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Abstract 

In this paper, we present a case-based reasoning (CBR) approach solving educational time-tabling 

problems. Following the basic idea behind CBR, the solutions of previously solved problems are 

employed to aid finding the solutions for new problems. A list of feature-value pairs is insufficient to 

represent all the necessary information. We show that attribute graphs can represent more information 

and thus can help to retrieve re-usable cases that have similar structures to the new problems. The case 

base is organised as a decision tree to store the attribute graphs of solved problems hierarchically. An 

example is given to illustrate the retrieval, re-use and adaptation of structured cases. The results from 

our experiments show the effectiveness of the retrieval and adaptation in the proposed method. 
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1 Introduction 

CBR [1] solves problems by retrieving the most similar previous cases in a case base (source 

cases) and by re-using the knowledge and experiences from previous good quality solutions. 

If necessary, the retrieved solutions are adapted by using domain knowledge so that they are 

applicable for the new problem. The case base is then updated by the new learned cases. 

 

1.1 Traditional Case Representation in CBR 

In traditional CBR, a list of feature-value pairs is typically employed to represent cases. The 

nearest-neighbour method is used extensively as a similarity measure that gives every feature 

a weight and results in a weighted sum to measure the similarity between two cases. Then the 
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most similar case(s) retrieved from the case base are adapted for the new problem. In some 

domains, this representation and retrieval method is sufficient to find similar cases. However, 

some complex problems (such as time-tabling problems) consist of events that are heavily 

inter-connected with each other. A list of feature-value pairs by itself is not able to describe 

important information that could make differences in finding high quality solutions to this 

kind of problem. Thus the similarity measure cannot recognise the correspondence between 

the features in cases and characteristics of the solutions. It can be very difficult to adapt the 

retrieved cases for the new problems and the adaptation may take as much effort as 

scheduling from scratch. Smyth and Keane [2] questioned the similarity assumption in CBR 

and introduced a concept called “adaptation-guided retrieval”. It is unwarranted to assume 

that the most similar case is also the most appropriate from the re-use perspective. Similarity 

must be augmented by a deeper knowledge about how easy it is to modify a case to fit a new 

problem. Traditional case representation does not enable this description of the deeper 

knowledge that is needed in cases such as heavily inter-connected time-tabling problem. A 

similarity measure such as the nearest-neighbour method is not sophisticated enough to 

reflect deeper similarities between these problems. 

The aim of this paper is to present the possibilities and advantages of using attribute graphs 

to represent cases structurally in a CBR system which solves educational time-tabling 

problems. The attribute graphs are used to describe the relations between the events in a 

time-tabling problem more concisely and explicitly and thus can express deeper knowledge 

stored in the cases such as the correspondence between structures of events and 

characteristics of the solutions. The solutions of the retrieved cases are adaptable and can be 

reused for the new problem that has similar structure.  

 

1.2 Structured Cases in CBR 

Representing cases structurally has been discussed in the literature, but no general theory or 

methodology has been identified. Böner [3] proposed a CBR system that transformed a set of 
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pre-selected candidate cases into a structural representation to find the common structure 

between the new problem and candidate cases. This approach was also used to represent the 

topological structure to support layout design [4]. Structural similarity is usually defined 

using maximum common sub-graphs, which are employed as prototypes to represent classes 

of cases thus reducing much of the memory retrieval effort. 

Racci and Sender [5] used a tree to represent structured cases. The similarity measure takes 

into account both the structures and the labels in the cases. A set of algorithms was explored 

to solve subtree-isomorphism and it was shown that significant speed-up can be obtained on 

randomly generated case bases. 

Two systems CHIRON and CAPER were used in [6] to show how the graph-structured 

representation implemented as semantic networks support Case-Based Planning in two 

domains. The benefits and cost associated with graph-structured representation were also 

discussed. In CAPER, the retrieval problem was solved by a massively parallel mechanism 

[7]. 

