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Abstract This paper continues the study of spectral synthesis and the topologies τ∞
and τr on the ideal space of a Banach algebra, concentrating particularly on the class of
Haagerup tensor products of C∗-algebras. For this class, it is shown that spectral synthesis
is equivalent to the Hausdorffness of τ∞. Under a weak extra condition, spectral synthesis
is shown to be equivalent to the Hausdorffness of τr.
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Introduction

The notion of spectral synthesis is well-established for commutative Banach algebras and
for L1-group algebras. In [23] the second author introduced a definition of spectral synthesis
for a general unital Banach algebra. The motivation behind this was the discovery that
a unital commutative Banach algebra A has spectral synthesis if and only if the topology
τ∞, introduced by Beckhoff [3] on the set of closed ideals of A, is Hausdorff [23; 2.6]. The
definition of spectral synthesis introduced in [23] was modelled on the properties of C∗-
algebras, because τ∞ was also known to be Hausdorff for this class [3]. The hope was that
spectral synthesis might be equivalent to the Hausdorffness of τ∞ for non-commutative
Banach algebras. It was shown in [23] that this was so for separable, unital PI-Banach
algebras, and that in general the Hausdorffness of τ∞ implies a weak form of spectral
synthesis. Conversely a strong form of spectral synthesis implies that the topology τ∞ is
T1.

Because τ∞ is seldom Hausdorff, the second author introduced another topology τr
on the set Id(A) of closed two-sided ideals of a Banach algebra A [24]. This topology is
always compact, like τ∞, and it is Hausdorff whenever τ∞ is Hausdorff [24; 3.1.1], and
often even when τ∞ is not. This is the case, for instance, with TAF-algebras [24], and
with the algebra C1[0, 1] [10]. On the other hand it was shown in [10] that for uniform
algebras, τr is Hausdorff if and only if τ∞ is Hausdorff. In [24] it was shown that if there
is a compact Hausdorff topology on a subspace of Id(A), which is related to the quotient
norms in a useful way, then that topology necessarily coincides with the restriction of τr.
Thus for uniform algebras without spectral synthesis, such as the disc algebra, there is no
useful compact Hausdorff topology on the space of closed ideals.

This paper continues the study of the relationship between spectral synthesis and the
Hausdorffness of τ∞ and τr. A slightly modified definition of spectral synthesis is intro-
duced, for various reasons, and several of the results of [23] are extended to the non-unital
situation. In particular it is shown that the problem of proving that the Hausdorffness of
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τ∞ implies spectral synthesis is harder than one might imagine—one would first have to
prove that there are no non-trivial algebraically simple Banach algebras.

In the second part of the paper, we turn our attention to the class of Banach algebras
obtained by taking the Haagerup tensor product of two C∗-algebras. There are various
reasons for looking at this class. One is that spectral synthesis has already been studied
for these algebras, and it is easy to find examples where synthesis holds, and others where
it fails. A second reason is that the presence of the C∗-algebras makes the class reasonably
tractable, and a considerable amount is already known about the ideal structure [1], [2].
A third reason is that the Banach algebras in this class are in general neither Banach
∗-algebras, nor operator algebras, so it might be hoped that the class is reasonably typical
of semi-simple Banach algebras as a whole. We are able to show that spectral synthesis is
equivalent to the Hausdorffness of τ∞ for this class.

In the final part of the paper we work with the same class of Banach algebras, this
time considering the topology τr. We show that if the C∗-algebras are unital and have
the property that every closed prime ideal is maximal then their Haagerup tensor product
has spectral synthesis if and only if the topology τr is Hausdorff. One novel feature of our
approach is the use of the theory of continuous lattices.

We now give the definitions of the various topologies on Id(A), starting with the lower
topology τw. Let A be a Banach algebra. A subbase for τw on Id(A) is given by the sets
{I ∈ Id(A) : I 6⊇ J} as J varies through the elements of Id(A). Thus the restriction of
τw to the set of closed prime ideals is simply the hull-kernel topology. Next we define τ∞.
For each k ∈ N, let Sk = Sk(A) denote the set of seminorms (‘seminorm’ means ‘algebra
seminorm’ in this paper) ρ on A satisfying ρ(a) ≤ k‖a‖ for all a ∈ A. Then Sk is a compact,
Hausdorff space [3]. We say that ρ ≥ σ, for ρ, σ ∈ Sk, if ρ(a) ≤ σ(a) for all a ∈ A. The
point of this upside-down definition is that if ρ ≥ σ then ker ρ ⊇ kerσ. Clearly if ρ, σ ∈ Sk
the seminorm ρ∧ σ defined by (ρ∧ σ)(a) = max {ρ(a), σ(a)} is the greatest seminorm less
than both ρ and σ in the order structure. Thus Sk is a lattice. The topology τ∞ is defined
on Id(A) as follows [3]: for each k let κk : Sk → Id(A) be the map κk(ρ) = ker ρ, and let
τk be the quotient topology of κk on Id(A). Then τ∞ =

⋂
k τk. Clearly each τk is compact,

so τ∞ is compact. It is a useful fact that for I ∈ Id(A), Id(A/I) is τ∞– τ∞ homeomorphic
to the subset {J ∈ Id(A) : J ⊇ I} of Id(A) [3; Prop. 5].

Next we define the topology τr, which is the join of two weaker topologies. The first
is easily defined: τu is the weakest topology on Id(A) for which all the norm functions
I 7→ ‖a+ I‖ (a ∈ A, I ∈ Id(A)) are upper semi-continuous. The other topology τn can be
described in various different ways, but none is particularly easy to work with. A net (Iα)
in Id(A) is said to have the normality property with respect to I ∈ Id(A) if a /∈ I implies
that lim inf ‖a + Iα‖ > 0. Let τn be the topology whose closed sets N have the property
that if (Iα) is a net in N with the normality property relative to I ∈ Id(A) then I ∈ N . It
follows that if (Iα) is a net in Id(A) having the normality property relative to I ∈ Id(A)
then Iα → I (τn). Any topology for which convergent nets have the normality property
with respect to each of their limits (such a topology is said to have the normality property)
is necessarily stronger than τn, but τn itself need not have the normality property. Indeed
the following is true. Let τr be the topology on Id(A) generated by τu and τn. Then τr is
always compact [24; 2.3], and τr is Hausdorff if and only if τn has the normality property
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[24; 2.12]. The topology τn is always stronger than τw, and so τw and τn coincide on a
given subset of Id(A) if τw has the normality property on this subset.

Finally, we introduce an auxiliary topology, τa. This is the topology generated by τu
and τ1. Clearly we have τu ⊆ τa and τ∞ ⊆ τa. By [24; 2.6], τn ⊆ τ∞ and so we also have
τr ⊆ τa. We shall need this topology in the proof of Theorem 1.6.

The following simple lemma is taken from [10; 0.1].

Lemma 0.1 Let A be a Banach algebra. Let (Iα) be a net in Id(A), either decreasing or
increasing, and correspondingly either set I =

⋂
Iα or I =

⋃
Iα. Then Iα → I (τr).

1. The foundations revisited

In this section we re-examine the foundations for the work on spectral synthesis. We
introduce a slightly more general definition of spectral synthesis and consider some of its
elementary consequences. This change of definition obliges us to survey the results of [23]
to see how they are affected. Since we wish subsequently to work with group algebras,
we also take the opportunity to liberate the theory from the requirement that the Banach
algebra should be unital. This is sometimes more tricky than one anticipates. We consider
some of the relations between spectral synthesis, weak spectral synthesis, τ∞, and τr
for commutative Banach algebras, PI-Banach algebras, and algebraically simple Banach
algebras, and we also look at the stability properties of spectral synthesis on passage to
ideals, quotients, and extensions.

Old definition of spectral synthesis In [23], a unital Banach algebraA was said to have
spectral synthesis if it has the following four properties: (i) Prim(A) is locally compact
(i.e. every point has a neighbourhood base of compact sets), (ii) every closed subset of
Prim(A) is a Baire space (i.e. the intersection of countably many dense open sets is dense),
(iii) τw has the normality property on Prim(A), (iv) Id(A) is isomorphic to the lattice of
open subsets of Prim(A), under the correspondence I ↔ {P ∈ Prim(A) : P 6⊇ I}.

Here Prim(A) is the space of primitive ideals of A (i.e. kernels of algebraically irre-
ducible representations with the hull-kernel topology). If the word Prim(A) is replaced
throughout by Prime(A) (the set of proper closed prime ideals of A with the hull-kernel
topology) then A is said to have weak spectral synthesis, and if the word Prim(A) is
replaced throughout by Max(A) (the set of closed, maximal modular ideals of A with the
hull-kernel topology) then A is said to have strong spectral synthesis.

Unfortunately, this old definition of spectral synthesis is slightly too restrictive for the
algebras that we wish to consider. In these algebras, and also in Banach ∗-algebras, it is
natural to consider an ideal as ‘primitive’ if it is the kernel of a topologically irreducible
∗-representation on a Hilbert space, and it is not evident that such an ideal is primitive in
the usual algebraic sense. We shall therefore need to relax the requirements for spectral
synthesis. Note, however, that we do not change the definitions for weak and strong
spectral synthesis, except for dropping the requirement of an identity element.

3



There is also a second reason for wanting to modify the definition of spectral synthesis.
Recall that a non-empty closed subset of a topological space is irreducible if it is not the
union of two proper closed subsets. The closure of a point is a typical example of an
irreducible closed set, and a topological space is said to be sober if every irreducible closed
set is the closure of a point. For instance, every Hausdorff space is sober. An infinite set
with the cofinite topology is not sober, because it is an irreducible closed subset of itself,
but is not the closure of any of its points.

Sobriety of a space is closely connected with the Baire property. For example, a locally
compact, sober space is a Baire space [12; p.84]. Indeed if X is a second countable T0-space
such that the sobrification Xs (see below) is locally compact, then X is sober if and only
if every closed subspace of X is a Baire space [12; V.5.27(ii)]. This, of course, is axiom (ii)
above, which was required for some of the arguments in [23]. Thus axiom (ii) would be
redundant if Prim(A) were always sober. What we do, therefore, to obtain slightly more
generality, is to replace Prim(A) by its sobrification, as follows.

