Proof methods for
structured corecursive programs

Jeremy Gibborfsand Graham Huttch

1 University of Oxford; emaileremy.Gibbons@comlab.ox.ac.uk
2 University of Nottingham; emaimh@cs.nott.ac.uk

Abstract

Corecursive programs produce values of greatest fixpoint types, in contrast to
recursive programs, which consume values of least fixpoint types. There are a
number of widely used methods for proving properties of corecursive programs,
including fixpoint induction, theake lemmaand coinduction. However, these
methods are all rather low-level, in that they do not exploit the common structure
that is often present in corecursive definitions. We argue for a more structured
approach to proving properties of corecursive programs. In particular, we show
that by writing corecursive programs using a simple operator that encapsulates a
common pattern of corecursive definition, we can then use high-level algebraic
properties of this operator to conduct proofs in a purely calculational style that
avoids the use of inductive or coinductive methods.

1 INTRODUCTION

Recursion is a central concept in computing, with applications ranging from the
theoretical foundations of computation [22] to practical programming techniques
[5]. In recent years, it has become increasingly clear that the dual but less well-
known concept of corecursion is just as central to computing [1, 2, 14, 15]. In this
article, we explore methods for proving properties of corecursive programs.

As yet, there appears to be no standard definition for the notion of corecursion.
In this article, we follow Moss and Danner’s work on the foundations of corecur-
sion [20] and use the tereprecursive progranfior a function whose range is a
type defined as a greatest fixpoint, such as the type of infinite lists or streams.
Dually, we use the termecursive progranfor a function whose domain is a type
defined as a least fixpoint, such as finite lists. Of course, these definitions are
rather general (for example, they do not require the use of self-reference in any
form), but they will suffice for our purposes here.

All the programs in the article are written in the standard lazy functional lan-
guage Haskell [16]. This language has the convenient property that recursive
types are simultaneously both least and greatest fixpoints [8]. Hence, in this ar-
ticle, the terms ‘recursive program’ and ‘corecursive program’ simply refer to
Haskell functions whose domain and range are recursive types, respectively.

The most widely used method for proving properties of recursive programs is
structural induction Unfortunately, this method is not applicable to corecursive
programs, because in general such programs do not have an argument over which
induction can be performed. Historically, the basic proof method for corecursive
programs has been Scott and de Bakkix{soint inductiorn[7], which arises from
the standard denotational semantics of functional programs. Applying fixpoint
induction is rather tedious, but for the special case of corecursive programs that
produce lists, one can use Bird and Wadl¢ake lemmd4], or the simplerap-
proximation lemmg3]. More recently, Gordon [11] and Turner [24] have argued
for the use ofcoinductionas the basic proof method for corecursive programs,
which arises from work on the operational semantics of functional programs.

In this article we review the above proof methods, and observe that they are
all rather low-level, in the sense that they do not exploit the common structure
that is often present in corecursive definitions. We argue for a more structured
approach to proving properties of corecursive programs. In particular, we show
that by writing corecursive programs using a simple operator caifdald that
encapsulates a common pattern of corecursive definition, we can then use the
high-leveluniversalandfusionproperties of this operator to conduct proofs in a
purely calculational style that avoids the use of inductive or coinductive methods.
This approach is dual to the usefofd and its associated properties in recursive
programming, which has recently been surveyed in [12].

The article is aimed at a reader who is familiar with the basics of recursive
programming and inductive proof, say to the level of [4, 3]. No prior knowledge
of corecursive programming and proof is assumed. For simplicity, we restrict our
attention to corecursive programs that produce lists, but our approach naturally

generalises to a large class of other datatypes.

2 CORECURSIVE PROGRAMS

In this section we present a few simple examples of corecursive programs and
their properties. To begin with, consider the following Haskell definitions for
corecursive programs that produce infinite lists:

repeat Dooa—d]

repeatx = X:repeatXx

from i Int—[Int]

from n = n:from(n+1)
iterate Do (a—=a)—a—d]
iterate f x = x:iterate f (f x)

Unwinding these definitions a few steps, we see that:

repeatXx = X:IX:IX:IX:...
from n = n:(n+1):(n+2): (n+3): ...
iteratef x = x:fx:f({fx):f{f({Fx):...