Jantke introduced “nonstandard concepts” [8] where cases are represented as structured 

cases. The similarity measure thus takes structural properties into account, with the aim of 

making the CBR approach more flexible and expressive. 

The FABEL project [9] provides more details of some existing systems that employ 

structured cases. The case similarities described were classified into five groups: restricted 

geometric relationships; graphs; semantic nets; model-based similarities and hierarchically 

structured similarities. 

 

1.3 CBR in Scheduling and Time-tabling Problems 

1.3.1 CBR in Scheduling 

As far as the authors are aware, there are few publications specifically on CBR for 

scheduling problems. MacCarthy proposed a general framework for CBR in general 

scheduling environments in [10] and the areas where CBR offered the most potential were 
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justified. A review was also carried about CBR systems dealing with scheduling problems. 

Koton [11] proposed a system for the scheduling of a large-scale airlift management problem 

by abstracting and decomposing it, and afterwards the precedent cases were combined for the 

new problem. The CBR-1 project [12] used CBR in the dynamic job-shop scheduling 

problem. A pool of methods in the system provides rules dealing with a constrained 

environment but it requires a large amount of memory. Miyashita and Sycara [13] stored 

previous schedule repair tactics as cases in the CABIN system for job shop scheduling 

problems by incrementally revising a complete but sub-optimal schedule to produce a better 

schedule according to a set of optimisation criteria. 

Hennessy and Hinkle [14] explored a new approach for retrieval and adaptation processes to 

solve the autoclave management and loading problem. Case adaptation finds the substitute by 

searching the case that has the correct context in the new environment for the unmatched 

parts. In [15] two approaches were explored that reuse the portions of good schedules to 

build new schedules. The experiment results were compared with other methods and showed 

that the approach worked efficiently for less-complex scheduling problems. Schmidt [16] 

proposed a problem solving system that used the theory of scheduling within CBR to solve 

production planning and control problems. Scheduling problems are organised by using 

“transformation graphs” to show similarities between problem characteristics in terms of 

polynomial transformation between cases. In [17] MacCarthy and Jou discussed the use of 

CBR in the development of a class of scheduling problems involving sequence dependent set 

up times. General problems about the application of CBR to scheduling problems were also 

addressed. 

1.3.2 Time-tabling Problems 

In this paper, structured cases are used in CBR to represent simple educational time-tabling 

problems. Time-tabling problems were defined by Wren [18] as: “the allocation, subject to 

constraints, of given resources to objects being placed in space-time, in such a way as to 

satisfy as nearly as possible a set of desirable objectives.” Time-tabling problems are specific 
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types of scheduling problems that can be highly constrained and difficult to solve. A general 

time-tabling problem consists of assigning a number of events (e.g. exams, courses, meetings, 

etc) into a limited number of timeslots (periods of time) so that no person is assigned to two 

or more events simultaneously. Constraints which should under no circumstances be violated 

are known as hard constraints. Other constraints which are desirable but not essential (such 

as that two events should be consecutive, etc) are known as soft constraints. The violations of 

the soft constraints should be minimised. 

Various methods have been used to solve educational time-tabling problems [19, 20]. The 

graph theoretic approach was a widely employed technique in the early days of research on 

time-tabling problems. 

Recent research has considered a variety of modern metaheuristic methods and approaches 

such as Tabu Search (e.g. see [21, 22]), Simulated Annealing (e.g. see [23, 24]), Genetic 

Algorithms (e.g. see [25, 26, 27]) and hybrid methods (such as Memetic Algorithms e.g. see 

[28, 29, 30, 31, 32]). A wide variety of research work on time-tabling can be found in [33, 

34]. 

CBR is potentially a very valuable tool in scheduling problems [10, 16]. One of the major 

contributions of CBR, as a modeling tool to capture knowledge, is the ability of avoiding 

computation (in Tabu search, GA, etc) by searching, selection and matching techniques. CBR 

is also a valuable method for scheduling problems that put emphasis on constraint directed 

research, a major feature in time-tabling problems. 

