of the multiplications in the forward
pass can be avoided completely for classification
problems, since multiplication in equation (1) is either by 0
or 1, so comparison and addition can be used instead.

A backward pass is then carried out where these outputs
are compared to the desired outputs dk and the delta values
for each neuron are calculated,

δ k k k k ky y d y= − −()()1 , ∀k (3)

δ δj j j kj k
k

N

y y w= −
=

∑() ,1
1

 ∀j

(4)

This is followed by changing the weights by the following
increments,

∆w ykj k j= ηδ , ∀j k, ∆θ ηδk k= , ∀k (5)

∆w yji j i= ηδ , ∀i j, ∆θ ηδj j= , ∀j (6)

The total number of multiplications per pattern in the
backward pass is 3MN+2(L+1)M+2N, which is much
more than in the forward pass, so it is in this phase where
much of the time saving can be made. As in equation (1),
many of the multiplications in equation (6) can be avoided
for binary inputs. In order to check for possible
convergence, each of the outputs in the output vector is
checked after the forward pass to see whether it has been
learnt to the desired output activation tolerance, χ. If this is
the case for all outputs in the output vector for every
pattern in the training set, the network is said to have learnt
to classify the entire training set and training can be
terminated. Alternatively training can be carried out for a
specified number of epochs. Note that even if some
patterns have been learnt to the desired tolerance training
is still carried out for these patterns, which can result in
saturation due to overtraining.

In the proposed alternative algorithm, listprop, a backward
pass is carried out for a particular training pattern only if
the pattern output has not been learnt to within the
tolerance χ. Furthermore if the pattern has not been learnt,
the backward pass is only applied to the output neurons in
the output vector which have not yet reached the required
tolerance, which comprise a set Γ of outputs which are in
error i.e. dk-yk≥χ. In this way it is not possible for the
output of a neuron which has crossed the tolerance
threshold to be changed any further by that pattern unless
other patterns in the training set change the weights later
on, so as to move the decision boundary to bring it back in
error again. Note that simply training the patterns not
learnt using the entire output vector is not sufficient to
prevent saturation, as individual outputs in the output
pattern may become saturated before others. In practice the
backward pass is modified so that rather than update the

weights to all output nodes (with indices 1 to N) in a loop,
a list is first made of all n(Γ) outputs still in error
(n(Γ)≤N), so that the elements of the list are the indices of
these in the order in which they are found. If n(Γ)=0 (i.e.
Γ=∅, the empty set), the pattern has been learnt and no
backward pass is applied. Otherwise the backward pass is
applied to the list of outputs which are in error, as follows,

δ k k k k ky y d y= − −()(),1 k ∈Γ (7)

δ δj j j kj k
k

y y w= −
∈
∑() ,1

Γ

 ∀j

(8)

∆w ykj k j= ηδ , ∀ ∈j k, Γ ∆θ ηδk k= , k ∈Γ (9)

∆w yji j i= ηδ , ∀i j, ∆θ ηδj j= , ∀j (10)

Thus the number of multiplications for a particular pattern
in a particular epoch is reduced to
3Mn(Γ)+2(L+1)M+2n(Γ). As training proceeds, many of
the n(Γ) become very small or zero, so that the average
training time of the epoch decreases. As the NN converges,
some oscillation is to be expected as the remaining patterns
compete for the weights which will help them converge.
Close to full convergence, the most difficult patterns to
learn should gain more and more influence on the weight
set which may help a global minimum to be found which is
beneficial to all patterns. Clearly this also provides a gain
in speed because patterns which have been learnt are taken
out of the backward pass, with virtually no overhead as
every output has to be checked anyway for possible
convergence. This is very advantageous as many networks
learn a large proportion of patterns early on in the training
procedure, which are usually just overtrained in the
conventional implementation.

III. EXPERIMENT

In order to test the hypothesis, a typical MLP problem was
chosen, involving text-to-speech (letter-to-phoneme)
conversion, which was a candidate for use as the front end
of a speech synthesis system, but was also one with which
we had been experiencing non-convergence problems due
to saturation. It was also clear that the proposed method
would have a most significant effect on the convergence
time of a network with a large training set and a large
number of outputs.

