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ABSTRACT 
 
The problem of saturation in neural network classification 
problems is discussed. The listprop algorithm is presented 
which reduces saturation and dramatically increases the 
rate of convergence. The technique uses selective 
application of the backpropagation algorithm, such that 
training is only carried out for patterns which have not yet 
been learnt to a desired output activation tolerance. 
Furthermore, in the output layer, training is only carried 
out for weights connected to those output neurons in the 
output vector which are still in error, which further reduces 
neuron saturation and learning time. Results are presented 
for a 196-100-46 Multi-Layer Perceptron (MLP) neural 
network used for text-to-speech conversion, which show 
that convergence is achieved for up to 99.7% of the 
training set compared to at best 94.8% for standard 
backpropagation. Convergence is achieved in 38% of the 
time taken by the standard algorithm. 
 

I. INTRODUCTION 
 
It is well known that standard feed-forward multi-layer 
neural networks (NN) trained with gradient descent 
algorithms such as backpropagation often fail to converge 
completely in classification problems for a variety of 
reasons, and much work has been carried out to attempt to 
improve this situation[1,2]. Failure to converge may be due 
to an incorrect architecture with too few layers of weights 
(or too many), or too few hidden neurons. However, in 
many cases convergence is not achieved for a particular 
training set because certain neurons saturate before others. 
In the case of the Multi-Layer Perceptron (MLP) NN with 
sigmoidal outputs using the logistic function 1/(1+e-x) 

which has outputs within the range [0,1] or tanh(x) with 
range [-1,1], the backpropagation algorithm requires 
multiplication by the derivative of the function in order to 
make a change in a weight connected to that neuron, and 
thus carry out gradient descent. Saturation occurs if the 
output is pushed towards its extremes at some point before 
convergence is reached, so that the derivative is too small 
to make further significant weight changes, causing the 
network to settle in an incorrect local minimum or reach a 
state of network paralysis (see Figure 1). This saturation 
may occur for a number of reasons, most of which are 
easily avoided. 
 

 

Five common reasons for saturation occurring are as 
follows: 
 
1. Magnitude of the initial weight range is too large 
2. Weight quantisation is too coarse 
3. The learning rate is too large 
4. The training set is not normalised 
5. Overtraining 
 
The first of these can be a problem if the initial random 
weight range i.e. the distribution of initial weights, is not 
appropriate to the NN architecture. A neuron can saturate 
immediately if the associated initial random weight vector 
is unluckily chosen, which becomes more likely for any 
particular weight range as the number of inputs is 
increased. Care must thus be taken to reduce the initial 
weight range as the number of neuron inputs grows.  
 
The second reason, which is often relevant in limited 
precision implementations[3], is avoided by making sure 
that enough bits are used for the weight changes.  
 
The third reason for saturation is avoided by keeping the 
learning rate as small as possible, which also ensures a 
better approximation to steepest descent. In this case, 
however, there is a trade-off with speed of convergence. 
This problem can be compounded by the use of momentum 
or some similar second-order technique commonly used in 
modified forms of backpropagation, which can produce 
larger weight changes than would be expected from the use 
of a constant learning rate. Thus it may also be necessary 
to take care not to make the momentum term too large. 
The fourth reason is more subtle. In classification 
problems, if there are more examples of one class than 
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Figure 1  Logistic function 1/(1+e-x ) showing typical saturation limits 
for a neuron output, and an example output activation tolerance (χ = 0.3) 
which is below these limits 
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another, the network becomes biased towards the largest 
class. In terms of probability this may be desirable, but it 
may also mean that certain training patterns are simply not 
learnt if they are in a very small class compared to the 
others, as the network quickly converges and saturates in 
favour of the dominant class or classes. This can be 
avoided in principle by a process of normalisation, which 
can be carried out by increasing on average the number of 
times certain patterns are presented per epoch so that all 
classes are fairly represented. However, this is at the 
expense of an increase in size of the training set or the 
number of epochs (e.g. presentations of the entire training 
set) required for convergence.  
 