Every T0-space X has a unique sobrificationXs, which may be defined in the following
way. Let Xs be the topological space whose points are the irreducible closed sets of X, and
whose non-empty open sets have the form {A ∈ Xs : A ∩ U 6= ∅}, where U varies through
the non-empty open subsets of X. Then Xs is a sober space. The map i : X → Xs,
i(x) = {x}−, embeds X in Xs. Evidently X and Xs have isomorphic lattices of open sets,
and i(X) = Xs if and only if X is sober.

For an algebra R over C, let Idl(R) denote the set of all two-sided ideals of R. An ideal
I ∈ Idl(R) is said to be semisimple if it is an intersection of primitive ideals, and to be
strongly semisimple if it is an intersection of maximal modular ideals. If R is a Banach
algebra then semisimple and strongly semisimple ideals are, of course, automatically closed.

Lemma 1.1 Let R be an algebra over C. The sobrification Prims(R) of Prim(R) is
(homeomorphic to) the set of semisimple, prime ideals of R, with the hull-kernel topology.
The sobrificationMaxs(R) of Max(R) is (homeomorphic to) the set of strongly semisimple,
prime ideals of R, with the hull-kernel topology.

Proof. A simple argument shows that for a semisimple ideal P , the hull-kernel closed set
X = {Q ∈ Prim(R) : Q ⊇ P} is irreducible if and only if P is prime. Thus there is a
one-to-one correspondence between Prims(R) and the set of semisimple prime ideals, and
it is straightforward to confirm that the map is a homeomorphism.

An analogous argument deals with Max(R). Q.E.D.

For example, if A is the disc algebra then Prim(A) = Max(A) is an irreducible closed
subset of itself in the hull-kernel topology, but is not the closure of any of its points. In fact
Prims(A) = Max(A) ∪ {{0} }. On the other hand, since every Hausdorff space is sober,
Prims(A) = Max(A) when A is a completely regular, commutative Banach algebra. If A
is a C∗-algebra then every closed ideal of A is semisimple, so Prims(A) = Prime(A). The
famous open problem of whether every closed, prime ideal of a (non-separable) C∗-algebra
A is primitive is thus precisely the question whether Prim(A) is a sober space for an
arbitrary C∗-algebra.
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We are now ready to introduce the new definition of spectral synthesis.

Definition 1.2 A Banach algebra A, unital or otherwise, has spectral synthesis if it has
the following properties:

(i)′, Prims(A) (the space of semisimple, prime ideals with the hull-kernel topology)
is locally compact,

(ii)′ τw has the normality property on Prim(A),
(iii)′ Id(A) is isomorphic to the lattice of open subsets of Prim(A), under the corre-

spondence I ↔ {P ∈ Prim(A) : P 6⊇ I}. Equivalently, every proper, closed ideal of A is
semisimple.

A few remarks on this new definition are in order.

Remarks (a) It can be shown [12; V.5.10] that if X is a T0-space and Y is locally compact
with X ⊆ Y ⊆ Xs then Xs is locally compact. Thus if Prim(A) is locally compact, then
(since Prim(A) is a T0-space) Prims(A) is also locally compact. Every Banach algebra,
therefore, which had spectral synthesis under the old definition still has it under the new
definition. As a matter of fact, the authors do not know of a unital Banach algebra which
has spectral synthesis under the new definition but not under the old.

(b) Prims(A) is always sober, so if it is also locally compact then every closed subspace
of Prims(A) is a Baire space [12; V.5.27(ii)]. Thus we do not need any axiom corresponding
to (ii) in the old definition of spectral synthesis.

(c) Axiom (ii)′ is, of course, axiom (iii) from the old definition of spectral synthesis.
It is easy to show that τw has the normality property on Prim(A) if and only if it has the
normality property on Prims(A).

(d) It was shown in [23; 1.1] that if A has weak spectral synthesis then τw has the
normality property on Id(A). The proof works perfectly well in the non-unital case too.
Hence it follows from Proposition 1.10 (below) that if A has spectral synthesis (or strong
spectral synthesis) then τw has the normality property on Id(A). This implies that τw and
τn coincide on Id(A) [24; p.373 and p.375].

(e) Axiom (iii)′ is, of course, axiom (iv) from the old definition of spectral synthesis.
Recall that Prim(A) and Prims(A) have isomorphic lattices of open sets.

The next thing to do is to check that the new definition coincides with the standard one for
commutative Banach algebras. Recall that a (possibly non-unital) commutative Banach
algebra A has spectral synthesis (usual definition) if the map I 7→ {P ∈ Prim(A) : P ⊇ I}
sets up a 1–1 correspondence between closed ideals of A and Gelfand closed subsets of
Prim(A). This is equivalent to requiring that the hull-kernel and Gelfand topologies
coincide on Prim(A), and that every closed ideal of A is semisimple.

Let A be a commutative Banach algebra. Then every primitive ideal of A is maximal
and modular, indeed the kernel of a character [18; 4.2.19], but if A is non-unital then A
might have maximal proper ideals which are not primitive. Here is an instructive example
from [4; Example 2].

Example 1.3 Let A = C[0, 1] be the commutative C∗-algebra of continuous functions
on the interval [0, 1] with the supremum norm. Let z ∈ A be the identity map given by
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z(t) = t (t ∈ [0, 1]). Define a new multiplication � on A by f � g = fzg, and let B be the
resulting Banach algebra. Then Id(B) = Id(A), and the character space of B is the set
{t ωt : t ∈ (0, 1]} where ωt is the point evaluation at t. The ideal kerω0 is a maximal ideal
of B, but not a primitive ideal, and B/ kerω0 is isomorphic to the complex numbers with
the zero multiplication.

The next lemma (for which we have not been able to find a reference) shows that this
example is typical.

Lemma 1.4 Let A be a commutative Banach algebra and let M be a maximal proper
ideal of A. Then A/M is isomorphic to C, either with the usual multiplication or with the
zero multiplication.

Proof. Set B = A/M . Let b ∈ B \ {0}. Then Bb is an ideal of B, so either Bb = {0} or
Bb = B. In the first case, {λb : λ ∈ C} is a non-zero ideal of B, so {λb : λ ∈ C} = B.
Hence B is one-dimensional with zero multiplication. In the second case, there exists u ∈ B
such that ub = b. Since Bb = B, for any c ∈ B there exists d ∈ B such that db = c, and
then uc = udb = db = c. Thus u is the identity for B. Hence M is a maximal modular
ideal of A, so M is closed and B = {λu : λ ∈ C}, see [8; §16 Theorem 5]. Q.E.D.

If M above is not modular then M need not be closed. For example, let A be an infinite-
dimensional Banach space with the zero multiplication, and let M be a dense hyperplane.
Then A is a commutative Banach algebra, and M is a maximal ideal of A which is not
closed.

If A is a commutative Banach algebra and M is a maximal modular ideal of A then,
for a ∈ A, we shall identify the coset a+M with the value that the character corresponding
to M takes at a. One inconvenience with non-unital commutative Banach algebras is that
the process of evaluating at a character and taking the modulus sometimes gives a number
strictly less than the quotient norm for the corresponding maximal modular ideal. This
happens in Example 1.3, for instance. To get round this problem, we use the following
lemma.

Lemma 1.5 Let A be a commutative Banach algebra. Suppose that (Mα) is a net in
Prim(A) and that a ∈ A with limα a+Mα = 0. Then limα ‖a2 +Mα‖ = 0.

Proof. For any character φ on A, a2 − φ(a)a ∈ kerφ. Hence

‖a2 + kerφ‖ ≤ ‖a2 − (a2 − φ(a)a)‖ = ‖φ(a)a‖ = |φ(a)| ‖a‖.

Thus lim supα ‖a2 +Mα‖ ≤ lim supα |a+Mα| ‖a‖ = 0. Q.E.D.

For a Banach algebra A, let M′ be the space of maximal modular ideals of codimension
one. The next result was proved in [3; Proposition 11] under the additional requirement
that A has a bounded approximate identity (see also Maths Reviews 97f:46073, where it
is observed that one only need assume that A2 = A). Part of [3; Proposition 11] was that
the set M′ ∪ {A} is τ∞-closed if A has a bounded approximate identity. In Example 1.3,
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however, kerω0 is in the τ∞-closure of M′, so that particular part of [3; Proposition 11]
cannot be extended to the general case.

Theorem 1.6 Let A be a Banach algebra. Then the restrictions of the topologies τn, τr,
and τ∞ all coincide on the Gelfand space M′ of A with the Gelfand topology.

Proof. The set M′ is τw-closed in Prim(A) by a result of Kaplansky’s, see [24; 5.1]. Set
K =

⋂{M : M ∈ M′}. Then A/K is commutative, and M′ is homeomorphic, in all four
topologies under consideration, to the Gelfand space of A/K [3; Proposition 5], [24; 2.9].
Thus we may assume at the outset that A is commutative. Under this assumption we
haveM′ = Prim(A), so to complete the proof we need to show that the topologies under
consideration agree on Prim(A).

Let X1 be the set of closed ideals of A of codimension not greater than one. Then X1

is a τn-closed subset of Id(A) [24; 5.1]. By [24; 4.3(ii)] the topologies τn and τa coincide
on the set of minimal elements of X1, which is X1 \ {A} (recall that τa is the topology
generated by τu and τ1). However we know that τn ⊆ τ∞ ⊆ τa and also τn ⊆ τr ⊆ τa. It
follows that all four of these topologies coincide on X1 \ {A}, and hence that τn, τr and
τ∞ coincide on the subset Prim(A) ⊆ X1 \ {A}.

Suppose that (Pα) is a net in Prim(A) converging to P ∈ Prim(A) in the Gelfand
topology. For each α let cα be the seminorm in S1(A) given by cα(a) = |a + Pα| (a ∈
A). Then cα → c where c ∈ S1(A) is the seminorm c(a) = |a + P | (a ∈ A). Hence
Pα = ker cα → ker c = P in the τ∞ topology. Thus the Gelfand topology on Prim(A) is
stronger than the relative τ∞ topology.

Conversely, let Y be a Gelfand-open subset of Prim(A) with compact closure (in the
Gelfand topology). We shall show that Z = X1 \ Y is τn-closed in Id(A). This will show
that Y , and hence every Gelfand-open subset of Prim(A), is τn-open in Prim(A). It
follows that the various topologies coincide on Prim(A).