From these examples, it is clear tmapeatandfrom are special cases dérate,
given byrepeat= iterate id andfrom = iterate (+1). Theiterate operator encap-
sulates a general pattern for producing an infinite list, in which the first value in
the list is provided as a seed, and each subsequent value in the list is generated by
applying a given function to the previous value.

Another general pattern is encapsulated by the well-knavap operator,
which produces a list by applying a function to each value in a given list:

map D (a=PB)—=[a] = [B]

map f xs = if null xsthen[] elsef (head x$: map f (tail xs)
For example:

mapf(Xg:X2:Xg:xa:...) = fxg:fx:fxg:fxqa:...

Note that the functiomap f is recursive as well as being corecursive, because
it both consumes and produces a list. The definitiomaf above usingull,
headandetail is more verbose than the standard definition using pattern matching.
However, we choose to defimeapin this manner because it reveals a structure
that we will find to be common to many corecursive programs.

In general, the same infinite list may be produced by many different corecur-
sive programs. For example, by again unwinding the appropriate definitions a few
steps, we see that we can produce the infinite list

fx:f@Ex):fFFFx):FEFEX)) ...

by at least three different programsail (iterate f X, map f (iterate f X, and
iterate f (f x). That is, we expect the following equations to be true:

tail -iteratef = mapf-iteratef = iteratef-f

We conclude this section with four further examples of corecursive programs:
copy xwhich produces a list ok's of a given lengthdigits which extracts the
decimal digits (in reverse order) from a numbtails which returns all the (non-
empty) final segments of a list, asdrt which implements selection sort using an
auxiliary functiondelminthat removes the minimum number from a list:

copy D a—Int—a]

copyxn = if n==0then][]elsex: copy x(n<1)

digits i Int—[Ing]

digitsn = if n==0then[] else(n mod 10) : digits (n div 10)
tails D [a] =]

tailsxs = if null xsthen[] elsexs: tails (tail xs)

sort i [Int] = [Int]

sortns = if null nsthen [] elseminimum ns sort (delmin n$

The structure of these definitions is clearly similar to thatrf@ap In fact, we

will see later on that all the functions defined above are instances of a common
pattern of corecursive definition, and that we can exploit this fact when proving
properties of these functions. Prior to this, however, we review and compare the
standard proof techniques for corecursive programs.

3 FIXPOINT INDUCTION

Recall that in the standard denotational approach to the semantics of functional
languages [23], types are partially ordered sets with a least eleimamd limits of

all non-empty chains (that is, types &9, and programs are functions between
cpos that preserve these limits (that is, programsanéinuous functior)s In this
setting, the meaning of a definitior:=f x for a valuex in terms of itself and some
auxiliary functionf is given by the limit of the following chain:

LCfLCfELCfE@EL)C ...

The well-known fixpoint theorem [6] states that the limit of this chain, denoted by
fixf, is the least solution to the equatigr=f x (that is,fixf is theleast fixpoint

of f), and is hence an appropriate choice for the meaning dfs an example

of the least fixpoint approach to semantics, recall the defining equation for the
corecursive programepeatgiven earlier:

repeat 1 d—[q]
repeatx = X:repeatXx

This definition can be rewritten aspeat= f repeat where the auxiliary function
f is defined without reference to itself as follows:

f D (a=a]) = a—[q]

fgx = Xx:gx

Hence, the meaning o&peatis given byrepeat= fix f, from which a simple
calculation shows thatpeat xis the limit of the following chain of partial lists
containing increasing numbersx$, as expected:

L Cx:LOCx:x:LCxixex:L ...

The basic method for proving properties of programs defined disilgyScott
and de Bakker'§ixpoint induction7]. Suppose thdt is a continuous function on
a cpo ancP is a predicate on the same cpo, such that wherfebeds of all the
elements in a chain then it also holds of the limit (thatHds chain completg
Then fixpoint induction can be stated as the following inference rule:

PL Vx.Px= P (f x)
P (fix f)

This rule states that if the predicate holds of the least elemesftthe cpo, and
whenever it holds of an elemexthen it also holds of x, then the predicate also
holds of the least fixpoirfix f. The proof of the fixpoint induction rule is a simple
consequence of the definition faf f as the limit of a chain.

