
Vector Graphics: From PostScript and Flash to SVG
Steve Probets, Julius Mong,

David Evans, David Brailsford

School of Computer Science & IT

University of Nottingham

(+44) (0)115 9514230

sgp|jxm|dre|dfb@cs.nott.ac.uk

ABSTRACT
The XML-based specification for Scalable Vector
Graphics(SVG), sponsored by the World Wide Web consortium,
allows for compact and descriptive vector graphics for the Web.

SVG's domain of discourse is that of graphic primitives whose
optional attributes express line thickness, fill patterns, text size
and so on. These primitives have very different properties from
those of the traditional document components (e.g. sections,
paragraphs etc.) that XML is normally called upon to express.

This paper describes a set of three tools for creating SVG, either
from first principles or via the conversion of existing formats.
The ab initio generation of SVG is effected from a server-side
CGI script, using a PERL library of drawing functions; later
sections highlight the problems of converting Adobe PostScript
and Macromedia's Shockwave format (SWF) into SVG.

Keywords
SVG, Flash, SWF, PDF, PostScript.

1. INTRODUCTION
The World Wide Web's enormous success has been achieved by
marking up Web documents with a simple set of HTML tags to
denote basic structural and layout concepts such as bold
headings, tables etc. But perhaps the most striking weakness of
today's Web technology is that all graphic material has to be
expressed in one of three raster-based formats (GIF, JPEG,
PNG). Such formats distort badly at any scaling factor other than
1:1, owing to the pixel-by-pixel way in which the image data is
stored. Moreover, these formats are innately non-searchable and
this is a severe limitation given that a common use of graphics on
the Web is for representation of annotated maps and line
diagrams, together with exotic characters and logotypes that lie
outside conventional character sets.

In recent years Macromedia'sFlash and its associated
Shockwave format (SWF)[1] have achieved a degree of
acceptance, via plug-in software to popular Web browsers, as a

standard for displaying vector graphics on the Web. However,
SWF uses a binary rather than a text-based format which
provides few ‘hooks’ for text searchability or image extraction.

In early 1998 the World Wide Web consortium (W3C) invited
proposals for a new standard for vector graphics on the Web.
Given the widespread adoption of XML[2] meta-syntax as a
means of expressing new functionality in Web documents it was

to not surprising that two of the initial proposals–PGML (from

Adobe Systems Inc.) and VML (from Microsoft Inc.)–were XML
based. In September 1998 these proposals were subsumed into a
new draft proposal called SVG (Scalable Vector Graphics) under
the auspices of the W3C[3]. The SVG working group has more
than 20 members representing most of the major companies in
the graphics software industry. The SVG 1.0 proposal is now a
W3C proposed recommendation. It would be fair to say that the
graphics model of SVG owes much to PostScript, whereas the
tags and their attributes have been influenced by VML. The text-
based nature of SVG (and the tree structure implicit in its XML
representation) should make text search and graphics
transformations relatively straightforward.

The remaining sections of this paper focus first of all on
generating SVG from first principles via PERL scripts, followed
by a description of how PostScript and Shockwave/SWF can be
converted to SVG. Firstly we focus on SVG-PL, which is a
library of Perl functions for generating ‘SVG on the fly’ from
Web CGI scripts. The great advantage of creating such a library
from first principles is that its design can faithfully reflect the
possibilities for object attributes, and object groupings, that are
inherent in the SVG target language.

We then discuss two further software tools for converting
PostScript and Flash into SVG. In both cases the faithfulness of
the conversion to SVG, and the degree of code optimisation that
can be achieved, depends on the degree of similarity between the
underlying graphics models of source and target languages. If
translation occurs from a less complex format into a richly
descriptive format then, in order to make maximum use of the
richer format, intelligence must be derived from the translation
process. Bottom-up inference of intent is notoriously hard. For
example, PostScript to SVG is an obviously desirable translation
and yet most PostScript is in final form, making it difficult to
decide which parts of a graphical object are inter-related and
capable of being abstracted into groups.

The fact that SVG is an application of XML means that the
purely syntactic aspects of the target language are well specified.

.
FINAL DRAFT of paper accepted for:w
DocEng�O2001, November 9-10, 2001, Atlanta, GGeorgia, USAA.
Copyright 2001 Probets, Mong, Evans and Brailsford

But even within this well-defined framework the design of the
SVG tagset has to decide whether certain graphic features shall
be elements in their own right or be hierarchically nested sub-
elements. Thus it will be helpful to develop some background to
the XML meta-syntax, since this affects certain of the non-
graphic semantic properties of SVG.

