
Proof methods for
structured corecursive programs

Jeremy Gibbons1 and Graham Hutton2

1 University of Oxford; emailJeremy.Gibbons@comlab.ox.ac.uk
2 University of Nottingham; emailgmh@cs.nott.ac.uk

Abstract

Corecursive programs produce values of greatest fixpoint types, in contrast to
recursive programs, which consume values of least fixpoint types. There are a
number of widely used methods for proving properties of corecursive programs,
including fixpoint induction, thetake lemma, and coinduction. However, these
methods are all rather low-level, in that they do not exploit the common structure
that is often present in corecursive definitions. We argue for a more structured
approach to proving properties of corecursive programs. In particular, we show
that by writing corecursive programs using a simple operator that encapsulates a
common pattern of corecursive definition, we can then use high-level algebraic
properties of this operator to conduct proofs in a purely calculational style that
avoids the use of inductive or coinductive methods.

1 INTRODUCTION

Recursion is a central concept in computing, with applications ranging from the
theoretical foundations of computation [22] to practical programming techniques
[5]. In recent years, it has become increasingly clear that the dual but less well-
known concept of corecursion is just as central to computing [1, 2, 14, 15]. In this
article, we explore methods for proving properties of corecursive programs.

As yet, there appears to be no standard definition for the notion of corecursion.
In this article, we follow Moss and Danner’s work on the foundations of corecur-
sion [20] and use the termcorecursive programfor a function whose range is a
type defined as a greatest fixpoint, such as the type of infinite lists or streams.
Dually, we use the termrecursive programfor a function whose domain is a type
defined as a least fixpoint, such as finite lists. Of course, these definitions are
rather general (for example, they do not require the use of self-reference in any
form), but they will suffice for our purposes here.

All the programs in the article are written in the standard lazy functional lan-
guage Haskell [16]. This language has the convenient property that recursive
types are simultaneously both least and greatest fixpoints [8]. Hence, in this ar-
ticle, the terms ‘recursive program’ and ‘corecursive program’ simply refer to
Haskell functions whose domain and range are recursive types, respectively.

The most widely used method for proving properties of recursive programs is
structural induction. Unfortunately, this method is not applicable to corecursive
programs, because in general such programs do not have an argument over which
induction can be performed. Historically, the basic proof method for corecursive
programs has been Scott and de Bakker’sfixpoint induction[7], which arises from
the standard denotational semantics of functional programs. Applying fixpoint
induction is rather tedious, but for the special case of corecursive programs that
produce lists, one can use Bird and Wadler’stake lemma[4], or the simplerap-
proximation lemma[3]. More recently, Gordon [11] and Turner [24] have argued
for the use ofcoinductionas the basic proof method for corecursive programs,
which arises from work on the operational semantics of functional programs.

In this article we review the above proof methods, and observe that they are
all rather low-level, in the sense that they do not exploit the common structure
that is often present in corecursive definitions. We argue for a more structured
approach to proving properties of corecursive programs. In particular, we show
that by writing corecursive programs using a simple operator calledunfold that
encapsulates a common pattern of corecursive definition, we can then use the
high-leveluniversalandfusionproperties of this operator to conduct proofs in a
purely calculational style that avoids the use of inductive or coinductive methods.
This approach is dual to the use offold and its associated properties in recursive
programming, which has recently been surveyed in [12].

The article is aimed at a reader who is familiar with the basics of recursive
programming and inductive proof, say to the level of [4, 3]. No prior knowledge
of corecursive programming and proof is assumed. For simplicity, we restrict our
attention to corecursive programs that produce lists, but our approach naturally

generalises to a large class of other datatypes.

2 CORECURSIVE PROGRAMS

In this section we present a few simple examples of corecursive programs and
their properties. To begin with, consider the following Haskell definitions for
corecursive programs that produce infinite lists:

repeat :: α! [α]
repeat x = x : repeat x

from :: Int! [Int]
from n = n : from (n+1)

iterate :: (α! α)! α! [α]
iterate f x = x : iterate f (f x)

Unwinding these definitions a few steps, we see that:

repeat x = x : x : x : x : : : :

from n = n : (n+1) : (n+2) : (n+3) : : : :

iterate f x = x : f x : f (f x) : f (f (f x)) : : : :

From these examples, it is clear thatrepeatandfrom are special cases ofiterate,
given byrepeat= iterate idandfrom= iterate(+1). Theiterateoperator encap-
sulates a general pattern for producing an infinite list, in which the first value in
the list is provided as a seed, and each subsequent value in the list is generated by
applying a given function to the previous value.