The fifth reason for saturation is the most difficult to 
prevent and is related to the problem of how to decide 
when to stop the training procedure. It is desirable to stop 
training before saturation occurs not least because there is 
no point training for more epochs than is necessary to 
separate the classes by a desired margin, even if 
convergence can be easily achieved, but also to ensure 
good generalisation since overtraining also has the effect 
of making the network too finely tuned to idiosyncrasies in 
the training set. A widely used method of doing this is to 
stop when all the network outputs have achieved their 
required target state for all patterns to within a specified 
tolerance[4]. This is to be preferred over waiting for a 
minimum total Mean Squared Error to be reached as it is 
clearer how well the MLP is classifying the input set. For 
the logistic function an output activation tolerance of 
χ=0.1 means that an output of 0.1 or smaller is considered 
to be a logical 0 if that is the desired output, and one of 0.9 
or greater is considered to be a logical 1. This works 
adequately for some training sets like in the EXOR 
problem where all four patterns are learnt after a similar 
number of epochs (in fact {(1,1),(0)} is learnt last, but not 
very long after the others), but quite badly if some classes 
are easily distinguished when others are separated by 
complex decision boundaries. In these cases some patterns 
are always learnt to within the specified tolerance long 
before others, even if the training set is normalised, 
resulting in overtraining with the easier ones. 
 
One method for avoiding saturation directly, proposed by 
Fahlman[2], is to bound the weight step away from zero by 
adding a constant term thus ensuring  a minimum weight 
step. Another method is to use a probabilistic update 
strategy[5] which is particularly useful in hardware 
implementations with limited precision. The alternative 
method of selective backpropagation presented in this 
paper reduces saturation, and also reduces the number of 
epochs to convergence and increases the overall number of 
training patterns which can be learnt over the standard 
method. It also removes the need for normalisation and 
improves the speed of convergence in terms of 
computational steps required. 
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Figure 2  L-M-N  multi-layer perceptron  neural network architecture 

 

II. METHOD 
 
The typical L-M-N fully interconnected MLP architecture 
with two layers of weights is shown in Figure 2. The 
network has L inputs, M hidden layer neurons and N output 
layer neurons. The output function F is the sigmoidal non-
linearity, or logistic function 1/(1+e-x) which limits the 
output range between 0 and 1. The inputs and outputs of 
each layer are denoted by yi  for the inputs to the hidden 
layer (1≤i≤L), yj  for the inputs to the output layer 
(1≤j≤M), and yk for the final outputs (1≤k≤N). The neuron 
sums-of-products are denoted by xj  and xk. The hidden 
layer weights are denoted by wji, the output layer weights 
by wkj and the corresponding threshold biases are θj and θk.  
 
The usual implementation of the backpropagation 
algorithm (backprop)[6] consists of two phases; a forward 
pass (or recall phase) in which an input pattern is presented 
to the network and the actual outputs are calculated, and a 
backward pass (or learning phase) in which the errors are 
calculated and the weights are adjusted. A backward pass 
is always carried out after each forward pass. The weight 
changes for each neuron are determined by multiplying the 
learning rate η (constant for the entire network) by the 
error term δj or δk  (constant for that neuron in any one 
pass) and the corresponding inputs. When all patterns in 
the training set have been presented to the network this is 
recorded as one training epoch.  
 
The forward pass is, 
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The number of multiplications per pattern for the sum-of-
products in the forward pass is MN+LM. Note however 
that in practice many of the multiplications in the forward 
pass can be avoided completely for classification 
problems, since multiplication in equation (1) is either by 0 
or 1, so comparison and addition can be used instead.  
 
A backward pass is then carried out where these outputs 
are compared to the desired outputs dk and the delta values 
for each neuron are calculated, 
 

δ k k k k ky y d y= − −( )( )1 ,   ∀k  (3) 

δ δj j j kj k
k

N

y y w= −
=

∑( ) ,1
1

   ∀j  
 
(4) 

  
This is followed by changing the weights by the following 
increments, 
 

∆w ykj k j= ηδ , ∀j k,       ∆θ ηδk k= ,  ∀k  (5) 

∆w yji j i= ηδ ,  ∀i j,       ∆θ ηδj j= ,   ∀j  (6) 

 
The total number of multiplications per pattern in the 
backward pass is 3MN+2(L+1)M+2N, which is much 
more than in the forward pass, so it is in this phase where 
much of the time saving can be made. As in equation (1), 
many of the multiplications in equation (6) can be avoided 
for binary inputs. In order to check for possible 
convergence, each of the outputs in the output vector is 
checked after the forward pass to see whether it has been 
learnt to the desired output activation tolerance, χ. If this is 
the case for all outputs in the output vector for every 
pattern in the training set, the network is said to have learnt 
to classify the entire training set and training can be 
terminated. Alternatively training can be carried out for a 
specified number of epochs. Note that even if some 
patterns have been learnt to the desired tolerance training 
is still carried out for these patterns, which can result in 
saturation due to overtraining.  
 