2. XML AND SGML
XML is designed to be a simplified subset of the Standard
Generalised Mark-up Language (SGML) which has been used in
the publishing community for many years. Like SGML, XML is a
standardmeta-syntax. The thing that is ‘standard’ about it is not
that it defines a fixed tagset but, rather, that it defines the
alphabet and the ‘punctuation’ that are used within and around
the defined tags. For example, angle brackets are used to
delineate a tag (so the start of a paragraph might be marked by
<para>) whereas a forward slash following an open angle
bracket is the meta-notation for an end tag (so</para> would
denote the end of a paragraph.) By contrast, although HTML
uses SGML meta-syntax, it is not a subset of it. HTML is an
application of SGML; it is a fixed set of tags which have been
defined for straightforward interpretation by Web browser
software.

A document type definition (DTD) can be made available to an
SGML or XML parser and this sets out a syntax for the tags that
will be allowed when marking up documents of a particular
class. Thus, a DTD is functionally similar to a meta-syntactic
definition for the syntax of a programming language and a full
SGML system is capable of creating a parser for the given
document class directly from the DTD itself (this is reminiscent
of the use of a meta-syntax or ‘two-level grammar’ in languages
such as Algol 68).

Although it is possible to specify, in a meta-syntax, a wide range
of structural options within the generated language, this is not
generally regarded as a good idea; many years of compiler-
writing experience have persuaded language designers not to flirt
with anything that allows valid programs in a language to be
either difficult to parse or to veer towards ambiguity.
Nevertheless, full SGML has an ability, in a DTD, to specify
‘inclusions’ and ‘exclusions’, together with optional end-tag and
start-tag omissions. These facilities lend great power and
flexibility when using SGML tags to mark up complex
documents, but in some cases it can be extraordinarily hard to
generate parsers for the document class in question, and equally
hard to distinguish erroneous document markup from ‘expert
markup’ which is making full use of the tag minimisation
features declared in the given DTD.

For these and other reasons full SGML was deemed
unsuitable for a simple easy-to-parse framework for extending
the functionality of Web browsers. Instead, the XML subset of
SGML was proposed in 1997 as a lightweight (but much more
restrictive) meta-syntax for Web use. Like SGML, document type
definitions (DTDs) are supported in XML and these DTDs
specify which tags orelementsare allowable, the syntax for the
tags, their relatedattributes (which are similar in spirit to
procedure arguments in programming languages) and other
properties related to how the tags may be ordered and nested.

The meta-syntax for specifying the DTD itself is similar to
SGML, but is neither identical to it nor a proper subset of it.
Moreover a DTD is very limited in the amount of type
information it can convey, either for the elements themselves or
for their attributes. For these reasons XML parsers (while
continuing to accept DTDs as a possibility for tagset definition)
are increasingly able to acceptschemaswhich specify an XML
tagset (with more powerful typing information than a DTD)
using XML meta-syntax.

Among the dozen or so restrictions of XML compared to full
SGML, three notable restrictions are:

• No tag omissions, all start and end tags must be present.

• All attribute names (c.f. ‘formal parameter names’ in
programming languages) must be fully specified and attribute
values (c.f. ‘actual parameter values’ in programming language
function calls) must be enclosed in quotation marks.

• Tags that do not enclose embedded content, but which may
still have attributes, are allowed a special shorthand form
which elides the end tag with the start tag. Examples of this
would be
 and <EMPTY attributes =
"allowed"/> .

XML has its own specification[2] which sets out the allowed
syntax for the tags, together with their related attributes and any
required tag ordering constraints.

XML can represent nested document structures (e.g. sections,
sub-sections and so on) and document elements which are
sequenced (e.g. a sequence of paragraphs forming a section of a
document). More generally it can represent arbitrary tree
structures, with optional attributes attached to the internal nodes,
and the Document Object Model (DOM) allows the tree structure
to be traversed, inspected and modified. The particular properties
of the DOM for SVG will be addressed in a later section.