Another general pattern is encapsulated by the well-knownmap operator,
which produces a list by applying a function to each value in a given list:

map :: (α! β)! [α]! [β]
map f xs = if null xsthen [] elsef (head xs) : map f (tail xs)

For example:

map f (x1 : x2 : x3 : x4 : : : :) = f x1 : f x2 : f x3 : f x4 : : : :

Note that the functionmap f is recursive as well as being corecursive, because
it both consumes and produces a list. The definition ofmapabove usingnull,
headandtail is more verbose than the standard definition using pattern matching.
However, we choose to definemap in this manner because it reveals a structure
that we will find to be common to many corecursive programs.

In general, the same infinite list may be produced by many different corecur-
sive programs. For example, by again unwinding the appropriate definitions a few
steps, we see that we can produce the infinite list

f x : f (f x) : f (f (f x)) : f (f (f (f x))) : : : :

by at least three different programs:tail (iterate f x), map f (iterate f x), and
iterate f (f x). That is, we expect the following equations to be true:

tail � iterate f = map f � iterate f = iterate f � f

We conclude this section with four further examples of corecursive programs:
copy xwhich produces a list ofx’s of a given length,digits which extracts the
decimal digits (in reverse order) from a number,tails which returns all the (non-
empty) final segments of a list, andsort which implements selection sort using an
auxiliary functiondelminthat removes the minimum number from a list:

copy :: α! Int! [α]
copy x n = if n== 0 then [] elsex : copy x(n�1)

digits :: Int! [Int]
digits n = if n== 0 then [] else(n mod 10) : digits (n div 10)

tails :: [α]! [[α]]
tails xs = if null xsthen [] elsexs: tails (tail xs)

sort :: [Int]! [Int]
sort ns = if null nsthen [] elseminimum ns: sort (delmin ns)

The structure of these definitions is clearly similar to that formap. In fact, we
will see later on that all the functions defined above are instances of a common
pattern of corecursive definition, and that we can exploit this fact when proving
properties of these functions. Prior to this, however, we review and compare the
standard proof techniques for corecursive programs.

3 FIXPOINT INDUCTION

Recall that in the standard denotational approach to the semantics of functional
languages [23], types are partially ordered sets with a least element? and limits of
all non-empty chains (that is, types arecpos), and programs are functions between
cpos that preserve these limits (that is, programs arecontinuous functions). In this
setting, the meaning of a definitionx= f x for a valuex in terms of itself and some
auxiliary functionf is given by the limit of the following chain:

? v f ? v f (f ?) v f (f (f ?)) v : : :

The well-known fixpoint theorem [6] states that the limit of this chain, denoted by
fixf , is the least solution to the equationx = f x (that is,fixf is the least fixpoint
of f), and is hence an appropriate choice for the meaning ofx. As an example
of the least fixpoint approach to semantics, recall the defining equation for the
corecursive programrepeatgiven earlier:

repeat :: α! [α]
repeat x = x : repeat x

This definition can be rewritten asrepeat= f repeat, where the auxiliary function
f is defined without reference to itself as follows:

f :: (α! [α])! α! [α]
f g x = x : g x

Hence, the meaning ofrepeat is given byrepeat= fix f , from which a simple
calculation shows thatrepeat xis the limit of the following chain of partial lists
containing increasing numbers ofx’s, as expected:

? v x :? v x : x :? v x : x : x :? v : : :

The basic method for proving properties of programs defined usingfix is Scott
and de Bakker’sfixpoint induction[7]. Suppose thatf is a continuous function on
a cpo andP is a predicate on the same cpo, such that wheneverP holds of all the
elements in a chain then it also holds of the limit (that is,P is chain complete.)
Then fixpoint induction can be stated as the following inference rule:

P? 8x: P x) P (f x)

P (fix f)

This rule states that if the predicate holds of the least element? of the cpo, and
whenever it holds of an elementx then it also holds off x, then the predicate also
holds of the least fixpointfix f . The proof of the fixpoint induction rule is a simple
consequence of the definition offix f as the limit of a chain.