As an example, let us see how fixpoint induction can be used to prove the
propertymap f- iterate f = iterate f - f from the previous section. First of all,
we abstract fronmiterate f and define a predicatt g & mapf-g=g-f, so
that the property to be proved can now be writterPg#erate f). The predicate
P is chain complete, because any predicate expressed as an equation between
continuous functions is chain complete. Next, the meaniniteadteis given by
iterate f = fix (h f), where the functiom is defined as follows:

h D (a—a)—(a—[a]) = a—[ad]
hfgx = x:g(fx

Hence, the property to be proved can be writteR &x (h f)), which, by fixpoint
induction, is implied by the following two conditions:

PL Vg.Pg= P (hfg)
Finally, these conditions are verified by two calculations:

PL
& { definition of P }
mapf- L =1 -f
{ extensionality, compositioh
vx.mapf(Lx) = L (fx)
& { B-reduction}
Vx.mapflL = L
& { map fis strict}
true

and

P(hfg

& { definition of P }
mapf-hfg=hfg-f

& { extensionality, compositioh
vx.mapf(hfgx = hfg(fx

& { definition ofh }
vx.mapf(x:g(fx) =fx:g(f(fx)

{ definition ofmap}

vx.fx:mapf(g(fx) =fx:g(f(fx))

= { composition, extensionality
mapf-g=g-f

& { definition of P }
Pg

This completes the proof. Note that because fixpoint induction is an implication
rather than an equivalence, it is sound but not complete, and is hence not always
applicable. For example, with defined as “is an infinite list” (a chain-complete
predicate) anfl x = 1:x, the true statemeit (fix f) expressesthat1:1:1:1..

is an infinite list, but cannot be proved using fixpoint induction becausenot

an infinite list and hence the base c&s¢ is false.

4 THE APPROXIMATION LEMMA

Fixpoint induction is a rather basic proof method. In particular, it is tedious to
have to return to first principles and perform proofs at the level of the fixpoint
semantics of programs. Fortunately, for corecursive programs that produce lists,
Bird and Wadler'sake lemmd4] allows us to perform proofs at the level of the
syntax of programs, without reference to their underlying fixpoint semantics.
Recently, the take lemma has been superseded bgpbeximation lemma
[3], which is formally equivalent to the take lemma, but is easier to prove, slightly
simpler to apply, and naturally generalises from lists to a large class of other
datatypes [9]. The basis of the approximation lemma isfiroxfunction:

approx D Int— [a] =[]
approx(n+1) [] =
approx(n+1) (x: X9 = X:approxnxs

Theapproxfunction is similar to the well-known functiotake except that there
is no base case fapprox0, so by case exhaustiapprox0 xs= L for all xs For
exampleapprox3 (from0) = 0:1:2: L, while approx3 [0,1] = [0,1].

Suppose thatsandysare two infinite, partial, or finite lists. Then the approx-
imation lemma can be stated as the following equivalence:

XS=Yys <& Vn.approx n xs= approx nys

This equivalence states that two lists are equal precisely when all their approx-
imations are equal. The left-to-right direction is trivially true by extensionality.
For the other direction, it is easy to show that

approx0 C approxl C approx2 C approx3 C ...

is a chain that has the identity functigah as its limit (by induction on natural
numbers and lists, respectively), using which result the right-to-left direction of
the approximation lemma is proved as follows:

XS = ys
& { definition ofid }

idxs = idys

{ above resul}

(Ln{approx}) xs = (Ll,{approx 1}) ys
& { continuity of applicatior}

Lln{approxnx$ = |l,{approx nys
&= { property of limits}

Vn. approx n Xs= approx nys

As an example, let us see hawap f- iterate f = iterate f - f can be proved
more simply by using the approximation lemma than by fixpoint induction. First
of all, we use extensionality and the definition of composition to rewrite the prop-
erty to be proved in the equivalent form:

Vx. map f (iterate f X = iterate f (f x)
Now, by the approximation lemma, this is equivalent to:
Vx,n. approx n(map f (iterate f ¥) = approx n(iterate f (f x))

Finally, this property can be verified by induction on the natural numbdrhe
base case = 0 is trivially true becausapprox0 xs= L for all xs For the
inductive casen = m+ 1, we calculate as follows:

approx(m+ 1) (map f (iterate f X))
= { definition ofiterate }

approx(m+ 1) (map f(x: iterate f (f x)))
= { definition ofmap}

approx(m+1) (f x: map f (iterate f (f x)))
= { definition ofapprox}

f x: approx m(map f (iterate f (f x)))
= { induction hypothesi$

f x: approx m(iterate f (f (f x)))
= { definition ofapprox}

approx(m+1) (f x: iterate f (f (f x)))
= { definition ofiterate }

approx(m+ 1) (iterate f (f x))

which completes the proof.
As well as leading to simpler proofs, the approximation lemma is an equiva-
lence so is both sound and complete, in contrast to the fixpoint induction rule.

5 BISIMILARITY AND COINDUCTION

Both fixpoint induction and the approximation lemma are based on denotational
semantics. Another popular approach to semantics is the operational approach
[21], for which a widely-used notion of equivalence for programbigmilar-
ity, and the basic proof method for establishing that two programs are bisimilar
is coinduction[19]. In this section, we review Gordon’s work [11] on applying
bisimilarity and coinduction to prove properties of corecursive functional pro-
grams, techniques also advocated by Turner [24].
The operational semantics of a Haskell-like language can be defined by a re-

duction relation~, for whicha~» @ means that the expressiaman be reduced
to the expressior’ in a single execution step. For example, the following reduc-
tions formalise howterateandmapare executed:

iterate f x ~ X:iterate f (f x)

map f[] ~]

mapf(x:xsg) ~ fx:mapfxs
Using the reduction relation» we can then define a labelled transition relation
—s, for which a % & means that the expressianimmediately permits theb-
servation g thereby making the transition to the expressabnFor example, the
following transitions formalise the observations that can be made of a non-empty
list, namely that we can observe itsadandtail:

head
X: XS — X

x:xs xs

By repeated application of the transition relatief) we can generate a (pos-
sibly infinite) transition tree that captures all possible sequences of observations
for a given expression. Informally, two expressions are cdisinilar if their
transition trees are identical when we ignore the expressions at the nodes in the
trees, and only consider the observations that label the edges. That is, two ex-
pressions are bisimilar if they cannot be distinguished by an observer who has no
knowledge of the internal details of the expressions.

Formally, abisimulationin this context is a relatioR on expressions such that
if a R bthen the following two conditions are satisfied:

Whenever > a there is somé' for whichb > b’ anda’ R
Wheneveb 3 I there is some’ for whicha > & anda’ R b

That is, expressions that are related by a bisimulation permit the same observa-
tions and thereby make transitions to related expressions. The above definition
does not determine a unique relation, but there is always a greatest bisimulation
under the inclusion ordering on relations, which relates as many expressions as
possible subject to the two conditions above. The greatest bisimulation is written
~, and two expressions for whieh~ b are calledvisimilar. The fact that, by def-
inition, all other bisimulations are included in the greatest bisimulation is known
ascoinduction it forms a simple but powerful proof method.

To prove thata ~ b using coinduction, we must construct a bisimulat®n
for whicha R h Then, by coinduction we know th& is included in~, and
hence becauseR bwe conclude thaa ~ b, as required. That is, by coinduction
the problem of showing that two expressions are bisimilar can be reduced to the
problem of constructing a bisimulation that relates the two expressions.