Let (Iα) be a net in Z and let I ∈ Id(A) \ Z. We have to show, by [24; 2.5], that
there exists a ∈ A \ I such that lim inf ‖a + Iα‖ = 0. If I /∈ X1 then this follows at once
from [24; 2.5] and the fact that X1 itself is τn-closed in Id(A). So suppose that I ∈ Y . If
(Iα) is eventually in X1 \ Prim(A) then choose any a ∈ A \ I. Then a2 /∈ I, but a2 ∈ Iα
eventually by Lemma 1.4. Hence limα ‖a2 + Iα‖ = 0. The other possibility is that (Iα)
is frequently in Prim(A). The local compactness of the Gelfand topology on Prim(A)
implies that (Iα) has a subnet (Iβ) in Prim(A) such that either (Iβ) goes to infinity (i.e.
is eventually outside every Gelfand compact subset of Prim(A)) or for which there exists
J ∈ Prim(A) with Iβ → J in the Gelfand topology. In the first case choose any a /∈ I;
in the second case choose a ∈ J \ I. Then in either case a /∈ I but a + Iβ → 0. Hence
limβ ‖a2 + Iβ‖ = 0 by Lemma 1.5, but a2 /∈ I, since I ∈ Prim(A). Q.E.D.

Corollary 1.7 Let A be a commutative Banach algebra. Then A has spectral synthesis
(in the sense of this paper) if and only if A has spectral synthesis in the usual sense.

Proof. Suppose that A has spectral synthesis in the sense of this paper. Then, since
τw has the normality property on Prim(A), τw and τn coincide on Prim(A). Thus the
hull-kernel topology (τw) and the Gelfand topology coincide on Prim(A) by Theorem
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1.6. Condition (iii)′, on the other hand, implies that every closed ideal of A is semisimple.
Hence A has spectral synthesis in the usual sense.

Conversely, suppose that A has spectral synthesis in the usual sense. Then cer-
tainly condition (iii)′ holds. Furthermore, since Prim(A) is τw-Hausdorff it is sober, so
Prim(A) = Prims(A). Thus condition (i)′ holds. Finally condition (ii)′ follows from the
fact that for any a ∈ A and P ∈ Prim(A), ‖a+P‖ ≥ |a+P |, and the function P 7→ |a+P |
is τw-continuous on Prim(A) since A is completely regular. Thus A has spectral synthesis
in the sense of this paper. Q.E.D.

The next result was established for unital, commutative Banach algebras in [23; 2.6].
We follow exactly the same method of proof, but making use of Theorem 1.6. Recall
the theorem of Rickart’s [20] that if A is a completely regular, semisimple, commutative
Banach algebra then every norm ‖ . ‖′ on A is spectral, that is, for all a ∈ A, ‖a‖′ ≥
sup{|a+M | : M ∈Max(A)}. This implies that {0} is τ∞-closed in Id(A). Recall also the
theorem of Bohnenblust and Karlin [7], see [25; 12.7], that if A is a commutative Banach
algebra and a ∈ A then the spectral radius of a is the infimum of ‖a‖′ over all possible
norms ‖ . ‖′ equivalent to the original norm, and bounded by it. Thus if a is a non-zero
quasinilpotent element, there is a sequence (‖ . ‖n) of norms in S1(A) such that ‖a‖n → 0.
Considering a cluster point of such a sequence we see that {0} is not τ∞-closed in Id(A).
It follows that a necessary condition for {0} to be τ∞-closed in Id(A) is that A should be
semisimple.

Theorem 1.8 Let A be a commutative Banach algebra. Then A has spectral synthesis if
and only if the topology τ∞ is Hausdorff on Id(A).

Proof. Suppose that τ∞ is Hausdorff on Id(A). Then τ∞ is Hausdorff on Id(A/I) for
all I ∈ Id(A) [3; Prop. 5], so A/I must be semisimple, for all I ∈ Id(A) by the theorem
of Bohnenblust and Karlin just mentioned. Thus condition (iii)′ holds. Furthermore [23;
Theorem 2.5] shows that τw has the normality property on Id(A), hence on Prim(A), so
condition (ii)′ holds. It also follows that τw and τn are equal, so Theorem 1.6 shows that
the Gelfand and hull-kernel topologies coincide on Prim(A). Hence condition (i)′ holds,
and A has spectral synthesis.

The proof of the converse is identical to the corresponding part of the proof of [23;
2.6]; there are no difficulties in passing to the non-unital case. Q.E.D.

In general a commutative Banach algebra can have τr Hausdorff and yet fail to have
spectral synthesis. Various examples are given in [24; Section 3]. For the class of uniform
algebras, however, it was shown in [10; 1.2] that τr cannot be Hausdorff unless spectral
synthesis holds. Our next theorem is a more general version of that result, valid also for
non-unital Banach algebras.

Definition Let A be a Banach function algebra, and let Γ(A) denote the Shilov boundary
of A. Recall that a Gelfand compact subset X of Max(A) is a Helson set if A|X = C(X)
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(where C(X) is the algebra of continuous complex functions on X). Letting I be the closed
ideal consisting of elements of A which vanish on X, the least constant K such that

K sup{|f(x)| : x ∈ X} ≥ ‖f + I‖ for all f ∈ A
is called the Helson constant of X. We say that a Banach function algebraA has the Helson
property (with constant k) if there is a constant k such that whenever U is a non-empty
Gelfand open subset of Γ(A) there is an increasing net (Fα)α of Helson sets of constant
bounded by k contained in U such that

⋃
α Fα is Gelfand dense in U .

For example, if A is a uniform algebra then the collection of finite p-sets in the open
set U is an increasing net of Helson sets, with Helson constant 1, whose union is dense in
U , see [10]. Thus uniform algebras have the Helson property with constant 1. We shall
see after Proposition 3.5 that if A and B are commutative C∗-algebras then the Haagerup
tensor product A ⊗h B (when viewed as a function algebra on its maximal ideal space)
also has the Helson property with constant 1.

For a Banach function algebra A, and a Gelfand closed subset F of Max(A), let
I(F ) be the ideal of elements of A which vanish on F , and let J(F ) be the ideal of
elements of compact support vanishing in a Gelfand neighbourhood of F in Max(A). If
F ⊆ Γ(A), let L(F ) be the ideal obtained as the closure of the set of elements of A having
compact support on Γ(A) and vanishing in a Gelfand neighbourhood of F in Γ(A). If
Max(A) = Γ(A) then of course L(F ) is simply the closure of J(F ), but this need not be
true when Max(A) 6= Γ(A).

Now recall that one characterization of spectral synthesis for a Banach function algebra
A is that A has spectral synthesis if J(F ) is dense in I(F ) for each Gelfand closed subset
F of Max(A). A related, weaker notion is that A is strongly regular if J({x}) is dense in
I({x}) for each x ∈ Max(A). If I({x}) = L({x}) for each x ∈ Γ(A) then A is strongly
regular on Γ(A); in fact, this implies that Γ(A) = Max(A), see [11; Theorem 2] (the simple
argument there is for unital Banach function algebras, but it is easily modified to cope
with the non-unital case).

Theorem 1.9 Let A be a Banach function algebra with the Helson property (with constant
k). Then A has spectral synthesis if and only if τr is Hausdorff on Id(A).

Proof. If A has spectral synthesis then τr is Hausdorff by Theorem 1.8 and [24; 3.1.1].
If A does not have spectral synthesis, there are two possibilities. Either Max(A) = Γ(A),
in which case J(F ) is dense in L(F ) for every closed subset F of Max(A), so by assump-
tion there is a Gelfand closed subset X of Max(A) such that I(X) 6= L(X). Otherwise
Max(A) 6= Γ(A), so A is not strongly regular on Γ(A), as we remarked just above. Thus
there exists x ∈ Γ(A) such that I({x}) 6= L({x}). Hence in either case there is a Gelfand
closed subset X of Γ(A) such that I(X) 6= L(X).

Let (Vα)α be a net of decreasing, open neighbourhoods of X in Γ(A), each having
compact complement in Γ(A), such that

⋂
αNα = X (where for each α, Nα is the closure

of Vα in the Gelfand topology). Then (I(Nα))α is an increasing net in Id(A), and I(Nα) ⊆
L(X), for each α, so

I :=
⋃

α

I(Nα) ⊆ L(X).
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For each α, let (Fβ(α))β(α) be an increasing net of Helson sets in Vα of constant bounded
by k and whose union is dense in Vα. Then (I(Fβ(α)))β(α) is a decreasing net in Id(A),
and the density condition implies that

⋂
β(α) I(Fβ(α)) = I(Nα). Hence I(Fβ(α))

β(α)−→I(Nα)

(τr) by Lemma 0.1. But I(Nα) → I (τr), also by Lemma 0.1, so if (I(Fγ))γ denotes the
‘diagonal’ net, see [16; §2, Theorem 4], then I(Fγ)→ I ⊆ L(X) (τr).

Suppose that f /∈ I(X). Then there is a Gelfand open subset U of Γ(A) meeting X,
and an ε > 0 such that |f(x)| > ε for all x ∈ U . By the density condition there is, for
each α, a β0(α) such that Fβ0(α)∩U is non-empty, and hence such that ‖f + I(Fβ(α))‖ > ε
for all β(α) ≥ β0(α). Hence the ‘diagonal’ net I(Fγ) → I(X) (τn). On the other hand, if
f ∈ I(X) and ε > 0 is given then a simple topological argument shows that there exists
α0 such that for α ≥ α0, Nα ⊆ {x ∈ Γ(A) : |f(x)| < ε}. Thus for α ≥ α0,

‖f + I(Fβ(α))‖ < kε

for all β(α), by the Helson property (with constant k). Hence I(Fγ) → I(X) (τu), using
[24; 2.1], and so

I(Fγ)→ I(X) (τr).

Since I ⊆ L(X), and L(X) is a strict subset of I(X), we have I 6= I(X), so τr is not
Hausdorff. Q.E.D.

Recall that for a Banach algebra, τr is Hausdorff if and only if τn has the normality property
[24; 2.12]. Thus Theorem 1.9 can be rephrased as saying that for semisimple commutative
Banach algebras with the Helson property, spectral synthesis holds if and only if τn has the
normality property. In this form, Theorem 1.9 is evidently closely related to Beckhoff’s
result [4; Proposition 3, Theorem 6] that for semisimple commutative Banach algebras
with the ‘distance property’, spectral synthesis holds if and only if τw has the normality
property.