In this paper a simple course time-tabling problem is used as an example to interpret the 

retrieval and adaptation of structured cases. The representation of time-tabling problems by 

attribute graphs is given in Section 2. Section 3 describes the implementation of the proposed 

system organised as a tree and an example is shown in Section 4. A brief concluding 

discussion is presented in Section 5. 

 



Knowledge-Based Systems, 13(2-3): 159-165, 2000 

2 Attribute Graphs for Course Time-tabling Problems 

In course time-tabling, a number of courses (events) have to be assigned to a limited number 

of timeslots. Two courses may have common students so they conflict with each other and 

cannot be assigned to the same timeslot. 

Attribute graphs are used here to represent course time-tabling problems structurally. In 

attribute graphs, nodes indicate events and edges show the relation between any pair of 

events. Nodes and edges have attributes that represent the problem more precisely. Each 

attribute corresponds to a label assigned to nodes and edges. Table 1 and Table 2 show parts 

of the labels and attributes of nodes and edges that are used in our problems. 

Insert Table 1. somewhere here 

Insert Table 2. somewhere here 

A simple example is shown in Figure 1 to illustrate a course time-tabling problem 

represented as an attribute graph. Nodes represent courses. Solid edges indicate hard 

constraints (labelled 7) which means that the adjacent courses cannot be held simultaneously. 

Dotted lines indicate soft constraints labelled 4, 5 or 6. The labels on the edges and inside the 

nodes correspond to the attributes shown in Table 1 and Table 2. For example, Maths, 

Physics and Chemistry are labelled with a 1 (to indicate that they are multiple courses) and 

with values 2, 3 and 2 that denote that they should be held 2, 3 and 2 times a week 

respectively. Other courses are labelled 0 (ordinary courses), which denote that they should 

be held just once a week. SpanishA should not be consecutive to Physics (because the edge 

between them is labelled by a 6) and Chemistry should be consecutive to SpanishB (labelled 

by a 5). The directed line between SpanishA and SpanishB has the label 4 (with value 1) 

which denotes that SpanishA should be held before SpanishB. 

Insert Figure 1. somewhere here 

Using this approach, the course time-tabling problems can be represented structurally. It 

enables us to describe the relations between events in the problem that is not possible by 

using feature-value pairs. Also the different cases of the problems can have different 
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structures, unlike in traditional case representation using the list of feature-values pairs where 

all the cases have the same form of feature slots. 

 

 

3 Implementation of the CBR System for Course Time-tabling Problems 

 
3.1 The Graph Isomorphism Problem and Decision Tree Algorithm 

Using attribute graphs to represent cases has many advantages. However, the matching 

problem between the structured cases is equivalent to that of the graph isomorphism or sub-

graph isomorphism problem that is known to be NP-Complete [35]. A graph G is isomorphic 

to graph G' if there exists a one to one correspondence between nodes and edges of the two 

graphs. A graph G is sub-graph isomorphic to graph G' if G is isomorphic to a sub-graph of 

G'. Some methods have been attempted to solve this problem in CBR by detecting cliques of 

the graph [3]. The system being proposed here is based on Messmer’s algorithm [36] where 

graphs are organised in a decision tree. 

The attribute graph is represented by its adjacency matrix M = mi,j, where mi,j  Le indicates 

the attribute of the edge between node i and node j and mi,i  Ln indicates the attribute of node 

i. Le and Ln are the sets of labels defined in Table 2 and Table 1. There are n! different 

adjacency matrices for an n-node attribute graph when the nodes are in different 

permutations. The basic idea of Messmer’s algorithm is to pre-store all the adjacency 

matrices of some known graphs with their permutation matrices P = pi,j to the corresponding 

nodes in a decision tree. If graph G is isomorphic to graph G’, then if pi,j = 1, node i in graph 

G corresponds to node j in graph G’. If a new graph can be classified to a node in the 

decision tree at level k, then the permutation matrix(matrices) stored in this node indicate the 

matching between the k nodes of the new graph and that of previously stored graph(s). If the 

time spent on building up the decision tree is ignored, this algorithm guarantees that all the 
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graph isomorphism(s) or sub-graph isomorphism(s) stored in the tree can be found in 

polynomial time (quadratic to the number of nodes of the new graph). 