As an example, let us see how fixpoint induction can be used to prove the
propertymap f � iterate f = iterate f � f from the previous section. First of all,
we abstract fromiterate f and define a predicateP g , map f � g = g � f , so
that the property to be proved can now be written asP (iterate f). The predicate
P is chain complete, because any predicate expressed as an equation between
continuous functions is chain complete. Next, the meaning ofiterate is given by
iterate f = fix (h f), where the functionh is defined as follows:

h :: (α! α)! (α! [α])! α! [α]
h f g x = x : g (f x)

Hence, the property to be proved can be written asP (fix (h f)), which, by fixpoint
induction, is implied by the following two conditions:

P? 8g: P g) P (h f g)

Finally, these conditions are verified by two calculations:

P?
, f definition ofP g

map f � ? = ? � f
, f extensionality, compositiong

8x: map f (? x) = ? (f x)
, f β-reductiong

8x: map f? = ?
, fmap f is strictg

true

and

P (h f g)
, f definition ofP g

map f � h f g = h f g � f
, f extensionality, compositiong

8x: map f (h f g x) = h f g (f x)
, f definition ofh g

8x: map f (x : g (f x)) = f x : g (f (f x))
, f definition ofmapg

8x: f x : map f (g (f x)) = f x : g (f (f x))
(f composition, extensionalityg

map f � g = g � f
, f definition ofP g

P g

This completes the proof. Note that because fixpoint induction is an implication
rather than an equivalence, it is sound but not complete, and is hence not always
applicable. For example, withP defined as “is an infinite list” (a chain-complete
predicate) andf x= 1 :x, the true statementP (fix f) expresses that 1 : 1 : 1 : 1 :: : :

is an infinite list, but cannot be proved using fixpoint induction because? is not
an infinite list and hence the base caseP? is false.

4 THE APPROXIMATION LEMMA

Fixpoint induction is a rather basic proof method. In particular, it is tedious to
have to return to first principles and perform proofs at the level of the fixpoint
semantics of programs. Fortunately, for corecursive programs that produce lists,
Bird and Wadler’stake lemma[4] allows us to perform proofs at the level of the
syntax of programs, without reference to their underlying fixpoint semantics.

Recently, the take lemma has been superseded by theapproximation lemma
[3], which is formally equivalent to the take lemma, but is easier to prove, slightly
simpler to apply, and naturally generalises from lists to a large class of other
datatypes [9]. The basis of the approximation lemma is theapproxfunction:

approx :: Int! [α]! [α]
approx(n+1) [] = []
approx(n+1) (x : xs) = x : approx n xs

Theapproxfunction is similar to the well-known functiontake, except that there
is no base case forapprox0, so by case exhaustionapprox0 xs=? for all xs. For
example,approx3 (from 0) = 0 : 1 : 2 :?, while approx3 [0;1] = [0;1].

Suppose thatxsandysare two infinite, partial, or finite lists. Then the approx-
imation lemma can be stated as the following equivalence:

xs= ys , 8n: approx n xs= approx n ys

This equivalence states that two lists are equal precisely when all their approx-
imations are equal. The left-to-right direction is trivially true by extensionality.
For the other direction, it is easy to show that

approx0 v approx1 v approx2 v approx3 v : : :

is a chain that has the identity functionid as its limit (by induction on natural
numbers and lists, respectively), using which result the right-to-left direction of
the approximation lemma is proved as follows:

xs = ys
, f definition of id g

id xs = id ys
, f above resultg

(
F

nfapprox ng) xs = (
F

nfapprox ng) ys
, f continuity of applicationg

F
nfapprox n xsg =

F
nfapprox n ysg

(f property of limitsg
8n: approx n xs= approx n ys

As an example, let us see howmap f � iterate f = iterate f � f can be proved
more simply by using the approximation lemma than by fixpoint induction. First
of all, we use extensionality and the definition of composition to rewrite the prop-
erty to be proved in the equivalent form:

8x: map f (iterate f x) = iterate f (f x)

Now, by the approximation lemma, this is equivalent to:

8x;n: approx n(map f (iterate f x)) = approx n(iterate f (f x))

Finally, this property can be verified by induction on the natural numbern. The
base casen = 0 is trivially true becauseapprox 0 xs= ? for all xs. For the
inductive casen= m+1, we calculate as follows:

approx(m+1) (map f (iterate f x))
= f definition of iterateg

approx(m+1) (map f (x : iterate f (f x)))
= f definition ofmapg

approx(m+1) (f x : map f (iterate f (f x)))
= f definition ofapproxg

f x : approx m(map f (iterate f (f x)))
= f induction hypothesisg

f x : approx m(iterate f (f (f x)))
= f definition ofapproxg

approx(m+1) (f x : iterate f (f (f x)))
= f definition of iterateg

approx(m+1) (iterate f (f x))

which completes the proof.
As well as leading to simpler proofs, the approximation lemma is an equiva-

lence so is both sound and complete, in contrast to the fixpoint induction rule.

5 BISIMILARITY AND COINDUCTION

Both fixpoint induction and the approximation lemma are based on denotational
semantics. Another popular approach to semantics is the operational approach
[21], for which a widely-used notion of equivalence for programs isbisimilar-
ity, and the basic proof method for establishing that two programs are bisimilar
is coinduction[19]. In this section, we review Gordon’s work [11] on applying
bisimilarity and coinduction to prove properties of corecursive functional pro-
grams, techniques also advocated by Turner [24].

The operational semantics of a Haskell-like language can be defined by a re-
duction relation;, for whicha; a0 means that the expressiona can be reduced
to the expressiona0 in a single execution step. For example, the following reduc-
tions formalise howiterateandmapare executed:

iterate f x ; x : iterate f (f x)

map f [] ; []
map f (x : xs) ; f x : map f xs

Using the reduction relation; we can then define a labelled transition relation
!, for which a

o
! a0 means that the expressiona immediately permits theob-

servation o, thereby making the transition to the expressiona0. For example, the
following transitions formalise the observations that can be made of a non-empty
list, namely that we can observe itsheadandtail:

x : xs
head
! x

x : xs
tail
! xs

By repeated application of the transition relation!, we can generate a (pos-
sibly infinite) transition tree that captures all possible sequences of observations
for a given expression. Informally, two expressions are calledbisimilar if their
transition trees are identical when we ignore the expressions at the nodes in the
trees, and only consider the observations that label the edges. That is, two ex-
pressions are bisimilar if they cannot be distinguished by an observer who has no
knowledge of the internal details of the expressions.

Formally, abisimulationin this context is a relationRon expressions such that
if a R bthen the following two conditions are satisfied:

Whenevera
o
! a0 there is someb0 for whichb

o
! b0 anda0 R b0

Wheneverb
o
! b0 there is somea0 for whicha

o
! a0 anda0 R b0

That is, expressions that are related by a bisimulation permit the same observa-
tions and thereby make transitions to related expressions. The above definition
does not determine a unique relation, but there is always a greatest bisimulation
under the inclusion ordering on relations, which relates as many expressions as
possible subject to the two conditions above. The greatest bisimulation is written
�, and two expressions for whicha� b are calledbisimilar. The fact that, by def-
inition, all other bisimulations are included in the greatest bisimulation is known
ascoinduction; it forms a simple but powerful proof method.

To prove thata� b using coinduction, we must construct a bisimulationR
for which a R b. Then, by coinduction we know thatR is included in�, and
hence becausea R bwe conclude thata� b, as required. That is, by coinduction
the problem of showing that two expressions are bisimilar can be reduced to the
problem of constructing a bisimulation that relates the two expressions.