We now need to check that the change of definition of spectral synthesis has not spoiled
the results of the previous paper [23]. Recall the definitions of weak and strong spectral
synthesis from [23], given at the beginning of this section. We extend these to the non-
unital case simply by dropping the requirement for A to be unital. Note that the Baire
property, axiom (ii), is superfluous for weak spectral synthesis, since Prime(A) is always
sober, and hence automatically a Baire space when it is locally compact.

First we observe that the change in definition of spectral synthesis allows us to remove
the separability restriction from [23; 1.2].

Proposition 1.10 Let A be a Banach algebra. If A has strong spectral synthesis then A
has spectral synthesis. If A has spectral synthesis then A has weak spectral synthesis.

Proof. Suppose that A has strong spectral synthesis. Then every proper closed ideal of
A is strongly semisimple, so Maxs(A) = Prims(A) by Lemma 1.1. Thus condition (i)′ of
Definition 1.2 holds, since Maxs(A) is locally compact by Remark (a) after Definition 1.2.
Condition (ii)′ follows by an easy modification of [23; 1.1], and condition (iii)′ is trivial.
Thus A has spectral synthesis.
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Now suppose that A has spectral synthesis. Then every closed ideal of A is semisimple,
so Prime(A) = Prims(A) by Lemma 1.1. The remarks after Definition 1.2 now establish
that A has weak spectral synthesis. Q.E.D.

Now that weak spectral synthesis has been defined for non-unital Banach algebras, we can
observe that [23; Theorem 2.9] extends to the non-unital case. The only place in the proof
where the identity was used was in the appeal to [23; Corollary 2.8], but that corollary
is valid for non-unital Banach algebras (simply adjoin an identity). Thus we have the
following.

Theorem 1.11 Let A be a Banach algebra and suppose that τ∞ is Hausdorff on Id(A).
Then A has weak spectral synthesis.

We do not know in general whether weak spectral synthesis implies spectral synthesis.
It was remarked in [23] that an infinite-dimensional, simple, radical Banach algebra (if
there is one) would have weak spectral synthesis, but not spectral synthesis. Thus even
in the commutative case it could be that weak spectral synthesis does not imply spectral
synthesis.

The next result, motivated by discussion with Peter Dixon, shows that the general
problem of showing that τ∞ being Hausdorff on Id(A) implies that A has spectral synthesis
is more difficult than might appear. One would first have to show that there are no
algebraically simple, radical Banach algebras—a famous old problem. Such an algebra
would not have spectral synthesis, but would have τ∞ Hausdorff, as we now show. The
following lemma is certainly not new.

Lemma 1.12 Let A be an algebraically simple Banach algebra of dimension greater than
one, and let x be a non-zero element of A. Set

AxA =

{
n∑

i=1

aixbi : a1, . . . , an, b1, . . . , bn ∈ A
}
.

Then AxA = A.

Proof. The set AxA is an ideal. If AxA = {0} for some non-zero x, then the ideal
I = {x ∈ A : AxA = {0}} would be non-zero. Hence I would equal A. This would imply
that A3 = {0}, and this would lead immediately to the existence of non-zero proper ideals.
Q.E.D.

Theorem 1.13 Let A be an algebraically simple Banach algebra of dimension greater
than one. Then the topology τ∞ is Hausdorff on Id(A).

Proof. The point A is always τ∞-closed in Id(A), so we need only show that {0} is τ∞-
closed. To do this we shall show that for each non-zero x ∈ A there is a constant C > 0
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such that ρ(x) ≥ C/k3 for all non-zero ρ ∈ Sk. Set I = AxA. Then I = A by Lemma
1.12, so I2 = A (since A2 6= 0). Thus there exist ai, bi, ci ∈ A (1 ≤ i ≤ n) such that

x =

n∑

i=1

aixbixci.

Let ρ ∈ Sk. Then

0 < ρ(x) ≤
n∑

i=1

ρ(ai)ρ(x)ρ(bi)ρ(x)ρ(ci) ≤ ρ(x)2
n∑

i=1

k3‖ai‖ ‖bi‖ ‖ci‖.

Thus

1 ≤ ρ(x)
n∑

i=1

k3‖ai‖ ‖bi‖ ‖ci‖

so

C =

{
n∑

i=1

‖ai‖ ‖bi‖ ‖ci‖
}−1

is the required constant. Q.E.D.

Although we do not know in general whether weak spectral synthesis implies spectral syn-
thesis, we shall show in a moment (Theorem 1.17) that this implication holds for semisimple
PI-Banach algebras, and hence in particular for semisimple commutative Banach algebras.
First we need to show that the various forms of spectral synthesis have reasonable stability
properties.

Proposition 1.14 Let A be a Banach algebra with weak spectral synthesis. If I ∈ Id(A)
and J ∈ Id(I) then J ∈ Id(A).

Proof. We show that J is a union of ideals of A.
For a ∈ A, let Ia be the smallest closed, two-sided ideal of A containing a. Evidently

Ia ⊆ I if a ∈ I. By condition (iv) of the definition of weak spectral synthesis, Ia =
⋂{P ∈

Prime(A) : a ∈ P}. It is clear that Ia ⊇ (AaA)−. On the other hand, if P ∈ Prime(A)
and a /∈ P then AaA 6⊆ P . Thus P ⊇ AaA ⇔ P ⊇ Ia, so condition (iv) implies that
(AaA)− = Ia.

Note too that (K3)− = K for all K ∈ Id(A), since a closed prime ideal contains
(K3)− if and only if it contains K. Hence

Ia = ((Ia)3)− = (Ia(AaA)−Ia)− = (Ia(AaA)Ia)−

= ((IaA)a(AIa))− ⊆ (IaaIa)− ⊆ (AaA)− = Ia.

Thus Ia = (IaaIa)−. It follows that

J ⊇
⋃

a∈J
(IaI)− ⊇

⋃

a∈J
(IaaIa)−

12



=
⋃

a∈J
Ia ⊇

⋃

a∈J
{a} = J.

Hence J =
⋃
a∈J Ia, so J ∈ Id(A). Q.E.D.

Corollary 1.15 Let A be a Banach algebra with spectral synthesis (or weak, or strong
spectral synthesis) and let J ∈ Id(A). Then J and A/J have spectral synthesis (or weak,
or strong spectral synthesis, respectively).

Proof. First we give the proof for spectral synthesis. Conditions (i)′ and (iii)′ of Definition
1.2 follow for A/J from the canonical homeomorphisms between Prim(A/J) and {P ∈
Prim(A) : P ⊇ J}, and Id(A/J) and {I ∈ Id(A) : I ⊇ J}, respectively [21; 2.6.6].
Condition (ii)′ follows from the fact that the first of these homeomorphisms preserves the
quotient norms.

The spectral synthesis for J is slightly less obvious. Condition (i)′ for J follows from
the homeomorphismP 7→ P∩J between {P ∈ Prim(A) : P 6⊇ J} and Prim(J). Condition
(ii)′ for J follows by using this homeomorphism and condition (ii)′ for A, and noting that

‖b+ P‖ ≤ ‖b+ P ∩ J‖ (b ∈ J, P ∈ Prim(A)).

Condition (iii)′ for J follows from condition (iii)′ for A together with Proposition 1.14.
The proof for weak spectral synthesis follows in the same way. For strong spectral

synthesis, the only additional feature is the need to establish condition (ii), the Baire
property for closed subsets. Each closed subset of Max(A/J) is homeomorphic to a closed
subset of Max(A), and hence has the Baire property by condition (ii) for A. Now, suppose
that M is a closed subset of Max(J), and that (Xi)i≥1 is a countable collection of dense
open subsets of M . Let N be the closure of M in Max(A) (regarding Max(J) as a subset
of Max(A) in the usual way). Then each Xi is dense in N , and open since Max(J) is open
in Max(A). But N has the Baire property by condition (ii) for A, so

⋂∞
i=1Xi is dense in

N , and thus in M . It follows that M has the Baire property. Q.E.D.

It would be interesting to know whether the extension property holds for spectral synthesis,
that is, suppose that A is a Banach algebra and that J ∈ Id(A) with J and A/J both
having spectral synthesis. Does A have spectral synthesis? We do not know the answer
even in the special cases when A is commutative, or when A is the unitization of J . The
best that we have is the following.

Proposition 1.16 Let A be a Banach algebra with J ∈ Id(A), and suppose that J and
A/J have spectral synthesis. Then every closed ideal of A is semisimple.

Proof. We introduce the following temporary notation. For a Banach algebra B, and
I ∈ Id(B), let hB(I) = {P ∈ Prim(B) : P ⊇ I}. Now let π : A → A/J denote the
quotient map. Let I, K ∈ Id(A) with hA(I) = hA(K). We shall show that I = K. First
note that the assumption on I and K implies that hA/J(π(I)) = hA/J (π(K)) and hence
that π(I) = π(K), by spectral synthesis for A/J . On the other hand, we also have that
hJ (I ∩ J) = hJ (K ∩ J), and hence that I ∩ J = K ∩ J , by spectral synthesis for J .
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Now let b ∈ I. Then there exists c ∈ K such that π(b) = π(c), and hence such that
b− c ∈ J . But this means (see the proof of Proposition 1.14) that

(b − c) ∈ (J(b− c)J)− ⊆ (JbJ − JcJ)−

⊆ (JIJ − JKJ)−

⊆ (I ∩ J −K ∩ J)− = K ∩ J.

Hence b = c− (c− b) ∈ K +K ∩ J = K. Thus I ⊆ K. Similarly, K ⊆ I. Q.E.D.

Note that the proof of Proposition 1.16 only uses the fact that every closed ideal in J and
A/J is semisimple. Proposition 1.16 raises the interesting question of whether a Banach
algebra for which every closed ideal is semisimple automatically has spectral synthesis.
We shall see that this is the case for the class of examples which we consider in the next
section. In general the answer to the question is not known even for commutative Banach
algebras.

We can now show that for semisimple PI-Banach algebras, weak spectral synthesis
is equivalent to spectral synthesis. Let us introduce some notation. If A is a Banach
algebra, and P is the kernel of an irreducible representation of A of dimension k then P
has codimension k2. Let Xk (k ≥ 1) be the set of primitive ideals of A of codimension
less than or equal to k2, and let X0 be the empty set. Kaplansky showed that Xk is a
τw-closed subset of Prim(A) [15; p.237].