For example, in Figure 2, attribute graph G represents a 3-course time-tabling problem. 

Maths is labelled 1 with value 2 (multiple course, held twice a week). Physics and Spanish 

are labelled 0 (ordinary course, held once a week). Physics should be held before Maths. 

Spanish should not be scheduled simultaneously with Physics as Maths. There are 6 

adjacency matrices M0~M5 representing graph G, X denotes that there is no edge between 

two nodes and the labels in the matrices are described in Table 1 and Table 2. 

Insert Figure 2. somewhere here 

These matrices are used to build the decision tree (see Figure 3). If a matrix M can be seen as 

consisting of an array of so-called row-column elements ai = (m1i, m2i, … mii, mi(i-1), …, mi1), 

then a 3 X 3 matrix consists of 3 elements: a1 = a11, a2 = a21a22a12 and a3 = a31a32a33a23a13. The 

first element of each of the matrices M0~M5 can be 1 or 0, and therefore there are two 

branches from the root node with label 0 and 1 on the first level. The second level under 

branch 1 can be 707 and 40x in M4 and M5, thus two branches below branch 1 are built. 

Then the following levels of the decision tree can be built by the same process, each branch 

on level i leads to a successor node that is associated with a specific value for the ith element 

of M0~M5. Each permutation matrix is stored in the corresponding node in the decision tree 

(not shown in the figure). Then all the other known attribute graphs can be added into the tree 

in the same way. 

Insert Figure 3. somewhere here  

Let us suppose that we are presented with a new problem represented by matrix M for 

attribute graph G' (see Figure 4). The matrix M is inserted into the tree and can be classified 

to node X according to the values of each branch. The permutation stored to node X gives the 

isomorphism that tells us that Maths(c), Physics(b) and Spanish(a) in attribute graph G 

correspond to English(b), Chemistry(a) and Maths(c) in attribute graph G' respectively. 
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Insert Figure 4. somewhere here  

 
3.2 Retrieving Structurally Similar Cases 

Some course time-tabling problems are generated randomly and their attribute graphs are 

used to build up a decision tree in the proposed system. The solutions of these problems are 

obtained by using a heuristic graph colouring method described in [37]. 

A penalty is associated to each pair of labels described in Table 1 and Table 2 and used in the 

retrieval process. A threshold is also set to judge whether two labels are similar or not. When 

the system tries to match each pair of events in the new problem with source cases, the events 

can be seen as similar if the penalty between their labels is below the threshold. They are 

identified as similar and returned to be matched to each other. 

If an event in the new problem has the same label and the same value as the source case, then 

they match with no penalty. Two events are considered not to be matching if the penalty 

between their labels exceeds the given threshold.  

Two events that are labelled the same are further analysed to see if they have the same 

values. Penalties are given for the differences between the values and are taken into account 

in the similarity measure. 

Every label is also given a weight using domain knowledge for the similarity measure. The 

similarity measure is thus given by formula (1): 

 

 

where n is the total number of the labels, pi,j is the penalty between label i of node or edge in 

the new problem and label j of node or edge of source cases, wi is the weight of label i in the 

new problem and P is the sum of the penalty for every pair of labels times the weight of every 

label. 

Using the penalties assigned to each pair of labels in the course time-tabling problems, the 

retrieval is targeted at matching between every pair of events, not just a single judgement 

∑
=

×−=
n

0j,i
iij P/wp1S (1) 



Knowledge-Based Systems, 13(2-3): 159-165, 2000 

between the whole cases. The system can retrieve the case(s) suitable for adaptation for the 

new problem from the case base.  