As an example, let us prove thatap f - iterate f ~ iterate f - f using coin-
duction. First of all, we rewrite the property in the equivalent form:

Vf,x. map f(iterate f ¥ ~ iterate f (f x)
Next, we construct a relatidR that encodes this property:
R = {(mapf(iteratef ¥,iterate f (f x)) |f ::a — a,x::a}

The relationR is not itself a bisimulation, but we will now show thRtU ~ is a
bisimulation. Suppose that(RU ~) b, which means that eithe@R bor a ~ b.
If a~ b, clearly any transition foa is matched by one fob and vice versa,
because- is by definition a bisimulation. 16 Rk thena= map f (iterate f X
andb = iterate f (f x) for somef andx. From the definitions of the functiomsap
anditerate under the reduction relatior, we have that

a ~* fx:mapf(iterate f (f x))
b ~* fx:iteratef(f (f x))

where~* is the reflexive and transitive closure-of. Now, using the fact that if
c~* ¢ thenc 3 ¢’ is equivalent tac’ = ¢”, together with the definition of the
transition relation— for the case of non-empty lists, we can enumerate all the
possible transitions for the expressiaandb:

=
D

ead

a = fx Q)
a 9 map f (iterate f (f x)) (2
b M8 fyx 3)
b @ iterate f (f (f X)) (4)

Transition (1) is matched by transition (3) and vice versa, becatiseeces-
sarily reflexive and hendex ~ f x, which implies thaf x (RU ~) f x. Transition
(2) is matched by transition (4) and vice versa, because the resulting expressions
map f (iterate f (f x)) anditerate f (f (f x)) are related bR and so also bRU ~.

This completes the proof th&U ~ is a bisimulation, from which we conclude
by coinduction thaRU ~ is included in~, and hence thaR itself is included in
~, and so the two expressions are bisimilar.

Coinduction is certainly an elegant and powerful proof method. However,
denotational semantics is still the dominant basis for proofs about functional pro-
grams, and it seems unfortunate to have to change the basis to operational seman-
tics in order to perform proofs using coinduction.

6 UNFOLD AND UNIVERSALITY

The three proof methods for corecursive programs that we have considered so
far — fixpoint induction, the approximation lemma, and coinduction — are all
rather low-level. In particular, they do not exploit the common structure that is
often present in corecursive definitions. In this section, we show that by writing
corecursive programs using a simple operator callefld that encapsulates a
common pattern of corecursive definition, we can then use the highdeixedrsal
andfusion properties [18, 10, 13] of this operator to conduct proofs in a purely
calculational style that avoids the use of inductive or coinductive methods.
Theunfoldoperator for lists may be defined as follows:

unfold it (a—=Bool)— (a—=B)— (a—=a)—a—[f
unfold phtx = if pxthen][]elseh x: unfold p ht(t x)

Theunfoldoperator encapsulates a general pattern for producing a list from a seed
valuex, by means of three argument functign$ andt. If the predicate is true
for the seed, then the empty list is produced. Otherwise, the head of the list is
produced by applying the functidnto the seed, and the tail is produced by first
applying the functiort to x to generate a new seed, which is then itself unfolded
using the same process to produce the tail of the list.

Many corecursive programs have a simple definition usimigld. For exam-
ple, the corecursive programs from Section 2 can naturally be defined by:

iterate f = unfold(const Fals¢id f

map f = unfold null(f - head tail

copyx = unfold(== 0) (constx (&1)
digits = unfold (== 0) (mod 10) (div 10)
tails = unfold nullid tail

sort = unfold null minimum delmin

Here,const cis the constant function that always retums
The basic method for proving properties of programs defined usifigjd is
the universal property [18], which can be stated as the following equivalence:

f =unfoldpht < Vx.fx=if pxthen[]elsehx: f (tx)

This equivalence states thatfold p h tis not just a solution to its defining equa-
tion, but is in fact theuniquesolution. The left-to-right direction is trivially true,
because substituting= unfold p h tinto the right-hand side gives the defini-
tion for unfold. To prove the other direction, we first use extensionality and the
approximation lemma to rewrite= unfold p h tin the equivalent form:

Vx,n. approx n(f x) = approx n(unfold p ht 3

This property can now be verified by induction on the natural numpesing the
right-hand side of the universal property wifold as an assumption. The base
casen = 0 is trivially true becausapprox0 xs= 1 for all xs For the inductive
casen = m+ 1, we calculate as follows:

approx(m+1) (f x)
= { assumptior}

approx(m+ 1) (if p xthen[] elseh x: f (t x))
= { distribution}

if p xthen approx(m+ 1) [] elseapprox(m+1) (h x: f (t x))
= { definition ofapprox}

if p xthen approx(m+ 1) [] elseh x: approx m(f (t x))
= { induction hypothesi$

if p xthen approx(m+ 1) [] elseh x: approx m(unfold p h t(t x))
= { definition ofapprox}

if p xthen approx(m+1) []

else approx(m+ 1) (h x: unfold p h t(t x))

= { distribution}

approx(m+ 1) (if p xthen[] elseh x: unfold p h t(t x))
= { definition ofunfold }

approx(m+1) (unfold phtx

The universal property makes explicit the precise condition required to prove
thatf = unfold p h t For specific cases, verifying this condition typically does not
require inductive or coinductive methods. In this manner, the universal property
of unfoldencapsulates a general pattern of proof for corecursive programs, just as
unfolditself encapsulates a general pattern of definition for such programs.

As a first example, let us see how the equatiepeat= iterate id from Sec-
tion 2 can be proved by simple calculation using the universal property:

repeat= iterate id
& { definition ofiterate }

repeat= unfold (const Falsgid f
{ universal property

Vx. repeat x= if const False xhen [] elseid x : repeat(id X)
{ simplification}

VX. repeat x= X : repeat x
{ definition ofrepeat}

true

As a more general example, the universal property can be used to calculate the
fusion law, which gives conditions under which the composition afiafold and
a function can be fused together to give a singiéold:

unfoldpht g =unfoldg h' t
& { universal property
vx.unfoldpht(gx) =
if p’ xthen [] elseh’ x: unfold p h t(g (t' x))
& { definition ofunfold }
vx. if p (g X) then[] elseh (g X) : unfold ph t(t (g X)) =
if p’ xthen [] elseh’ x: unfold p h t(g (t' X))
<= { extensionality}
pg=p Ahg=nAtg=g-t

That is, fusion can be stated as the following inference rule:

p-g=p° h.g=h" t.g=g-t
unfoldpht- g =unfoldg h' t

Many properties of functions defined usingfold have a simple proof using
fusion. For example, it is easy to show that the composition ofirsfold and
the function used to generate the new seed can always be fused, and that the
composition of anapand anunfoldcan always be fused:

unfoldpht-t = unfold(p-t) (h-t)t (1)
mapH - unfoldpht = unfoldp(h'-h)t 2

Using fusion,map f- iterate f = iterate f - f can be proved much more simply
than using the other three methods that we have discussed:

iterate f - f
= { definition ofiterate }
unfold (const Falsgid f - f
= { fusion (1)}
unfold (const False f) (id - f) f
= { constant functions, compositign
unfold(const Falsg (f -id) f
= { fusion (2)}
map f- unfold (const Falsg¢id f
= { definition ofiterate }
map f - iterate f

As our final example, we prove that the corecursive prograiia satisfies the
propertytails- tails = map tails tails, using fusion:

tails - tails
= { definition oftails }
unfold null id tail - tails
= { fusion, lemma (see below)
unfold null tails tail
= { fusion (2)}
map tails- unfold null id tail
= { definition oftails }
map tails- tails

The lemma used in the first fusion step above is taiattails = tails - tail, which
can easily be verified by a (non-inductive) case analysis on lists.

7 SUMMARY

We have explored a humber of widely-used proof methods for corecursive pro-
grams, and argued for a more structured approach using the universal and fusion

properties of thainfold operator. In particular, we have shown that these prop-
erties allow proofs to be conducted using simple equational reasoning, without
having to refer to the underlying semantics of programs (denotational, as with fix-
point induction, or operational, as with coinduction) or use any form of induction
(as with fixpoint induction and the approximation lemma).

For simplicity we have focussed on theafold operator for lists, but our ap-
proach naturally generalises to operators that encapsulate more general patterns
of corecursive definition (for example, primitive corecursion [25]), and to any
datatype that can be defined as the greatest fixpoint of a functor [17].