Recall that an algebra is said to be a PI-algebra if there is a non-trivial polynomial
identity satisfied by the elements of A (for example, all X,Y,Z ∈M2(C), the 2×2 complex
matrices, satisfy [[X,Y ]2, Z] = 0, where [ . , . ] denotes the additive commutator). We shall
say that A is a PI-algebra of degree m if A satisfies a polynomial of degree m, but of
no smaller degree. If A is a Banach algebra satisfying a polynomial identity of degree m
then every primitive ideal of A is maximal and every irreducible representation of A has
dimension less than or equal to m/2, see [9; 10.4.6] and [18; 7.1.16]. If A is a semisimple
PI-Banach algebra of degree m then A has an irreducible representation of degree m/2.

Theorem 1.17 Let A be a PI-Banach algebra with weak spectral synthesis. If A is
semisimple then A has spectral synthesis.

Proof. It is enough to show that every proper closed prime ideal of A is primitive.
Suppose first that all the primitive ideals of A are of the same finite codimension n2.

Let R be any proper closed ideal of A of codimension not greater than n2. Then A/R
is finite-dimensional, and semiprime, so A/R is semisimple by Wedderburn’s theorem [18;
8.1.1]. Thus R ∈ Prim(A), by the assumption on dimensions. This shows that Prim(A)
coincides with the set of proper closed ideals of A of codimension not greater than n2. By
[24; 5.1], this set is τn-closed in Id′(A) (the set of all proper, closed, two-sided ideals of A).
Also, since τw has the normality property on Prime(A), τw and τn coincide on Prime(A).
Thus Prim(A) is τw-closed in Prime(A). On the other hand, Prim(A) is τw-dense in
Prime(A) because A is semisimple [24; 1.1]. Thus Prim(A) = Prime(A).
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Now suppose that A is any PI-Banach algebra of degree 2n, with weak spectral syn-
thesis. Let Ji =

⋂
Xi (0 ≤ i ≤ n) (so Jn = {0}, and J0 = A). Let P ∈ Prime(A) and

let m ∈ {0, . . . , n − 1} be the smallest number such that P 6⊇ Jm. Thus P ⊇ Jm+1. Let
π : A → A/Jm+1 be the quotient map. Set B = A/J , Q = π(P ), and I = π(Jm). Then
Q ∈ Prime(B) and Q ∈ Prim(B) if and only if P ∈ Prim(A). Since Q 6⊇ I, Q ∩ I ∈
Prime(I), and Q∩ I ∈ Prim(I) if and only if Q ∈ Prim(B). But Prim(I) ∼= Xm \Xm−1,
and all the primitive ideals of I are of the same finite codimension m2. Furthermore I
has weak spectral synthesis by Corollary 1.15. Thus Prime(I) = Prim(I) by the previous
paragraph, so Q ∩ I ∈ Prim(I). Hence P ∈ Prim(A), as required. Q.E.D.

Combining Theorems 1.11 and 1.17, we get the following. The unital case was established
in [23; 2.10].

Corollary 1.18 Let A be a PI-Banach algebra with τ∞ Hausdorff on Id(A). Then A has
spectral synthesis.

Proof. By Theorem 1.11 and Theorem 1.17 we need only show that A is semisimple. But
A is semiprime, by Theorem 1.11, so if the Jacobson radical of A were non-zero then there
would be a non-zero quasi-nilpotent element in the centre of A by Rowen’s theorem [9;
10.7.5] (every non-zero ideal in a semiprime PI-algebra has non-zero intersection with the
centre). As was observed in Remark (ii) after Proposition 2.7 of [23], such an element is
all that is needed to construct a net of norms in S1(A) converging to a seminorm with a
non-zero kernel, and this would contradict the Hausdorffness of τ∞. Thus A is semisimple.
Q.E.D.

A partial converse to Corollary 1.18 was established in [23; 3.10]: if A is a separable, unital
PI-Banach algebra with spectral synthesis then τ∞ is Hausdorff.

2. Haagerup tensor products of C∗-algebras

In this section we start looking at spectral synthesis and the topology τ∞ for the Haagerup
tensor product A⊗hB of two C∗-algebrasA and B. We show that if A and B are separable
then every closed prime ideal of A ⊗h B is primitive, just as for C∗-algebras. For general
A and B we show that A ⊗h B has spectral synthesis if and only if τ∞ is Hausdorff on
Id(A ⊗h B).

For C∗-algebras A and B, the Haagerup norm ‖ . ‖h is defined on an element x in the
algebraic tensor product A ⊗B by

‖x‖h = inf

∥∥∥∥∥
n∑

i=1

aia
∗
i

∥∥∥∥∥

1/2 ∥∥∥∥∥
n∑

i=1

b∗i bi

∥∥∥∥∥

1/2

,

where the infimum is taken over all possible representations of x as a finite sum x =∑n
i=1 ai⊗bi, ai ∈ A, bi ∈ A. The completion of A⊗B in this norm is called the Haagerup
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tensor product. The norm is a Banach algebra norm; introductory information on the
Banach algebra A ⊗h B can be found in [5], [1], and [2]. Since this is still something of a
specialist area, we assemble a few useful facts. The first two are the most remarkable.

(i) Injectivity. If A and B are C∗-algebras, and C and D are C∗-subalgebras of A and
B respectively, then the algebraic embedding C ⊗ D → A ⊗h B extends to an isometric
embedding of C ⊗h D in A⊗h B [19].

(ii) Exactness. If A and B are C∗-algebras and I ∈ Id(A), J ∈ Id(B), then there is a
short exact sequence

0→ I ⊗h B +A⊗h J → A⊗h B → A/I ⊗h B/J → 0.

(iii) If A and B are both infinite-dimensional C∗-algebras then A ⊗h B is not bicon-
tinuously isomorphic to a Banach subalgebra of the algebra of bounded operators on a
Hilbert space [6; 2.2].

(iv) The natural involution on the algebraic tensor product A⊗B of two C∗-algebras
A and B does not in general extend to an involution on A⊗hB, but if A and B are abelian
then the involution does extend, and A⊗h B is a Banach ∗-algebra.

(v) The Banach algebra A⊗h B is semisimple [1; 5.16].
(vi) The Haagerup tensor product A ⊗h B of two abelian C∗-algebras A and B is

bicontinuously isomorphic to their projective tensor product A⊗̂B, see [1; p.112]. Thus
A⊗h B is in this case a completely regular, semisimple commutative Banach ∗-algebra.

We shall use these various properties without further comment.

The first thing to do now is to consider the various different spaces of ‘primitive’ ideals
of A⊗hB. Recall that Prims(A⊗hB) is the sobrification of Prim(A⊗h B) (the space of
primitive ideals of A⊗hB) and consists of the semisimple prime ideals of A⊗hB. It follows
from [1; 5.10, 2.6, and 5.16] that every closed prime ideal of A ⊗h B is semisimple. Thus
Prims(A⊗h B) = Prime(A ⊗h B), the set of proper, closed, prime ideals of A⊗h B, and
hence the notions of spectral synthesis and weak spectral synthesis coincide for the class of
Haagerup tensor products of C∗-algebras. Furthermore Prims(A ⊗h B) is homeomorphic
to Prime(A) × Prime(B), by [1; 5.10] and [2; 1.5], so Prims(A ⊗h B) is always locally
compact. Thus condition (i)′ of spectral synthesis is always satisfied for A⊗hB. The same
is true for condition (ii)′, by [2; 3.4]. Thus the only condition that needs to be checked for
spectral synthesis is (iii)′ — whether every closed ideal of A⊗h B is semisimple.

Notice that we can therefore solve the extension problem for algebras in this class
with spectral synthesis. It follows from the remark after Proposition 1.16 that if M is
an algebra in this class with a closed ideal J such that both J and M/J have spectral
synthesis then M has spectral synthesis.

The other space of ‘primitive’ ideals that we have to bear in mind is Prim∗(A⊗h B),
defined as follows. A representation π of A⊗hB on a Hilbert space H is a ∗-representation
if π(a∗ ⊗ b∗) = π(a ⊗ b)∗ for a ∈ A, b ∈ B. Let Prim∗(A ⊗h B) be the space of ker-
nels of topologically irreducible ∗-representations of A ⊗h B, with the hull-kernel topol-
ogy. Elements of Prim∗(A ⊗h B) are prime and semisimple [1; 5.13(ii), 5.10, 5.16], so
Prim∗(A ⊗h B) ⊆ Prims(A ⊗h B), with equality holding if A and B are separable [1;
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5.15]. In Corollary 2.3 we shall show that, for separable A and B, these two spaces also
coincide with Prim(A ⊗h B). Caution is required in using results from [1] and [2] be-
cause the definition of ‘primitive’ used there corresponds to our definition of elements of
Prim∗(A ⊗h B) (in particular, the statement of [1; 5.13(i)] is identical to that of our
Theorem 2.2!).

Ideals of A⊗hB of the form I⊗h J (I ∈ Id(A), J ∈ Id(B)) are called product ideals.
Clearly each product ideal is generated by the simple tensors (i.e. tensors of the form
a⊗ b, a ∈ A, b ∈ B) which it contains. An ideal which is generated by the product ideals
which it contains is called a lower ideal, see [1; 6.7]. To define upper ideals, we use the
observation of Blecher’s [5] that if A and B are two C∗-algebras then the Haagerup tensor
product A⊗h B is canonically isomorphic to a dense subalgebra of the minimal C∗-tensor
product A⊗min B. A closed ideal in A⊗h B of the form J ∩A⊗h B (J ∈ Id(A⊗min B))
is called an upper ideal [1; §6]. It was shown in [1; 6.7] that an ideal in Id(A ⊗h B) is an
upper ideal if and only if it is an intersection of elements of Prim∗(A⊗h B). Each closed
ideal I is contained in a unique smallest upper ideal Iu, and contains a unique largest
lower ideal Il. Spectral synthesis is said to hold at I if Iu = Il [1; p.140], and A ⊗h B
was said in [1] to have spectral synthesis if every closed ideal has spectral synthesis. It is
known that every product ideal has spectral synthesis; indeed the sum of a finite number of
product ideals is itself a closed ideal [1; 3.8] and has spectral synthesis [1; 6.4]. Since every
primitive ideal is closed and prime, and every closed prime ideal is a sum of two product
ideals [1; 5.9], it follows that every primitive ideal has spectral synthesis. In particular,
every primitive ideal of A⊗h B is an upper ideal. On the other hand, since every element
of Prim∗(A⊗h B) is semisimple, it follows that an ideal of A⊗hB is an upper ideal if and
only if it is semisimple.