When a new problem is entered in the system, it is classified to a node in the decision tree 

and the system retrieves all the cases stored in and below that node as candidates. As the tree 

stores cases hierarchically, all the cases that have more events and/or more relations are 

stored below those having less events and/or relations. It is observed that solutions of more 

constrained cases can be adapted easily for less constrained problems. Thus all the cases in 

and below the node are retrieved. 

Using the penalties for every pair of the labels of nodes and edges, the system calculates the 

similarity between the new problem and the candidate cases in and below the node. The most 

similar case(s) are selected for adaptation. 

 

3.3 Reuse and Adaptation of the Solutions 

After the system finds the most similar case(s), the solutions or part of the solutions of the 

retrieved case(s) can be reused. The system substitutes the events in the solution(s) of the 

retrieved case(s) with the matching events in the new problem according to the 

isomorphism(s) found. After the substitution, a partial solution for the new problem can be 

obtained although there may be some violations of constraints. If there is no violation of hard 

constraint in the retrieved solutions, there is also no violation of hard constraint in the 

solutions after substitution. 

The graph heuristic method which tries to minimise the violations of constraints is used in the 

adaptation process. Events that violate the constraints are collected from the partial solution, 

and all the unscheduled events are ordered first by their degrees (number of conflicts of an 

event with other events) decreasingly and then are assigned one by one to the first available 

timeslot. If some events cannot be assigned to a timeslot without violation of constraints, they 

will be kept until all the other events have been scheduled. Then they are scheduled to the 

timeslots that lead to the fewest number of violations of constraints. 
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4 A Simple Illustrative Example 

Let us suppose that the problem shown in Figure 1 is the new problem. All the cases and their 

isomorphisms are retrieved from the node that the new problem is classified to in the case 

base. Not only the case(s) that are graph isomorphic to the new problem can be adapted, but 

also the case(s) which the new problem is sub-graph isomorphic can be adapted, although 

they may not be “good” solutions for the new problem. Two cases whose similarities pass a 

given threshold (a score we set) are considered to be the most similar to the new problem and 

are retrieved from the case base. The structures of these two cases are shown in Figure 5. It is 

possible to find more than one isomorphism between two graphs. Two isomorphisms were 

found for each of the retrieved cases in this example. 

Insert Figure 5. somewhere here 

After substituting the events of the retrieved cases shown in Figure 4 by matching events 

indicated by the isomorphisms, four solutions can be obtained for the new problem (see 

Table 3). 

Insert Table 3. somewhere here 

It can be seen that there are 3 violations of soft constraints in solution 1: SpanishA is 

consecutive to Physics, Physics is held only 2 times and Maths is scheduled one more time. 

Using the graph heuristic method takes 2 adaptation steps: It deletes Maths from timeslot1 

and adds another Physics to timeslot 5. It can also be seen that there are 1, 3 and 1 

violation(s) of soft constraints in solution 2, 3 and 4 respectively. Using the graph heuristic 

method takes 1 and 2 adaptation step(s) respectively for solution 2 and 3. There is no 

adaptation for solution 4. After adaptation, there is only one violation of a soft constraint in 

each solution. 

The simple example has demonstrated that only a few adaptations are needed to get solutions 

for the new problem on the basis of the solutions of the retrieved similar cases. Cases can 

explore deeper knowledge in course time-tabling problems by the structural representation. 

Retrieval that targets the adaptability of every pair of events between the new problem and 
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the retrieved case(s) finds the most adaptable cases for the new problem, thus a 

corresponding relation between the events and adaptation requirements is built up. 

Employing the adaptation requirements in the definition of the similarity between every event 

pair gives a more elaborate description for the similarity measure. Thus the knowledge and 

experiences previously stored in the retrieved cases’ solutions can be exploited for re-use for 

new similar problems. We note that the CBR can re-use the sub-solutions of previously 

solved problems within the case-base, a manner similar to that of experts in time-tabling. 