As an example, let us prove thatmap f � iterate f � iterate f � f using coin-
duction. First of all, we rewrite the property in the equivalent form:

8f ;x: map f (iterate f x) � iterate f (f x)

Next, we construct a relationR that encodes this property:

R = f(map f (iterate f x); iterate f (f x)) j f :: α! α;x :: αg

The relationR is not itself a bisimulation, but we will now show thatR[� is a
bisimulation. Suppose thata(R[�) b, which means that eithera R bor a� b.
If a � b, clearly any transition fora is matched by one forb and vice versa,
because� is by definition a bisimulation. Ifa R b, thena= map f (iterate f x)
andb= iterate f (f x) for somef andx. From the definitions of the functionsmap
anditerateunder the reduction relation;, we have that

a ;
� f x : map f (iterate f (f x))

b ;
� f x : iterate f (f (f x))

where;� is the reflexive and transitive closure of;. Now, using the fact that if
c;� c0 thenc

o
! c00 is equivalent toc0

o
! c00, together with the definition of the

transition relation! for the case of non-empty lists, we can enumerate all the
possible transitions for the expressionsa andb:

a
head
! f x (1)

a
tail
! map f (iterate f (f x)) (2)

b
head
! f x (3)

b
tail
! iterate f (f (f x)) (4)

Transition (1) is matched by transition (3) and vice versa, because� is neces-
sarily reflexive and hencef x� f x, which implies thatf x (R[�) f x. Transition
(2) is matched by transition (4) and vice versa, because the resulting expressions
map f (iterate f (f x)) anditerate f (f (f x)) are related byRand so also byR[�.
This completes the proof thatR[� is a bisimulation, from which we conclude
by coinduction thatR[� is included in�, and hence thatR itself is included in
�, and so the two expressions are bisimilar.

Coinduction is certainly an elegant and powerful proof method. However,
denotational semantics is still the dominant basis for proofs about functional pro-
grams, and it seems unfortunate to have to change the basis to operational seman-
tics in order to perform proofs using coinduction.

6 UNFOLD AND UNIVERSALITY

The three proof methods for corecursive programs that we have considered so
far — fixpoint induction, the approximation lemma, and coinduction — are all
rather low-level. In particular, they do not exploit the common structure that is
often present in corecursive definitions. In this section, we show that by writing
corecursive programs using a simple operator calledunfold that encapsulates a
common pattern of corecursive definition, we can then use the high-leveluniversal
andfusionproperties [18, 10, 13] of this operator to conduct proofs in a purely
calculational style that avoids the use of inductive or coinductive methods.

Theunfoldoperator for lists may be defined as follows:

unfold :: (α! Bool)! (α! β)! (α! α)! α! [β]
unfold p h t x = if p x then [] elseh x : unfold p h t(t x)

Theunfoldoperator encapsulates a general pattern for producing a list from a seed
valuex, by means of three argument functionsp, h andt. If the predicatep is true
for the seedx, then the empty list is produced. Otherwise, the head of the list is
produced by applying the functionh to the seedx, and the tail is produced by first
applying the functiont to x to generate a new seed, which is then itself unfolded
using the same process to produce the tail of the list.

Many corecursive programs have a simple definition usingunfold. For exam-
ple, the corecursive programs from Section 2 can naturally be defined by:

iterate f = unfold(const False) id f

map f = unfold null(f �head) tail

copy x = unfold(== 0) (const x) (�1)

digits = unfold(== 0) (mod 10) (div 10)

tails = unfold null id tail

sort = unfold null minimum delmin

Here,const cis the constant function that always returnsc.
The basic method for proving properties of programs defined usingunfold is

the universal property [18], which can be stated as the following equivalence:

f = unfold p h t , 8x: f x = if p x then [] elseh x : f (t x)

This equivalence states thatunfold p h tis not just a solution to its defining equa-
tion, but is in fact theuniquesolution. The left-to-right direction is trivially true,
because substitutingf = unfold p h t into the right-hand side gives the defini-
tion for unfold. To prove the other direction, we first use extensionality and the
approximation lemma to rewritef = unfold p h tin the equivalent form:

8x;n: approx n(f x) = approx n(unfold p h t x)