Putting all this together, we have established the following.

Proposition 2.1 Let A and B be C∗-algebras. Then the Haagerup tensor product A⊗hB
has spectral synthesis in the sense of this paper if and only every closed ideal of A ⊗h B
has spectral synthesis in the sense of [1].

Examples (i) If A and B are C∗-algebras with Id(A) or Id(B) finite then A ⊗h B has
spectral synthesis, by [1; 5.3, 6.4]. Thus there are lots of non-commutative Banach algebras
which are not C∗-algebras but which have spectral synthesis, e.g. take the Haagerup tensor
product of any infinite-dimensional C∗-algebra with the compact operators, or with the
Fermion algebra.

(ii) Let X and Y be countable, locally compact, Hausdorff spaces. Then C0(X) ⊗h
C0(Y ) has spectral synthesis. To see this, we argue as follows. First note that C0(X) ⊗h
C0(Y ) is a closed ideal in C(X ′) ⊗h C(Y ′) (where X ′ and Y ′ are the one-point compacti-
fications of X and Y respectively), so by Corollary 1.15 we may assume that X and Y are
compact. It now follows by transfer methods, see [13; 11.1.3], that there is a locally com-
pact abelian group G such that C(X)⊗h C(Y ) is bicontinuously isomorphic to a quotient

of L1(G) by a semisimple ideal J . Thus X × Y is homeomorphic to the hull of J in Ĝ.

But every countable closed subset of Ĝ is a set of synthesis, see [22; 7.2.5], from which it
follows that C(X) ⊗h C(Y ) has spectral synthesis.
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(iii) If D is the Cantor set then the commutative Banach algebra C(D) ⊗h C(D)
does not have spectral synthesis (because the projective tensor product C(D)⊗̂C(D), with
which it is isomorphic, does not have spectral synthesis, see [13; 11.2.1]).

We now show that if A and B are separable C∗-algebras then every closed prime ideal
of A ⊗h B is primitive. For a C∗-algebra A, let Ã denote the unitization of A (that is, A
itself if A is unital, and A with an identity adjoined otherwise).

Theorem 2.2 Let A and B be C∗-algebras, and let P ∈ Prim(A) and Q ∈ Prim(B).
Then P ⊗h B +A⊗h Q ∈ Prim(A ⊗h B).

Proof. Since A⊗hB/(P ⊗hB+A⊗hQ) ∼= A/P ⊗hB/Q [1; 2.5], it is enough to show that
A ⊗h B is a primitive Banach algebra under the hypothesis that A and B are primitive
C∗-algebras. Furthermore, since A⊗hB is a closed two-sided ideal of Ã⊗h B̃, it is enough
to show that Ã ⊗h B̃ is primitive. Thus we may assume, at the outset, that A and B are
unital.

Let M and N be maximal left ideals of A and B respectively such that the largest
two-sided ideal of A (respectively, B) contained in M (respectively N) is the zero ideal.
Then the left ideal M ⊗h B +A⊗h N is closed in A⊗h B [1; 2.6]. Let S be any left ideal
of A ⊗h B containing both M ⊗h B + A ⊗h N and a non-zero closed, two-sided ideal of
A⊗h B. We shall show that S = A⊗h B.

Each non-zero closed two-sided ideal of A ⊗h B contains a non-zero simple tensor [1;
4.6], so there is a non-zero simple tensor a ⊗ b ∈ S such that the closed two-sided ideal
I generated by a ⊗ b is contained in S. On the other hand, since A and B are primitive,
Ia 6⊆M and Ib 6⊆ N , where Ia and Ib are the smallest closed, two-sided ideals of A and B
containing a and b respectively. Thus there exist c, d ∈ A and e, f ∈ B such that cad /∈M
and ebf /∈ N .

Since M and N are maximal left ideals in A and B respectively there exist g ∈ A and
m ∈ M such that g(cad) + m = 1A, and h ∈ B and n ∈ N such that h(ebf) + n = 1B.
Hence

(1A ⊗ 1B) = (gcad+m) ⊗ (hebf + n)

= gcad⊗ hebf + gcad⊗ n+m⊗ 1B

= (gc⊗ he)(a ⊗ b)(d ⊗ f) + (1A ⊗ n−m⊗ n) +m⊗ 1B

∈ I + (S − S) + S ⊆ S.
Hence S = A ⊗h B as required. Thus if T is a maximal left ideal of A ⊗h B containing
M ⊗hB+A⊗hN then the only two sided-ideal of A⊗hB contained in T is the zero ideal.
Thus A ⊗h B is primitive. Q.E.D.

Theorem 2.2 leaves open the interesting question whether the topologically irreducible ∗-
representation associated with the primitive ideal P ⊗hB+A⊗hQ is actually algebraically
irreducible.

Corollary 2.3 Let A and B be separable C∗-algebras. Then

Prim∗(A ⊗h B) = Prims(A ⊗h B) = Prim(A ⊗h B).
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Proof. The equality of Prims(A⊗hB) and Prim∗(A⊗hB), for A and B separable, was
established in [1; 5.15]. If R ∈ Prim(A ⊗h B) then R is, of course, prime and semisimple,
so R ∈ Prims(A ⊗h B) (without any separability hypothesis). Conversely, suppose that
R ∈ Prims(A ⊗h B). Then R is closed and prime, so there exist closed, prime ideals
P ∈ Id(A) and Q ∈ Id(B) such that R = P ⊗h B+A⊗h Q [1; 5.9(iii)]. But closed, prime
ideals are primitive in separable C∗-algebras, so P ∈ Prim(A) and Q ∈ Prim(B). Hence
R ∈ Prim(A ⊗h B) by Theorem 2.2. Q.E.D.

We now show that spectral synthesis is equivalent to the Hausdorffness of τ∞ for A⊗h B.
We use the embedding of A ⊗h B in A ⊗min B mentioned earlier [5]. With an eye to
subsequent work we make the following general definition.

Let M be a Banach algebra, and suppose that there is a continuous norm γ on M
such that N , the γ-completion of M , is a C∗-algebra. In this paper M will of course be
A⊗hB and N will be A⊗minB. Extending the earlier definition, we refer to those closed
ideals in M of the form J ∩M (J ∈ Id(N)) as upper ideals, and the set of upper ideals is
denoted Idu(M). Note that if I is an upper ideal of M then in fact I = J ∩M where J is
the closure of I in N .

Definition 2.4 Let M be a Banach algebra. We shall say that M has property (P) if M
satisfies the following conditions:

(a) there is a continuous norm γ on M such that N , the γ-completion of M , is a
C∗-algebra;

(b) every primitive ideal of M is an upper ideal, i.e. Prim(M) ⊆ Idu(M);
(c) there is a subset R of M ∩Nsa such that each a ∈ R is contained in a completely

regular, commutative Banach ∗-subalgebra Ma of M (where the norm and the involution
on Ma are those induced by N), and such that if I ∈ Idu(M) and J ∈ Id(M) with J 6⊆ I
then there exists a ∈ R such that Ma ∩ J 6⊆ I.

Notice for later that if M is a Banach algebra with property (P) and I is an upper ideal
of M then M/I also has property (P).

In Theorem 2.7 we show that the Haagerup tensor product of two C∗-algebras has
property (P).

For the next lemma, recall Rickart’s theorem, quoted before Theorem 1.8, which states
that for any norm σ on a completely regular, semisimple, commutative Banach algebra A,
σ(a) ≥ ρ(a) for all a ∈ A, where ρ denotes the uniform norm on A [20].

Lemma 2.5 Suppose that M is a Banach algebra with property (P) and that a belongs
to the subset R. Then

(i) if J ∈ Idu(M) then Ma ∩ J is a semisimple ideal in Ma,
(ii) γ|Ma is the uniform norm on Ma.

Proof. (i) Let K be a closed ideal of N such that J = K ∩M . Then Ma/(Ma ∩ J) is
isomorphic to a commutative ∗-subalgebra, C say, of N/K. The completion of C in N/K is
an abelian C∗-algebra, hence semisimple. Taking a completion reduces the spectral radius,
so C has no non-zero quasi-nilpotent elements. Thus C is semisimple.
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(ii) Let D ⊆ N be the γ-completion of Ma. Then D is a commutative C∗-subalgebra
of N . Let ∆(D) be the character space of D. For φ ∈ ∆(D), let φ̃ denote the character
obtained by restricting φ to Ma. Then for c ∈Ma,

γ(c) = sup{φ(c) : φ ∈ ∆(D)} = sup{φ̃(c) : φ ∈ ∆(D)} ≤ ρ(c),

where ρ denotes the spectral radius on Ma. But Ma is semisimple by part (i) (taking
J = {0}), so the spectral radius ρ is the uniform norm on Ma. Hence ρ(c) = γ(c), by
Rickart’s theorem, since γ is also a norm. Q.E.D.

Proposition 2.6 Let M be a Banach algebra with property (P) above. Then every upper
ideal of M is a τ∞-closed point of Id(M). If M has spectral synthesis then τ∞ is Hausdorff
on Id(M).

Proof. If I is an upper ideal in Id(M) then M/I also has property (P), as we have
observed, so we may assume that I = {0}. Next note that for any continuous norm ρ on
M and for any a ∈ R, ρ(a) ≥ γ(a), by Rickart’s theorem and Lemma 2.5(ii). Now suppose
that k ∈ N and that (ρα) is a net of norms in Sk, converging to a seminorm ρ ∈ Sk. Let
a ∈ R and let b ∈Ma∩ker ρ. Then ρα(b) → 0. Hence γ(b) = 0, so b = 0. Thus ker ρ = {0},
by condition (c) of property (P), so ρ is a norm on M . Hence {0} is τ∞-closed, as required.

