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Abstract. This paper is a self-contained development of an invariant of graphs

embedded in three-dimensional Euclidean space using the Jones polynomial and skein

theory. Some examples of the invariant are computed. An unlinked embedded graph

is one that contains only trivial knots or links. Examples show that the invariant is
sufficiently powerful to distinguish some different unlinked embeddings of the same

graph.

The Jones polynomial[J] assigns an invariant to each oriented link L in R3 which
is a Laurent polynomial VL(t) in the variable

√
t. The product VL(t)VL(t−1) is

another Laurent polynomial in t and can be expressed in terms of λ = t + t−1 to
give an ordinary polynomial

rL(λ) = rL(t+ t−1) = VL(t)VL(t−1).

The polynomial RL(λ) is defined by1

RL(λ) = (λ+ 2)rL(λ).

The invariant RL does not depend on the orientation of the link L and cannot
distinguish a link from its mirror image. The advantage of the polynomialRL is that
the definition extends to an invariant of graphs embedded in R3, a generalisation
of the idea of a link in which vertices where a number of edges meet are allowed.
The idea of this paper is to develop this invariant using elementary ideas from
skein theory and this definition of RL for links. The paper is restricted to the
simplest case for which every vertex is four-valent (has degree four), but there is a
generalisation to vertices of any even valence.

A graph is defined here as a compact polyhedron which is locally isomorphic to

either an interval of the real line or to ; in particular a component of a graph

may be a circle with no vertices.

1The extra factor λ+ 2 is included so that the unknot U has invariant RU (λ) = λ+ 2 and the

empty link has polynomial 1.

Typeset by AMS-TEX

1



2 JOHN W. BARRETT

The invariant for the four-valent vertex is defined by

= P (λ)

(
λ + λ + +

)
(1)

The graph invariant RG for an embedded graph G is defined by applying this
relation to every vertex in a diagram for G, then evaluating the resulting link
diagrams L using the previously defined RL. The fact that this does not depend
on the projection and gives an invariant of ambient isotopy of the embedding is
proved below.

The normalising factor P (λ) can be chosen arbitrarily. Choosing P = 1 would
give a polynomial for each embedded graph. The definition used here is

P (λ) =
1

(λ+ 1)(λ + 2)

This choice has the disadvantage that the invariant for graphs is no longer always a
polynomial but a rational function. However the advantage is that the expressions
for the examples calculated here are somewhat simpler.

Louis Crane and I came across a formula for the 4-valent vertex while studying
quantum gravity, expressed in terms of the representation theory of Uqsl(2) [BC].
Yetter gave the theory of the embedded graph invariant, and extended it to vertices
of arbitrary valence[Y2]. In [B] I gave an alternative definition of Yetter’s invariant
based on the Kauffman bracket approach to spin networks [K2]. The invariant
in those papers is more general than the one considered here in that each edge
is labelled with an arbitrary representation of Uqsl(2). The idea of the present
paper is to take a special case, namely the fundamental representation, and to
give a completely self-contained treatment which does not need any machinery of
quantum groups or category theory. In the process, simple formulae, such as the
definition (1), become apparent, and the properties and examples can be developed
rapidly.

Table 1 gives some examples of the evaluation of the invariant for 4-valent graphs
and links. In the table, the examples with the same letter, e.g. A and A′, are the
same graph but with different embeddings. Two edges can be removed from A′

to give a trefoil knot F and so it is perhaps not surprising that the invariant can
distinguish A and A′. The examples B,B′,B′′ again share the same graph. B′ is
linked in the sense that removing the two outer edges gives the Hopf link E.

However B′′ is an unlinked embedded graph in this sense: any way of removing
edges from B′′ to make a link results only in a number of unlinked unknots. Yet B
and B′′ differ; they have different R invariants. The example C ′ is also an unlinked
embedding2 which differs from the ‘trivial’ embedding C.

Properties of the invariant. The main relation satisfied by the invariant RL for
links is the following cubic relation on the braid generator

2This example was found by Paul Langlois
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Table 1. The embedded graph invariant

R(λ) R(2) R(1) R(−1)

A 2 2 2 2

A′ −λ3 + 2λ2 + 2 2 3 5

B λ+ 2 4 3 1

B′ λ2 − λ+ 2 4 2 4

B′′ −λ3 + 4λ2 − 3λ+ 2 4 2 10

C λ+ 2 4 3 1

C ′ (λ + 2)(λ5 − 3λ4 + 4λ2 + 1) 4 9 1

D λ+2
λ+1

4
3

3
2 ∞

D′ −λ3+3λ2−λ+2
λ+1

4
3

3
2 ∞

E λ2(λ + 2) 16 3 1

F (λ+ 2)(−λ3 + λ2 + 2λ+ 1) 4 9 1

G 3λ2+6λ+4
(λ+1)2(λ+2)

7
9

13
12

∞
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Lemma 1. The invariant satisfies

= (1 − λ) + (λ− 1) +

Proof. The invariant RL for a link L is related to the (suitably normalised) Kauff-
man bracket polynomial[K] for the same diagram N(A), by

RL(A4 +A−4) = N(A)N(A−1).

The braid generator b for the Kauffman bracket satisfies the quadratic relation

A−1b2 + (A2 −A−2)b −A = 0.

The braid generator for the invariant RL can be represented by

= b⊗ b−1.

Then Lemma 1 follows from using the quadratic relation for b.

Theorem 2. The definition of R for 4-valent embedded graphs in R3 is independent
of the diagram and is an invariant of ambient isotopy.

To prove invariance under ambient isotopy of the embedding of the graph it
suffices to check a set of extended Reidemeister moves [Y]. The symmetry relation

=

follows immediately from the definition, while the permutation property of the
vertex

= (2)

follows from a calculation using Lemma 1.

This theorem could also be proved by establishing the equivalence with the
invariants in [Y2].

The invariant is an example of the more general ‘rigid vertex’ invariants described
in [KV] which do not necessarily have the invariance (2) under the permutations of
edges meeting at the vertex. Some other equivalence relations on embedded graphs
and invariants of these are studied in [T].
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Lemma 3. A further property of the invariant is

=

This can be taken as the way of fixing the normalising factor P .

Specializations. Finally, there are three specializations of particular interest, λ =
2, 1 and −1, tabulated for the examples in table 1. The value R(2) does not depend
on the embedding of the graph. The invariant is just a product of the invariants
for each component, with a circle equal to 4. The invariant R(1) for links gives
the three-colouring invariant [P]. For a graph, this gives an extension of the three-
colouring invariant as a count of the number of ways of colouring the arcs of a
diagram with particular weights for the patterns at each vertex. The invariant
R(−1) is equal to 1 for every link, but this no longer holds for embedded graphs.
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