This property can now be verified by induction on the natural numbern, using the
right-hand side of the universal property ofunfold as an assumption. The base
casen = 0 is trivially true becauseapprox0 xs= ? for all xs. For the inductive
casen= m+1, we calculate as follows:

approx(m+1) (f x)
= f assumptiong

approx(m+1) (if p x then [] elseh x : f (t x))
= f distributiong

if p x then approx(m+1) [] elseapprox(m+1) (h x : f (t x))
= f definition ofapproxg

if p x then approx(m+1) [] elseh x : approx m(f (t x))
= f induction hypothesisg

if p x then approx(m+1) [] elseh x : approx m(unfold p h t(t x))
= f definition ofapproxg

if p x then approx(m+1) []
else approx(m+1) (h x : unfold p h t(t x))

= f distributiong
approx(m+1) (if p x then [] elseh x : unfold p h t(t x))

= f definition ofunfoldg
approx(m+1) (unfold p h t x)

The universal property makes explicit the precise condition required to prove
thatf = unfold p h t. For specific cases, verifying this condition typically does not
require inductive or coinductive methods. In this manner, the universal property
of unfoldencapsulates a general pattern of proof for corecursive programs, just as
unfold itself encapsulates a general pattern of definition for such programs.

As a first example, let us see how the equationrepeat= iterate id from Sec-
tion 2 can be proved by simple calculation using the universal property:

repeat= iterate id
, f definition of iterateg

repeat= unfold(const False) id f
, f universal propertyg

8x: repeat x= if const False xthen [] elseid x : repeat(id x)
, f simplificationg

8x: repeat x= x : repeat x
, f definition ofrepeatg

true

As a more general example, the universal property can be used to calculate the
fusion law, which gives conditions under which the composition of anunfoldand
a function can be fused together to give a singleunfold:

unfold p h t� g = unfold p0 h0 t0

, f universal propertyg
8x: unfold p h t(g x) =

if p0 x then [] elseh0 x : unfold p h t(g (t0 x))
, f definition ofunfoldg

8x: if p (g x) then [] elseh (g x) : unfold p h t(t (g x)) =
if p0 x then [] elseh0 x : unfold p h t(g (t0 x))

(f extensionalityg
p �g = p0 ^ h �g = h0 ^ t �g = g � t0

That is, fusion can be stated as the following inference rule:

p �g= p0 h �g= h0 t �g= g � t0

unfold p h t � g = unfold p0 h0 t0

Many properties of functions defined usingunfoldhave a simple proof using
fusion. For example, it is easy to show that the composition of anunfold and
the function used to generate the new seed can always be fused, and that the
composition of amapand anunfoldcan always be fused:

unfold p h t � t = unfold(p � t) (h � t) t (1)

map h0 � unfold p h t = unfold p(h0 �h) t (2)

Using fusion,map f � iterate f = iterate f � f can be proved much more simply
than using the other three methods that we have discussed:

iterate f � f
= f definition of iterateg

unfold(const False) id f � f
= f fusion (1)g

unfold(const False� f) (id � f) f
= f constant functions, compositiong

unfold(const False) (f � id) f
= f fusion (2)g

map f � unfold(const False) id f
= f definition of iterateg

map f � iterate f

As our final example, we prove that the corecursive programtails satisfies the
propertytails � tails = map tails� tails, using fusion:

tails � tails
= f definition oftails g

unfold null id tail � tails
= f fusion, lemma (see below)g

unfold null tails tail
= f fusion (2)g

map tails� unfold null id tail
= f definition oftails g

map tails� tails

The lemma used in the first fusion step above is thattail � tails= tails � tail, which
can easily be verified by a (non-inductive) case analysis on lists.

7 SUMMARY

We have explored a number of widely-used proof methods for corecursive pro-
grams, and argued for a more structured approach using the universal and fusion

properties of theunfold operator. In particular, we have shown that these prop-
erties allow proofs to be conducted using simple equational reasoning, without
having to refer to the underlying semantics of programs (denotational, as with fix-
point induction, or operational, as with coinduction) or use any form of induction
(as with fixpoint induction and the approximation lemma).

For simplicity we have focussed on theunfold operator for lists, but our ap-
proach naturally generalises to operators that encapsulate more general patterns
of corecursive definition (for example, primitive corecursion [25]), and to any
datatype that can be defined as the greatest fixpoint of a functor [17].