Now suppose, additionally, that M has spectral synthesis. Then every closed ideal of
M is semisimple, so condition (b) of property (P) implies that every closed ideal of M is
an upper ideal. Let k ∈ N and let (ρα) be an increasing net of seminorms in Sk with limit
ρ. By [23; 2.2] we must show that J := sup ker ρα coincides with ker ρ. It is always the
case that J ⊆ ker ρ. Let a ∈ R and let b ∈ Ma ∩ ker ρ. For each α, let σα be the uniform
norm on the algebra Ma/(Ma ∩ ker ρα), which is semisimple by Lemma 2.5(i), and let σ
be the uniform norm on the semisimple algebra Ma/(Ma ∩J). Then by Rickart’s theorem,
ρα(b) ≥ σα(b) ≥ σ(b) for each α. Hence σ(b) = 0, since ρα(b) → 0. Thus b ∈ J . It follows
that Ma ∩ ker ρ = Ma ∩ J , and hence that J = ker ρ, by condition (c) of property (P).
Q.E.D.

Theorem 2.7 Let A and B be C∗-algebras with Haagerup tensor product A⊗h B. Then
every upper ideal is τ∞-closed in Id(A ⊗h B), and A ⊗h B has spectral synthesis if and
only if τ∞ is Hausdorff on Id(A ⊗h B).

Proof. The fact that the Hausdorffness of τ∞ implies spectral synthesis follows from
Theorem 1.11 and the fact, already mentioned, that weak spectral synthesis and spectral
synthesis are equivalent for A⊗h B. The rest of the theorem will follow from Proposition
2.6 once we have established that A⊗h B has property (P) of Definition 2.4.

We have already observed that conditions (a) and (b) of Property (P) are satisfied.
Now let R be the set {a ⊗ b : a ∈ A+, b ∈ B+}. Then for a ⊗ b ∈ R the commutative
subalgebra C∗(a) ⊗h C∗(b) ⊆ A ⊗h B is a completely regular Banach ∗-algebra. Let
I ∈ Idu(A ⊗h B) and let J ∈ Id(A ⊗h B) with J 6⊆ I. Then Jl 6⊆ I since J 6⊆ I. But Jl
is generated by the product ideals which it contains [1; 6.7(i)], and each product ideal is
generated by its positive simple tensors, so there exists a simple tensor a⊗ b ∈ Jl \ I with
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a ∈ A+ and b ∈ B+. This establishes condition (c) of property (P). Hence A ⊗h B has
property (P), as required. Q.E.D.

3. The topology τr on Id(A ⊗h B)

In this section we consider the topology τr on Id(A ⊗h B), showing that if Prime(A)
and Prime(B) are compact T1-spaces, then A ⊗h B has spectral synthesis if and only
if τr is Hausdorff on Id(A ⊗h B). The proof uses the theory of continuous lattices and
bitopological spaces.

We begin by looking at the lattice Idu(A⊗hB) of upper ideals. Recall that these are
precisely the semisimple ideals of A⊗h B. Thus they are in bijective correspondence with
the open (or closed) subsets of Prim(A ⊗h B), using the hull-kernel process.

We need to recall the definition of a continuous lattice. Let L be a complete lattice
and let x, y ∈ L. Then x is way-below y, written x � y, if whenever S is a subset of L
with y ≤ supS there is a finite subset F of S such that x ≤ supF , see [12]. If for each
y ∈ L, y = sup{x ∈ L : x � y} then L is called a continuous lattice. A continuous lattice
carries three important topologies, as follows. The lower topology on L is the topology
generated by the sets {x ∈ L : x 6≥ y} as y varies through L (in exact analogy with the
lower topology on Id(A) defined in the Introduction). A base for the Scott topology on L
is given by sets of the form {y ∈ L : y � x} as x varies through L. The Lawson topology
on L is the join of the Scott and lower topologies. The Lawson topology on a continuous
lattice is compact and Hausdorff [12; III.1.10].

An element p in a lattice L is said to be prime if whenever x, y ∈ L with x ∧ y ≤ p
then either x ≤ p or y ≤ p. Let Prime(L) denote the set of proper prime elements of
L (in lattice theory it is conventional to include the ‘top’ as well, but we are excluding
it, in harmony with the convention in ring theory). As in the earlier setting, the lower
topology coincides with the hull-kernel topology on Prime(L). A subset S of Prime(L)
is said to be saturated if x ∈ S and y ∈ Prime(L) with y ≤ x implies that y ∈ S. We
shall use the fact that a subset S of Prime(L) is open in the relative Scott topology if
and only if Prime(L)\S is saturated and hull-kernel compact [12; V.5.1]. For x ∈ L, let
hull(x) = {p ∈ Prime(L) : p ≥ x}. The spectral theorem for a continuous, distributive
lattice L is that the correspondence x←→ hull(x) is a lattice isomorphism between L and
the lattice of closed subsets of Prime(L) in the lower topology [12; V.5,5]. In particular,
x =

∧
hull(x) for each element x in a continuous, distributive lattice. We shall also use

the fact that if x and y are elements of a continuous distributive lattice L then x � y
if and only if there exists a Scott open set M such that hull(x) ⊇ M ⊇ hull(y), see [12;
V.5.6(ii)]. The following result is standard, but it seems best to include the short proof.

Lemma 3.1 Let L be a continuous distributive lattice. Let x ∈ L and let (xα) be a net
in L converging to x in the Scott topology. Let V be a Scott open subset of Prime(L)
containing hull(x). Then eventually hull(xα) ⊆ V .

Proof. Suppose to the contrary. Then because V c := Prime(L)\V is hull-kernel compact,
we may suppose, by passing to a subnet if necessary, that there exists p ∈ V c and a net
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(pα) with pα ∈ V c ∩ hull(xα) for each α, such that pα → p as α → ∞, in the hull-kernel
topology. Since L is a continuous lattice, there exists y ∈ L with y � x and y 6≤ p. The
set {z ∈ L : z � y} is a Scott-open neighbourhood of x, so eventually xα � y. Hence
eventually xα ≥ y, so eventually hull(xα) is contained in the set hull(y) which is closed in
the hull-kernel topology. Since p /∈ hull(y), we have a contradiction. Q.E.D.

We observed near the beginning of Section 2 that Prims(A⊗hB) = Prime(A⊗hB) is
homeomorphic to Prime(A) × Prime(B), and is therefore locally compact. On the other
hand, the lattice Idu(A⊗hB) is isomorphic to the lattice of open subset of Prim(A), which
in turn is isomorphic to the lattice of open subsets of Prims(A ⊗h B). It follows from
[12; V.5.10], therefore, that Idu(A⊗hB) is a continuous distributive lattice. Furthermore,
Prime(Idu(A⊗h B)) is precisely Prime(A ⊗h B) [1; 5.9]. The next proposition describes
the lower, Scott, and Lawson topologies on Idu(A ⊗h B). For I ∈ Idu(A ⊗h B) and
x ∈ A ⊗h B, define

‖x+ I‖u = sup{‖x+ P‖ : P ∈ hull(I)},
where hull(I) = {P ∈ Prime(A ⊗h B) : P ⊇ I}. We shall refer to the functions I 7→
‖x + I‖u (I ∈ Idu(A ⊗h B), x ∈ A ⊗h B) as upper-norm functions. Note that for
P ∈ Prime(A⊗h B), ‖x+ P‖ = ‖x+ P‖u (x ∈ A⊗h B). It was shown in [2; 3.4] that for
x ∈ A⊗hB, the function P 7→ ‖x+P‖ (P ∈ Prime(A⊗hB)) is lower semi-continuous on
Prime(A ⊗h B).

In Proposition 3.2 and Theorem 3.6 we shall use the hypothesis that Prime(A) and
Prime(B) are compact, for the C∗-algebras A and B. Note that for a C∗-algebra A,
Prime(A) is compact if and only if Prim(A) is compact. This is easily seen from the
‘open-cover’ version of compactness, using the natural extension of a cover of Prim(A) to
a cover of Prime(A) by saturation, together with the fact that every proper closed prime
ideal of A is contained in a primitive ideal of A. One circumstance in which Prim(A) is
compact is, of course, when A is unital.

Proposition 3.2 Let A and B be C∗-algebras with Prime(A) and Prime(B) compact in
the hull-kernel topology. Let C = A⊗hB be the Haagerup tensor product of A and B and
let Idu(C) be the lattice of upper ideals of C. Then the lower, Scott, and Lawson topologies
on Idu(C) are the weakest with respect to which the upper-norm functions I 7→ ‖x+ I‖u,
(x ∈ C, I ∈ Idu(C)), are respectively lower semi-continuous, upper semi-continuous, and
continuous.

Proof. As temporary notation, let τlc, τuc, and τc be the weakest topologies on Idu(C)
with respect to which the upper-norm functions are respectively lower semi-continuous,
upper semi-continuous, and continuous. First we show that τlc coincides with the lower
topology.

For each x ∈ C, the set {I ∈ Idu(C) : ‖x+I‖u > 0} is τlc-open. Since these sets give a
sub-base for the lower topology, it is immediate that τlc is stronger than the lower topology.
Now let (Iα) be a net in Idu(C) converging in the lower topology to some I ∈ Idu(C), and
suppose, without loss of generality, that x ∈ C with ‖x+ I‖u = 1. Let 1 > ε > 0 be given.
Then there exists P ∈ Prim(C) with P ⊇ I such that ‖x + P‖ > 1 − ε

2 . By the lower
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semicontinuity of the upper-norm functions on Prim(C) [2; 3.4], there is a neighbourhood
X of P in Prim(C) such that ‖x+Q‖ > 1−ε for all Q ∈ X. Let y ∈ C \P be such that the
open subset Y = {Q ∈ Prim(C) : y /∈ Q} of Prim(C) is a neighbourhood of P contained
in X. Then y /∈ I, so eventually y /∈ Iα. Thus eventually there is, for each α, a primitive
ideal Pα of C containing Iα such that y /∈ Pα. Hence Pα ∈ Y ⊆ X, so ‖x + Pα‖ > 1− ε.
Thus eventually ‖x + Iα‖u > 1 − ε. This shows that the lower topology is stronger than
τlc. Hence τlc is the lower topology on Idu(C).

Next we show that τuc is weaker than the Scott topology on Idu(C). We begin by show-
ing that the relative τuc topology is weaker than the relative Scott topology on Prime(C).
Recall that Prime(C) is in bijective correspondence with Prime(A) × Prime(B), the
correspondence being given by

P ⊗h B +A⊗h B ←→ (P,Q) ∈ Prime(A) × Prime(B).