ACKNOWLEDGEMENTS

The second author is supported by EPSRC g&tnictured Recursive Program-
ming, and ESPRIT Working Grouppplied Semantics

REFERENCES

[1] Peter Aczel.Non-Well-Founded SetdNumber 14 in CSLI Lecture Notes. Stanford:
CSLI Publications, 1988.

[2] Jon Barwise and Lawrence MossVicious Circles: On the Mathematics of Non-
Wellfounded Phenomen&lumber 60 in CSLI Lecture Notes. Stanford: CSLI Publi-
cations, 1996.

[3] Richard Bird. Introduction to Functional Programming using Haskell (second edi-
tion). Prentice Hall, 1998.

[4] Richard Bird and Philip WadlerAn Introduction to Functional ProgrammindPren-
tice Hall, 1988.

[5] W.H. Burge. Recursive Programming Techniquesddison-Wesley, 1975.

[6] B.A. Davey and H.A. Priestley.Introduction to Lattices and Order Cambridge
University Press, 1990.

[7] Jaco de BakkerMathematical Theory of Program Correctne$¥entice-Hall, 1980.

[8] Peter Freyd. Algebraically complete categories. In A. Carboni et al, edftor.
1990 Como Category Theory Conferengelume 1488 ofLecture Notes in Math
pages 95-104. Springer-Verlag, Berlin, 1990.

[9] Jeremy Gibbons and Graham Hutton. The generic approximation lemma. In prepa-
ration, 1999.

[10] Jeremy Gibbons and Geraint Jones. The under-appreciated unfoRtodeedings
of the Third ACM SIGPLAN International Conference on Functional Programming
pages 273-279, Baltimore, Maryland, September 1998.

[11] Andrew Gordon. Bisimilarity as a theory of functional programming. BRICS Notes
Series NS-95-3, Aarhus University, 1995.

[12] Graham Hutton. A tutorial on the universality and expressiveness of fold. To appear
in the Journal of Functional Programming.

[13] Graham Hutton. Fold and unfold for program semantic®rrc. 3rd ACM SIGPLAN
International Conference on Functional Programmjfaltimore, Maryland, 1998.

[14] Bart Jacobs, Larry Moss, Horst Reichel, and Jan Rutten, ediinsc. of the First
Workshop on Coalgebraic Methods in Computer Scietitisevier Science B.V.,
1998. Electronic Notes in Theoretical Computer Science Volume 11.

[15] Bart Jacobs and Jan Rutten, editoPsoc. of the Second Workshop on Coalgebraic
Methods in Computer Sciendelsevier Science B.V., 1999. Electronic Notes in The-
oretical Computer Science Volume 19.

[16] Simon Peyton Jones et al. Haskell 98: A non-strict, purely functional language.
Available on the World-Wide-Web frorhttp://www.haskell.org , February
1999.

[17] Grant Malcolm. Algebraic Data Types and Program TransformatioRhD thesis,
Groningen University, 1990.

[18] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In John Hughes, RditorConfer-
ence on Functional Programming and Computer Architectontember 523 in LNCS.
Springer-Verlag, 1991.

[19] Robin Milner. Communication and Concurrenci?rentice Hall, 1989.

[20] Lawrence Moss and Norman Danner. On the foundations of corecurdiogic
Journal of the IGPL.5(2):231-257, 1997.

[21] Gordon Plotkin. A structured approach to operational semantics. Report DAIMI-FN-
19, Computer Science Department, Aarhus University, Denmark, 1981.

[22] John C. Reynolds.Theories of Programming LanguageCambridge University
Press, 1998.

[23] David A. Schmidt.Denotational Semantics: A Methodology for Language Develop-
ment Allyn and Bacon, Inc., 1986.

[24] David A. Turner. Elementary strong functional programmingPfoc. First Interna-
tion Symposium on Functional Programming Languages in EducatiNeS 1022,
pages 1-13. Springer-Verlag, 1995.

[25] Varmo Vene and Tarmo Uustalu. Functional programming with apomorphisms (core-
cursion). In9th Nordic Workshop on Programming Thep@ct 1997.