In the proposed alternative algorithm, listprop, a backward 
pass is carried out for a particular training pattern only if 
the pattern output has not been learnt to within the 
tolerance χ. Furthermore if the pattern has not been learnt, 
the backward pass is only applied to the output neurons in 
the output vector which have not yet reached the required 
tolerance, which comprise a set Γ of outputs which are in 
error i.e. dk-yk≥χ. In this way it is not possible for the 
output of a neuron which has crossed the tolerance 
threshold to be changed any further by that pattern unless 
other patterns in the training set change the weights later 
on, so as to move the decision boundary to bring it back in 
error again. Note that simply training the patterns not 
learnt using the entire output vector is not sufficient to 
prevent saturation, as individual outputs in the output 
pattern may become saturated before others. In practice the 
backward pass is modified so that rather than update the 

weights to all output nodes (with indices 1 to N) in a loop, 
a list is first made of all n(Γ) outputs still in error 
(n(Γ)≤N), so that the elements of the list are the indices of 
these in the order in which they are found. If n(Γ)=0 (i.e. 
Γ=∅, the empty set),  the pattern has been learnt and no 
backward pass is applied. Otherwise the backward pass is 
applied to the list of outputs which are in error, as follows, 
 

δ k k k k ky y d y= − −( )( ),1            k ∈Γ  (7) 

δ δj j j kj k
k

y y w= −
∈
∑( ) ,1
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        ∀j  
 
(8) 

∆w ykj k j= ηδ ,  ∀ ∈j k, Γ     ∆θ ηδk k= ,  k ∈Γ  (9) 

∆w yji j i= ηδ ,  ∀i j,         ∆θ ηδj j= ,   ∀j  (10) 

 
Thus the number of multiplications for a particular pattern 
in a particular epoch is reduced to 
3Mn(Γ)+2(L+1)M+2n(Γ). As training proceeds, many of 
the n(Γ) become very small or zero, so that the average 
training time of the epoch decreases. As the NN converges, 
some oscillation is to be expected as the remaining patterns 
compete for the weights which will help them converge. 
Close to full convergence, the most difficult patterns to 
learn should gain more and more influence on the weight 
set which may help a global minimum to be found which is 
beneficial to all patterns. Clearly this also provides a gain 
in speed because patterns which have been learnt are taken 
out of the backward pass, with virtually no overhead as 
every output has to be checked anyway for possible 
convergence. This is very advantageous as many networks 
learn a large proportion of patterns early on in the training 
procedure, which are usually just overtrained in the 
conventional implementation. 
 

III. EXPERIMENT 
 
In order to test the hypothesis, a typical MLP problem was 
chosen, involving text-to-speech (letter-to-phoneme) 
conversion, which was a candidate for use as the front end 
of a speech synthesis system, but was also one with which 
we had been experiencing non-convergence problems due 
to saturation. It was also clear that the proposed method 
would have a most significant effect on the convergence 
time of a network with a large training set and a large 
number of outputs.  
 
The MLP chosen had a 196-100-46 architecture based on 
the NETtalk text-to-speech architecture of Sejnowski and 
Rosenberg[7]  but with outputs which selected phonemes in 
the International Phonetic Alphabet rather than articulatory 
features. The input data was presented as a window of seven 
characters which was moved along the running text. The 
network was trained to pick out the correct phoneme for the 
central letter of the seven, the other letters being used to 
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provide a context for the transcription. Figure 3 shows a 
schematic of the architecture. The inputs consist of 7 groups 
of 28 bits, of which one bit in each group is a ‘1’ and the rest 
‘0’. The ‘1’ represents the selection from a set of 28 possible 
characters, the 26 letters of the alphabet plus 2 for 
punctuation. Hence, only seven of the inputs are ‘1’ for any 
input pattern. A hidden layer of 100 neurons has been found 
necessary to be able to capture the regularities in English 
text. The phoneme classification was made by selection of 
one of a representative set of 46 phonemes.  
 

a - c a t --( )