The MLP chosen had a 196-100-46 architecture based on
the NETtalk text-to-speech architecture of Sejnowski and
Rosenberg[7] but with outputs which selected phonemes in
the International Phonetic Alphabet rather than articulatory
features. The input data was presented as a window of seven
characters which was moved along the running text. The
network was trained to pick out the correct phoneme for the
central letter of the seven, the other letters being used to

Proceedings of the Fourth IEEE International Conference on Electronics, Circuits and Systems,
Cairo, Egypt, December 15-18 1997, Volume 1, pp 254-258.

Copyright © 1997 by the Institute of Electrical and Electronic Engineers Inc.

provide a context for the transcription. Figure 3 shows a
schematic of the architecture. The inputs consist of 7 groups
of 28 bits, of which one bit in each group is a ‘1’ and the rest
‘0’. The ‘1’ represents the selection from a set of 28 possible
characters, the 26 letters of the alphabet plus 2 for
punctuation. Hence, only seven of the inputs are ‘1’ for any
input pattern. A hidden layer of 100 neurons has been found
necessary to be able to capture the regularities in English
text. The phoneme classification was made by selection of
one of a representative set of 46 phonemes.

a - c a t --()

/k /

H idden N eurons

O utput N eurons

Inputs

P H O N EM E

TE XT

 Figure 3 MLP architecture for letter-to-phoneme transcription

Software MLPWIN was written in the C programming
language to implement both algorithms in a Microsoft
Windows environment, which allowed the required
parameters to be set and changed as required. The training
set was constructed from a file of text containing 566 of
the most commonly written American-English words,
obtained from the statistical analysis of Brown’s Corpus by
Kucera and Francis[8], and phoneme data derived from a
specially designed computer program based on the letter-
to-phoneme rules of Elovitz et al[9]. The final training set
consisted of 2856 letter-to-phoneme mappings, one for
each letter of the 566 words placed centrally in the seven
character window. Training was carried out for both
backprop and listprop using the same initial weight range
[-0.01,0.01] and random seed, and learning rates η from
0.4 to 1.9 at intervals of 0.1 in order to make sure the
algorithms were compared at their optimum learning rates.
A output activation tolerance of χ=0.3 was chosen, which
leaves a margin of 1-2χ=0.4 between ‘0’ and ‘1’ at each
output. In each case training was stopped after 100 epochs,
in order to compare the percentage of patterns learnt and
the total time taken for the training. After training,
generalisation ability was tested by recall of a further 2956
patterns, using the next 465 most common words from
Brown’s Corpus.

IV. RESULTS

The results of the training using the MLPWIN software
executed on an IBM-compatible PC with an Intel 486DX
66MHz processor are shown by the graphs in Figures 4
and 5 for backprop and listprop respectively, and by the
timings table in Figure 6. The table in Figure 7 shows the

results from the generalisation testing. It can be seen that
the listprop algorithm is superior in respect of the number
of patterns learnt to the required convergence criteria with
a best percentage convergence of 99.7% for η=0.9
compared to a best of 94.8% for backprop, also for η=0.9.

The most significant improvement is in the training time
for listprop which is only 38% of the time required for
backprop. Generalisation capability is also better with
listprop, although this is probably accounted for by the
improved convergence for the training set. Evidence of
oscillation is apparent for listprop at all learning rates.
However this effect is small, and percentage convergence
at the higher learning rates is not much different, these
being 99.6% for η=1.4 and 99.3% for η=1.9. This should
be compared to figures of 94.5% for η=1.4 and 94.5% for
η=1.9 for backprop, suggesting saturation had occurred.
Indeed, by examining the network outputs it was seen that
some of the these were very close to 0 or 1 for many of the
patterns in the training set, and training for a further 100
epochs did not improve the result. Examination of the graphs
shows that the curves have a smoother ‘knee’ for the listprop
training in Figure 5 than the ones for backprop in Figure 4.
The difference is especially noticeable at higher learning
rates. This indicates that the new algorithm has overcome the
problem of early overtraining.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

