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An indirect genetic algorithm for the non-unicost set covering problem is presented. The algorithm is a 

two-stage meta-heuristic, which in the past was successfully applied to similar multiple-choice 

optimisation problems. The two stages of the algorithm are an ‘indirect’ genetic algorithm and a 

decoder routine. First, the solutions to the problem are encoded as permutations of the rows to be 

covered, which are subsequently ordered by the genetic algorithm. Fitness assignment is handled by 

the decoder, which transforms the permutations into actual solutions to the set covering problem. This 

is done by exploiting both problem structure and problem specific information. However, flexibility is 

retained by a self-adjusting element within the decoder, which allows adjustments to both the data and 

to stages within the search process. Computational results are presented. 
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Background 

 

 

Aim: 

 

• Develop a Genetic Algorithm to solve Set 

Covering Problems. 

 

 

 

Background: 

 

• Successfully Dealing with Constraints (Nurse 

Scheduling). 

 

• Next Step: Set Partitioning Problems. 
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The Set Covering Problem 

 

 

The problem of covering the rows of an m-row, n-

column, zero-one matrix aij by a subset of the 

columns at minimal cost. 

 

Defining xj = 1 if column j with cost cj is in the 

solution and xj = 0 otherwise. 
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A New Genetic Algorithm for 

Set Covering Problems 

 

 

Idea: 

 

• If the order of rows is right, a (relatively) 

simple heuristic can solve the problem. 

 

 

 

Method: 

 

• Two stage approach. 

 

• Genetic Algorithm finds the ‘best’ permutation 

of rows. 

 

• Decoder Routine assigns ‘best’ columns to 

rows in given order. 
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Genetic Algorithms (GA) 

 

 

• A Heuristic based on the principles of natural 

evolution and ‘survival of the fittest’. 

 

 

• Population: The GA works with many solutions 

at the same time. New Solutions inherit good 

parts from old solutions. 

 

 

• Coding: Transformation such that genetic 

operators can be applied to solutions. (Here: A 

permutation of the rows.) 

 

 

• Fitness: The fitter a solution, the more likely it 

will contribute to new solutions. (Here: The 

cost of the columns to cover the rows.) 
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Genetic Algorithms (GA) 

 

 

• Selection: Individuals (solutions) are ranked 

according to fitness. The higher the rank the 

more likely they are chosen as a parent. 

 

 

• Crossover: Combining parts of parent 

individuals (cut and paste) to create new 

solutions: ‘Building Block Hypotheses’. 

 

 

• Mutation: Minor random changes of an 

individual. 

 

 

• Replacement: ‘Elitist’ Strategy, i.e. the best 

20% of the old solutions are kept. The rest are 

replaced. 
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The Decoder 

 

 

• Must be computationally efficient. 

 

 

• Must be deterministic, i.e. same permutation 

always yields same solution. 

 

 

• Should produce good solutions. 
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How to choose a column? 

 

 

Cycle through all possible candidate columns. 

 

 

 

Choose the one with the highest score based on: 

 

• Cost of column. 

 

• How many uncovered rows does it cover? 

 

• How many rows does it cover in total? 

 

• Will its inclusion make another column 

redundant? 
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How to balance these multiple criteria? 

 

 

• Weights will depend on data and progress of 

algorithm. 

 

• Parameter optimisation is too complex. 

 

 

 

Solution: 

 

• Genetic algorithm optimises weights parallel to 

permutations. 

 

• For w weights attach w extra genes to a string 

and randomly initialise weights. 

 

• Children inherit the rank-weighted average of 

their parents. 

 

• More important score parts receive higher 

weights. 
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Further Enhancements 

 

 

• How many rows does a column share with 

those already chosen? 

 

 

• How does a column’s cost rank for all 

uncovered rows it would cover? 

 

 

• How does a column’s cost rank for all rows it 

would cover? 

 

 

• Remove redundant columns with a simple hill 

climber. 

 

 

• Use a variety of crossover operators (from 

conservative to aggressive), controlled by the 

GA. 
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Results 

 

 

• 65 data sets from 200 rows / 1000 columns to 

1000 rows / 10000 columns. 

 

 

• 10 run average over all files within 2% of 

optimal / best known solutions. 

 

 

• Best of each run on average within 1% of 

optimal / best known solution. 

 

 

• Solution time on average 38 seconds on a 450 

MHZ PC. 
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Remaining Questions 

 

 

• How often / early should the hill climber be 

used? 

 

 

• Other criteria to select columns? 

 

 

• Allow mutation to alter solutions directly? 
 