ACKNOWLEDGEMENTS

The second author is supported by EPSRC grantStructured Recursive Program-
ming, and ESPRIT Working GroupApplied Semantics.

REFERENCES

[1] Peter Aczel.Non-Well-Founded Sets. Number 14 in CSLI Lecture Notes. Stanford:
CSLI Publications, 1988.

[2] Jon Barwise and Lawrence Moss.Vicious Circles: On the Mathematics of Non-
Wellfounded Phenomena. Number 60 in CSLI Lecture Notes. Stanford: CSLI Publi-
cations, 1996.

[3] Richard Bird. Introduction to Functional Programming using Haskell (second edi-
tion). Prentice Hall, 1998.

[4] Richard Bird and Philip Wadler.An Introduction to Functional Programming. Pren-
tice Hall, 1988.

[5] W.H. Burge.Recursive Programming Techniques. Addison-Wesley, 1975.

[6] B.A. Davey and H.A. Priestley.Introduction to Lattices and Order. Cambridge
University Press, 1990.

[7] Jaco de Bakker.Mathematical Theory of Program Correctness. Prentice-Hall, 1980.

[8] Peter Freyd. Algebraically complete categories. In A. Carboni et al, editor,Proc.
1990 Como Category Theory Conference, volume 1488 ofLecture Notes in Math,
pages 95–104. Springer-Verlag, Berlin, 1990.

[9] Jeremy Gibbons and Graham Hutton. The generic approximation lemma. In prepa-
ration, 1999.

[10] Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. InProceedings
of the Third ACM SIGPLAN International Conference on Functional Programming,
pages 273–279, Baltimore, Maryland, September 1998.

[11] Andrew Gordon. Bisimilarity as a theory of functional programming. BRICS Notes
Series NS-95-3, Aarhus University, 1995.

[12] Graham Hutton. A tutorial on the universality and expressiveness of fold. To appear
in the Journal of Functional Programming.

[13] Graham Hutton. Fold and unfold for program semantics. InProc. 3rd ACM SIGPLAN
International Conference on Functional Programming, Baltimore, Maryland, 1998.

[14] Bart Jacobs, Larry Moss, Horst Reichel, and Jan Rutten, editors.Proc. of the First
Workshop on Coalgebraic Methods in Computer Science. Elsevier Science B.V.,
1998. Electronic Notes in Theoretical Computer Science Volume 11.

[15] Bart Jacobs and Jan Rutten, editors.Proc. of the Second Workshop on Coalgebraic
Methods in Computer Science. Elsevier Science B.V., 1999. Electronic Notes in The-
oretical Computer Science Volume 19.

[16] Simon Peyton Jones et al. Haskell 98: A non-strict, purely functional language.
Available on the World-Wide-Web fromhttp://www.haskell.org , February
1999.

[17] Grant Malcolm. Algebraic Data Types and Program Transformation. PhD thesis,
Groningen University, 1990.

[18] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In John Hughes, editor,Proc. Confer-
ence on Functional Programming and Computer Architecture, number 523 in LNCS.
Springer-Verlag, 1991.

[19] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[20] Lawrence Moss and Norman Danner. On the foundations of corecursion.Logic
Journal of the IGPL, 5(2):231–257, 1997.

[21] Gordon Plotkin. A structured approach to operational semantics. Report DAIMI-FN-
19, Computer Science Department, Aarhus University, Denmark, 1981.

[22] John C. Reynolds.Theories of Programming Languages. Cambridge University
Press, 1998.

[23] David A. Schmidt.Denotational Semantics: A Methodology for Language Develop-
ment. Allyn and Bacon, Inc., 1986.

[24] David A. Turner. Elementary strong functional programming. InProc. First Interna-
tion Symposium on Functional Programming Languages in Education, LNCS 1022,
pages 1–13. Springer-Verlag, 1995.

[25] Varmo Vene and Tarmo Uustalu. Functional programming with apomorphisms (core-
cursion). In9th Nordic Workshop on Programming Theory, Oct 1997.