 

 

5 Conclusions and Future Work 

In this paper, a method is proposed to help solve course time-tabling problems using CBR in 

which attribute graphs are used to represent cases. To our knowledge, the CBR approach 

proposed in this paper is new in solving the timetabaling problems. Retrieval targets every 

pair of nodes and edges between the new problem and source cases so that the retrieved 

case(s) are the most adaptable for the new problem. The retrieved cases’ solutions store good 

optimised or sub-optimised schedules for the previously solved problems. These schedules 

can be exploited and re-used for the new similar cases, after only limited adaptations for 

solutions which are then applicable for the new problem. The graph data structure gives a 

detailed description of the time-tabling problem. The relations between any events can be 

described clearly, and therefore the application of this method to time-tabling problems is 

likely to find the similar cases adaptable for the new problem. 

In the current system, it is presumed that some pre-compiled cases exist so that the new 

problems can find isomorphic or sub-graph isomorphic cases from the case base. If only part 

of the structure of the new problem found correspondence to part of the structures of the 

source cases, the partial matching could also be reused for the new problem. Research work 

is being undertaken on searching and re-using the maximum-weighted common sub-graphs 

between source cases and the new problem. This work on the simple problem is a potential 
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method and it provides promise. We believe it is applicable to large real world problems. 

Comparison with other methods will form a major part of our future work in this area. 
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Label Attribute Value(s) Notes 
0 Ordinary course N/A Takes place once a week 
1 Multiple course N (No. of times) Takes place N times a week 
2 Pre-fixed course S (Slot No.) Assigned to timeslot S 
3 Exclusive course S (Slot No.) Not assigned to timeslot S 

 

Table 1. Some node attributes of course time-tabling problem 
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Label Attribute Values(s) Notes 
4 Before/after 1 or 0 (direction) One before/after another course 
5 Consecutive N/A Be consecutive with each other 
6 Non-consecutive N/A Not consecutive with each other 
7 Conflict N/A Conflict with each other 

 

Table 2. Some edge attributes of course time-tabling problem 
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 Timeslot1 Timeslot2 Timeslot3 Timeslot4 Timeslot5 
Solution1 Physics, 

Maths, 
Chemistry 

English, 
Geography 

SpanishA SpanishB, 
Physics, 
Maths 

Chemistry, 
Maths 

Solution2 Maths, 
Physics, 

Chemistry 

English, 
Geography 

SpanishA SpanishB, 
Maths, 
Physics 

SpanishB, 
Physics 

Solution3 Physics, 
Maths, 

Chemistry 

English, 
Geography 

SpanishA SpanishB, 
Physics, 
Maths 

Chemistry, 
Maths 

Solution4 Maths, 
Physics, 

Chemistry 

English, 
Geography 

SpanishA SpanishB, 
Maths, 
Physics 

Chemistry, 
Physics 

 

Table 3. Solutions after substitution by using isomorphism 
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Figure 1. Attribute graph of a course time-tabling problem 
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 a b c   a c b   b a c   b c a   c a b   c b a 
a 0 7 7  a 0 7 7  b 0 7 4  b 0 4 7  c 1 7 x  c 1 x 7 
b 7 0 4  c 7 1 X  a 7 0 7  c x 1 7  a 7 0 7  b 4 0 7 
c 7 x 1  b 7 4 0  c x 7 1  a 7 7 0  b 4 7 0  a 7 7 0 
  M0    M1    M2    M3    M4    M5 

 

 

 

 

 

Figure 2. Matrices of attribute graph G of a course time-tabling problem 
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Figure 3. Part of a decision tree storing matrices of attribute graph G of a course time-tabling problem. 

(M0, M2 and M4 are shown) 
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a 7 0 4 
b 7 x 1 
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Figure 4. Matrices of attribute graph G’ for a new course time-tabling problem 
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Figure 5. Two retrieved cases from case base 
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