
A New Genetic Algorithm for

Set Covering Problems

Annual Operational Research Conference 42, Swansea, UK, 2000.

An indirect genetic algorithm for the non-unicost set covering problem is presented. The algorithm is a

two-stage meta-heuristic, which in the past was successfully applied to similar multiple-choice

optimisation problems. The two stages of the algorithm are an ‘indirect’ genetic algorithm and a

decoder routine. First, the solutions to the problem are encoded as permutations of the rows to be

covered, which are subsequently ordered by the genetic algorithm. Fitness assignment is handled by

the decoder, which transforms the permutations into actual solutions to the set covering problem. This

is done by exploiting both problem structure and problem specific information. However, flexibility is

retained by a self-adjusting element within the decoder, which allows adjustments to both the data and

to stages within the search process. Computational results are presented.

Dr Uwe Aickelin

School of Computer Science

University of Nottingham

NG8 1BB UK

uxa@cs.nott.ac.uk

 2

Background

Aim:

• Develop a Genetic Algorithm to solve Set

Covering Problems.

Background:

• Successfully Dealing with Constraints (Nurse

Scheduling).

• Next Step: Set Partitioning Problems.

 3

The Set Covering Problem

The problem of covering the rows of an m-row, n-

column, zero-one matrix aij by a subset of the

columns at minimal cost.

Defining xj = 1 if column j with cost cj is in the

solution and xj = 0 otherwise.

{ } jx

ixa

xc

j

n

j

jij

j

jj

∀∈

∀≥∑

∑

=

=

1,0

1 subject to

 Minimise

1

n

1

 4

A New Genetic Algorithm for

Set Covering Problems

Idea:

• If the order of rows is right, a (relatively)

simple heuristic can solve the problem.

Method:

• Two stage approach.

• Genetic Algorithm finds the ‘best’ permutation

of rows.

• Decoder Routine assigns ‘best’ columns to

rows in given order.

 5

Genetic Algorithms (GA)

• A Heuristic based on the principles of natural

evolution and ‘survival of the fittest’.

• Population: The GA works with many solutions

at the same time. New Solutions inherit good

parts from old solutions.

• Coding: Transformation such that genetic

operators can be applied to solutions. (Here: A

permutation of the rows.)

• Fitness: The fitter a solution, the more likely it

will contribute to new solutions. (Here: The

cost of the columns to cover the rows.)

 6

Genetic Algorithms (GA)

• Selection: Individuals (solutions) are ranked

according to fitness. The higher the rank the

more likely they are chosen as a parent.

• Crossover: Combining parts of parent

individuals (cut and paste) to create new

solutions: ‘Building Block Hypotheses’.

• Mutation: Minor random changes of an

individual.

• Replacement: ‘Elitist’ Strategy, i.e. the best

20% of the old solutions are kept. The rest are

replaced.

 7

The Decoder

• Must be computationally efficient.

• Must be deterministic, i.e. same permutation

always yields same solution.

• Should produce good solutions.

 8

How to choose a column?

Cycle through all possible candidate columns.

Choose the one with the highest score based on:

• Cost of column.

• How many uncovered rows does it cover?

• How many rows does it cover in total?

• Will its inclusion make another column

redundant?

 9

How to balance these multiple criteria?

• Weights will depend on data and progress of

algorithm.

• Parameter optimisation is too complex.

Solution:

• Genetic algorithm optimises weights parallel to

permutations.

• For w weights attach w extra genes to a string

and randomly initialise weights.

• Children inherit the rank-weighted average of

their parents.

• More important score parts receive higher

weights.

 10

Further Enhancements

• How many rows does a column share with

those already chosen?

• How does a column’s cost rank for all

uncovered rows it would cover?

• How does a column’s cost rank for all rows it

would cover?

• Remove redundant columns with a simple hill

climber.

• Use a variety of crossover operators (from

conservative to aggressive), controlled by the

GA.

 11

Results

• 65 data sets from 200 rows / 1000 columns to

1000 rows / 10000 columns.

• 10 run average over all files within 2% of

optimal / best known solutions.

• Best of each run on average within 1% of

optimal / best known solution.

• Solution time on average 38 seconds on a 450

MHZ PC.

1
2

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

1
6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

D
a
ta
 F
il
e
s

Deviation from best known solution

 13

Remaining Questions

• How often / early should the hill climber be

used?

• Other criteria to select columns?

• Allow mutation to alter solutions directly?