Recall too that the usual C∗-norm functions are upper semi-continuous on Prime(A)
and Prime(B) in the relative Scott topologies [14; 7.2(b)]. Thus it follows from the
remark after [2; 3.1] that the norm functions I 7→ ‖x + P‖, (x ∈ C,P ∈ Prime(C)), are
upper semi-continuous on Prime(C) when Prime(C) is equipped with the product Scott
topology from Prime(A) × Prime(B). We need only show, therefore, that the product
Scott topology is weaker than the Scott topology on Prime(C). This follows from the fact
that if X and Y are compact, saturated subsets of Prime(A) and Prime(B) respectively
then

Z := {P ⊗h B +A ⊗h Q : (P,Q) ∈ (X × Prime(B)) ∪ (Prime(A) × Y )}

is a compact saturated subset of Prime(C). Hence the set

Prime(C)\Z ∼= (Prime(A)\X) × (Prime(B)\Y )

is open in Prime(C) in the Scott topology. Since sets of the form (Prime(A)\X) ×
(Prime(B)\Y ) form a base for the product Scott topology, it follows that the product
Scott topology on Prime(C) is weaker than the Scott topology. Hence the relative τuc
topology is weaker than the relative Scott topology on Prime(C).

Now we extend this to the whole of Idu(C). Let I ∈ Idu(C) and let (Iα) be a net
in Idu(C) converging to I in the Scott topology. Let x ∈ C and let ε > 0 be given.
Then by the previous paragraph, for each P ∈ hull(I) there is a subset VP of Prime(C)
which is open in the relative Scott topology and such that ‖x +Q‖ < ‖x + P‖ + ε for all
Q ∈ VP . Set V =

⋃{VP : P ∈ hull(I)}. Then V is a Scott open subset of Prime(C)
containing hull(I). Thus by Lemma 3.1, eventually hull(Iα) ⊆ V , implying that eventually
‖x+ Iα‖u < ‖x+ I‖u + ε. Thus τuc is weaker than the Scott topology on Idu(C).

To show that τuc is stronger than the Scott topology on Idu(C), let I, J ∈ Idu(C)
with I 6⊆ J . Let x ∈ I\J , with ‖x+ J‖u = 1. Then the sets

{K ∈ Idu(C) : ‖x+K‖u > 1/2}

and
{K ∈ Idu(C) : ‖x+K‖u < 1/2}
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are disjoint neighbourhoods of J and I, open in the lower and τuc topologies respectively.
Thus the bitopological space (Idu(C), lower, τuc) is ‘pseudo-Hausdorff’ in the sense of [17].
On the other hand, the bitopological space (Idu(C), lower,Scott) is ‘stable’, being ‘join-
compact’ (the definitions of these various properties are given in [17]), so [17; 3.4(d)] shows
that τuc is stronger than the Scott topology. Thus τuc and the Scott topology coincide.

Finally, since τc is the join of the τlc and τuc topologies, while the Lawson topology
is the join of the lower and Scott topologies, it follows immediately that τc coincides with
the Lawson topology. Q.E.D.

Lemma 3.3 Let A and B be C∗-algebras with Haagerup tensor product A ⊗h B. Let
I, J ∈ Id(A ⊗h B) with Ju � Iu in Idu(A ⊗h B). Then J ⊆ Il.

Proof. Let (Iα) be the net of finite sums of product ideals contained in Il, upward directed
by inclusion. Then (Iuα) is a directed set in Idu(A ⊗h B). If P is any primitive ideal of
A ⊗h B not containing I, then there is a product ideal contained in I but not in P (see
the proof of Theorem 2.7). It follows that Iuα ↗ Iu in the lattice Idu(A ⊗h B). Thus
eventually Iuα ⊇ Ju ⊇ J , by assumption. But each Iα has spectral synthesis [1; 6.4], so
Iα = Iuα. Thus eventually Iα ⊇ J . Since Il is the norm closure of the product ideals which
it contains [1; 6.7(i)], we have shown that Il ⊇ J . Q.E.D.

We now need some information about quotient norms.

Lemma 3.4 Let A and B be C∗-algebras. Let {Ii} and {Ji} (1 ≤ i ≤ n) be finite sets
of closed ideals of A and B respectively such that all the sets {P ∈ Prim(A) : P ⊇ Ii}
(1 ≤ i ≤ n) are disjoint in Prim(A) and all the sets {Q ∈ Prim(B) : Q ⊇ Ji} (1 ≤ i ≤ n)
are disjoint in Prim(B). Set K =

⋂n
i=1 (Ii ⊗h B +A⊗h Ji). Then for x ∈ A ⊗h B,

‖x+K‖ = max{‖x+ (Ii ⊗h B +A⊗h Ji)‖ : 1 ≤ i ≤ n}.

Proof. Set G =
⋂n
i=1 Ii andH =

⋂n
i=1 Ji. Then A⊗hB/(G⊗hB+A⊗hH) is isometrically

isomorphic to A/G ⊗h B/H, see [1; 2.6]. But A/G ∼=
⊕n

i=1A/Ii and B/H ∼=
⊕n

i=1 B/Ji,
so A/G ⊗h B/H is isometrically isomorphic to

⊕n
i,j=1 A/Ii ⊗h B/Jj. Hence

‖x+ (G ⊗h B +A⊗h H)‖ = max{‖x+ (Ii ⊗h B +A ⊗h Jj)‖ : 1 ≤ i, j ≤ n}.

Thus A ⊗h B/K is isometrically isomorphic to
⊕n

i=1A/Ii ⊗h B/Ji and

‖x+K‖ = max{‖x+ (Ii ⊗h B +A⊗h Ji)‖ : 1 ≤ i ≤ n}.

Q.E.D.

In fact we only use Lemma 3.4 in the case when the ideals Ii and Ji are maximal ideals of
A and B respectively. We state this case separately.

Proposition 3.5 Let A and B be C∗-algebras and let F = {J1, . . . , Jn} be a finite set of
maximal ideals of A⊗h B. Set I(F ) =

⋂n
i=1 Ji. Then for each x ∈ A⊗h B,

‖x + I(F )‖ = max{‖x + Ji‖ : 1 ≤ i ≤ n}.
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Proof. For each Ji ∈ F , there exist maximal ideals Mi of A and Ni of B such that
Ji = Mi ⊗h B + A ⊗h Ni [1; 5.6]. The sets {P ∈ Prim(A) : P ⊇ Mi} (1 ≤ i ≤ n) and
{Q ∈ Prim(B) : Q ⊇ Ni} (1 ≤ i ≤ n) are trivially disjoint in Prim(A) and Prim(B)
respectively. Hence the result follows from Lemma 3.4. Q.E.D.

In the case when A and B are commutative C∗-algebras, Proposition 3.5 shows that every
finite subset of Max(A⊗hB) is a Helson set with Helson constant 1. Thus A⊗hB has the
Helson property with constant 1, so it follows from Theorem 1.9 that A⊗h B has spectral
synthesis if and only if τr is Hausdorff. Our final result, the main one of this section, is a
partial extension of this to the non-commutative situation. The proof is similar to that of
Theorem 1.9 but with a few extra turns.

Theorem 3.6 Let A and B be C∗-algebras with Prime(A) and Prime(B) compact T1-
spaces. Then the following are equivalent:

(i) A⊗h B has spectral synthesis,
(ii) Id(A⊗h B) is τr-Hausdorff.

Proof. (i)⇒(ii) follows from Theorem 2.7 and [24; 3.1.1].
(ii)⇒(i). Suppose that spectral synthesis fails. We shall show that τr is not Hausdorff

on Id(A⊗hB). The hypotheses on Prime(A) and Prime(B) imply that Prime(A⊗hB) =
Max(A⊗h B). Let I ∈ Id(A⊗h B) with Il 6= Iu. Let N = hull(Iu), and let (N ′α)α be the
net of decreasing, Scott open subsets of Max(A⊗hB) containing N . Let (Nα)α be the net
of decreasing, hull-kernel closed subsets of Max(A⊗hB), where for each α, Nα is the hull-
kernel closure of N ′α. Since Max(A ⊗h B) is locally compact in the hull-kernel topology,
and a subset of Max(A ⊗h B) is open in the Scott topology if and only its complement is
compact and saturated, it follows that

⋂
αNα = N .

For a hull-kernel closed subset M of Max(A⊗h B), let I(M) =
⋂{Q : Q ∈M}. Then

(I(Nα))α is an increasing net in Idu(A⊗hB), and each I(Nα)� Iu by the remark before
Lemma 3.1. Hence I(Nα) ⊆ Il for each α, by Lemma 3.3. Thus J :=

⋃
α I(Nα) ⊆ Il.

On the other hand, Il is the smallest closed ideal with hull equal to N [1; 6.6(iv)], so
J = Il. For each α, let (Fβ(α))β(α) be the increasing net of finite subsets of Nα. Then
(I(Fβ(α)))β(α) is a decreasing net in Id(A ⊗h B), and

⋂
β(α) I(Fβ(α)) = I(Nα). Hence

I(Fβ(α))
β(α)−→I(Nα) (τr)

in Id(A ⊗h B) by Lemma 0.1. But I(Nα) → Il (τr), also by Lemma 0.1, so if (I(Fγ))γ
denotes the ‘diagonal’ net, see [16; §2, Theorem 4], then I(Fγ) → Il (τr) in Id(A ⊗h B).
Now suppose that x /∈ Iu. Then there exists P ∈ hull(I) such that x /∈ P . For each α,
eventually P ∈ Fβ(α), so eventually

‖x + I(Fβ(α))‖ ≥ ‖x + P‖ > 0.

Hence the ‘diagonal’ net I(Fγ) → Iu (τn). On the other hand, if x ∈ Iu and ε > 0 then
by Proposition 3.2 there exists a Scott open subset M of Prim(A ⊗h B) = Max(A ⊗h B)
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containing N such that ‖x + Q‖ < ε for all Q ∈ M . Since Max(A ⊗h B)\M is compact
and

⋂
Nα = N , there exists α0 such that for α ≥ α0, Nα ⊆M . Hence for α ≥ α0,

‖x+ I(Fβ(α))‖ < ε

for all β(α), by Proposition 3.5. Hence I(Fγ)→ Iu (τu), using [24; 2.1], so

I(Fγ)→ Iu (τr).

Since Il 6= Iu, τr is not Hausdorff. Q.E.D.

Theorem 3.6 is sufficiently general to make one think that the result probably holds true
for all C∗-algebras A and B.
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