/k /

H idden N eurons

O utput N eurons

Inputs

P H O N EM E

TE XT

 Figure 3  MLP architecture for letter-to-phoneme transcription 

 
Software MLPWIN was written in the C programming 
language to implement both algorithms in a Microsoft 
Windows environment, which allowed the required 
parameters to be set and changed as required. The training 
set was constructed from a file of text containing 566 of 
the most commonly written American-English words, 
obtained from the statistical analysis of Brown’s Corpus by 
Kucera and Francis[8], and phoneme data derived from a 
specially designed computer program based on the letter-
to-phoneme rules of Elovitz et al[9]. The final training set 
consisted of 2856 letter-to-phoneme mappings, one for 
each letter of the 566 words placed centrally in the seven 
character window. Training was carried out for both 
backprop and listprop using the same initial weight range 
[-0.01,0.01] and random seed, and learning rates η from 
0.4 to 1.9 at intervals of 0.1 in order to make sure the 
algorithms were compared at their optimum learning rates. 
A output activation tolerance of χ=0.3 was chosen, which 
leaves a margin of   1-2χ=0.4 between ‘0’ and ‘1’ at each 
output. In each case training was stopped after 100 epochs, 
in order to compare the percentage of patterns learnt and 
the total time taken for the training. After training, 
generalisation ability was tested by recall of a further 2956 
patterns, using the next 465 most common words from 
Brown’s Corpus. 
 
IV. RESULTS 
 
The results of the training using the MLPWIN software 
executed on an IBM-compatible PC with an Intel 486DX 
66MHz processor are shown by the graphs in Figures 4 
and 5 for backprop and listprop respectively, and by the 
timings table in Figure 6. The table in Figure 7 shows the 

results from the generalisation testing. It can be seen that 
the listprop algorithm is superior in respect of the number 
of patterns learnt to the required convergence criteria with 
a best percentage convergence of 99.7% for η=0.9 
compared to a best of 94.8% for backprop, also for η=0.9.  
 
The most significant improvement is in the training time 
for listprop which is only 38% of the time required for 
backprop. Generalisation capability is also better with 
listprop, although this is probably accounted for by the 
improved convergence for the training set. Evidence of 
oscillation is apparent for listprop at all learning rates. 
However this effect is small, and percentage convergence 
at the higher learning rates is not much different, these 
being 99.6% for η=1.4 and 99.3% for  η=1.9. This should 
be compared to figures of 94.5% for η=1.4 and 94.5% for 
η=1.9 for backprop, suggesting saturation had occurred. 
Indeed, by examining the network outputs it was seen that 
some of the these were very close to 0 or 1 for many of the 
patterns in the training set, and training for a further 100 
epochs did not improve the result. Examination of the graphs 
shows that the curves have a smoother ‘knee’ for the listprop 
training in Figure 5 than the ones for backprop in Figure 4. 
The difference is especially noticeable at higher learning 
rates. This indicates that the new algorithm has overcome the 
problem of early overtraining. 
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Figure 4  Graph for backprop training with various learning rates 
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Figure 5  Graph for listprop training with various learning rates 
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Learning 
Rate 

0.4 0.9 1.4 1.9 

 Total training time for 100 epochs (seconds) 
backprop 15073 15527 15063 15526 
listprop 6142 5877 6093 5812 
Figure 6  Comparison of time taken for training using  backprop and 
listprop algorithms 

 
 
Learning 
Rate 

0.4 0.9 1.4 1.9 

 Percentage of non-training patterns correctly 
classified 

backprop 85.9 86.8 87.7 87.1 
listprop 88.6 88.8 87.3 87.6 
Figure 7  Comparison of percentage of patterns correctly classified in 
generalisation testing of backprop and listprop trained networks 

 

V. CONCLUSIONS 
 
The results show that by using selective backpropagation 
(listprop) a neural network classifier can learn faster, and 
with a greater percentage of training patterns classified 
correctly. Generalisation performance was also improved 
in line with the improvement in convergence, suggesting 
that classification ability is not affected by the smaller 
margin (1-2χ) which results from training to a specified 
output activation tolerance. The case study is typical of the 
type of large network problem which would benefit greatly 
from a reduction in training time, which in the text-to-
speech example was 38% of the time required to train with 
the standard algorithm. In addition the proposed alternative 
algorithm does not appear to be sensitive to the learning 
rate, and oscillation was not found to be a problem. The 
techniques used to improve the standard backpropagation 
algorithm may find further use in the improvement of 
existing modified forms of the backpropagation algorithm 
for classification problems, and in hardware 
implementations with limited precision. 
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