Epochs

P
at

te
rn

s
L

ea
rn

t Learning Rate=0.4

Learning Rate=0.9

Learning Rate=1.4

Learning Rate=1.9

Figure 4 Graph for backprop training with various learning rates

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

Epochs

P
at

te
rn

s
L

ea
rn

t

Learning Rate=0.4

Learning Rate=0.9

Learning Rate=1.4

Learning Rate=1.9

Figure 5 Graph for listprop training with various learning rates

Proceedings of the Fourth IEEE International Conference on Electronics, Circuits and Systems,
Cairo, Egypt, December 15-18 1997, Volume 1, pp 254-258.

Copyright © 1997 by the Institute of Electrical and Electronic Engineers Inc.

Learning
Rate

0.4 0.9 1.4 1.9

 Total training time for 100 epochs (seconds)
backprop 15073 15527 15063 15526
listprop 6142 5877 6093 5812
Figure 6 Comparison of time taken for training using backprop and
listprop algorithms

Learning
Rate

0.4 0.9 1.4 1.9

 Percentage of non-training patterns correctly
classified

backprop 85.9 86.8 87.7 87.1
listprop 88.6 88.8 87.3 87.6
Figure 7 Comparison of percentage of patterns correctly classified in
generalisation testing of backprop and listprop trained networks

V. CONCLUSIONS

The results show that by using selective backpropagation
(listprop) a neural network classifier can learn faster, and
with a greater percentage of training patterns classified
correctly. Generalisation performance was also improved
in line with the improvement in convergence, suggesting
that classification ability is not affected by the smaller
margin (1-2χ) which results from training to a specified
output activation tolerance. The case study is typical of the
type of large network problem which would benefit greatly
from a reduction in training time, which in the text-to-
speech example was 38% of the time required to train with
the standard algorithm. In addition the proposed alternative
algorithm does not appear to be sensitive to the learning
rate, and oscillation was not found to be a problem. The
techniques used to improve the standard backpropagation
algorithm may find further use in the improvement of
existing modified forms of the backpropagation algorithm
for classification problems, and in hardware
implementations with limited precision.

VI. REFERENCES

[1] LOONEY C.G. : “Stabilisation and Speedup of
Convergence in Training Feedforward Neural Networks”,
Neurocomputing, 10 ,1996, pp7-31.

[2] FAHLMAN S.E. : “An Empirical Study of Learning
Speed in Back-Propagation Networks”, Technical Report
CMU-CS-88-162, Carnegie Mellon University, Pittsburgh
PA, June 1988.

[3] HOLLIS P.W., HARPER J.S. and PAULOS J.J. : “The
Effects of Precision Constraints in a Backpropagation
Learning Network”, Neural Computation 2, pp363-373,
1990

[4] RUMELHART D.E., and McCLELLAND (Eds.) :
“Parallel Distributed Processing : Explora-tions in the
Microstructure of Cognition, Vol I : Foundations” (MIT
Press 1986).

[5] HOEHFELD M. and FAHLMAN S.E. : “Probabilistic
Rounding in Neural Network Learning with Limited
Precision”, Proc. IEEE/ITG/IFIP 2nd Int. Workshop on
Microelectronics for Neural Networks, Munich, pp1-8, Oct
1991.

[6] RUMELHART D.E., HINTON G.E. and WILLIAMS
M.J. : “Learning Internal Representations by
Backpropagation of Errors”, Nature 323, pp533-536,
1986.

[7] SEJNOWSKI T.J., and ROSENBERG C.R. : “Parallel
Networks that Learn to Pronounce English Text”, Complex
Systems 1, pp145-168, 1987.

[8] KUCERA H. and FRANCIS W.N. : “Computational
Analysis of Present Day American English”, (Brown
University Press, Providence RI, 1970).

[9] ELOVITZ H.S., JOHNSON R., McHUGH A., and
SHORE J.E. : “Letter-to-Sound Rules for Automatic
Translation of English Text to Phonetics”, IEEE Trans.
Acoustics, Speech, and Signal Processing, 24(6), 1976.