3. PROPERTIES OF SVG
Because SVG is XML-based, the files are generally easier to
parse than the binary format files of SWF, and there is the added
benefit that elements within the files are stored as text, enabling
search engines to index SVG files, or SVG components within
HTML files. The fact that SVG is not binary makes it easier for
SVG files to be created from compliant applications. SVG files
are designed to be platform- and device-independent, with a
hierarchical structure enabling sets of vector graphic primitives
to be grouped together and manipulated as shapes. Just as in
PostScript and Flash, these shapes can have transformation
matrices applied to them which perform scaling and positioning.
These transformation matrices can then be altered over time to
create animation effects. There are a number of event-driven
procedures (e.gOn-Mouse-Over) which provide a degree of
user interactivity. Properties such as fill-colour and stroke-width
are stored as XML attributes. Certain graphics elements (e.g.
circle, polygon, rectangle) and groups are defined as XML
elements. The properties of these elements are defined using
XML attributes to describe their appearance e.g. a red 50×50
rectangle, positioned at coordinates (100,100) could be specified
by:

<rect id="myrect" x="100" y="100"
width="50" height="50"

style="fill: #ff0000; stroke: none"/>

SVG supports the Document Object Model[4], wherein the
graphic is considered to be a hierarchical tree structure, with
attributes (colours, line-widths etc.) able to be set at any node,
and the DOM being a platform-neutral interface through which
the tree structure and the node attributes can be changed.
Typically the tree can be modified through a scripting interface,
which alters the tree nodes and attributes in the specified way
before handing back control to the enveloping SVG application
to allow the tree to be re-interpreted. and the graphic updated. A
variety of scripting languages could be used to modify the tree,
and indeed the XML application called XSLT has been designed
precisely for specifying the tree-to-tree transformations that are
typical of DOM manipulation. However, for our experiments we
have used Javascript (now standardised as ECMAscript[5]); its
serial nature, and the resemblance to conventional programming
languages, often makes it a more natural vehicle than XSLT for
specifying tree modifications that correspond to dynamically
evolving graphical effects.

Additional flexibility over SVG graphical attributes can also be
obtained by grouping elements together between<group>
</group> tags. The attributes of the<group> tag itself can
specify such things as line colour and fill pattern which will
apply to all of the elements in the grouping.

Creating SVG graphics that have a useful DOM is an important
part of intelligent generation of SVG. This in turn implies that
the underlying semantics of the graphic primitives and attributes
in SVG have to be studied carefully whenever translation from
some other graphic format is being undertaken. Even if two
graphics languages have similar levels of sophistication, it can be
amazingly difficult to achieve efficient and optimal code if the
semantics of their underlying graphic primitives differs radically.

To complicate matters further, some of the SVG graphic
properties can be inherited not only from node attributes in the
SVG tree but also from browser stylesheets within the CSS or
XSL frameworks. This brings into stark focus an issue first
identified by workers standardising the Computer Graphics
Metafile[6,7] proposals: is a given graphic propertyintentionalor
is it purely stylistic? For example, the red background colour,
white lettering and hexagonal shape of an international STOP
sign reflect agreed intentional standards whereas the text size,
background colour and general layout of a Web page may reflect
nothing more than what ‘looks good’. There is a strong argument
that intentional properties should be expressed as XML
attributes of the object in question, leaving any optional styling
characteristics to be inherited from stylesheets.

4. CREATING SVG ab initio FROM PERL
Web pages are increasingly being tailored dynamically, in
response to the profiles of the various users that visit a given
Web site. This profile might be built up from information such as
the IP address of the client machine coupled with extra
information that the user has typed in to a Web form. But if the
confected page has vector graphic components such as
flowcharts, maps or line diagrams it is galling that current Web
technology requires the preparation of a (potentially very large)

library of GIF images so that the correct image can be chosen and
inserted into the generated page. Each GIF insert is in itself large
and incapable of being scaled elegantly by client browsers. By
contrast, SVG offers the possibility of generating server-side
vector graphics ‘on the fly’ and downloading much smaller files
which have just a few line drawing and fill commands.

The technology for flexible response to Web page queries and the
gathering together of customised responses is generally handled
by a Common Gateway Interface (CGI) script. These scripts
frequently make use of the PERL language and so it seemed
natural to provide SVG capabilities for CGI via a PERL library.
The SVG-PL library (which can be found at
www.ep.cs.nott.ac.uk/projects/SVG/SVGPL) is a
collection of Perl 5 modules, which define many useful and user-
friendly functions to ease the process of generating valid SVG
documents. The structure of SVG-PL is very similar to that of
PDF-PL (www.ep.cs.nott.ac.uk/pdf-pl/) which
generates ‘PDF on the fly’. Each SVG-PL application program
must have aFile object that carries a file handle for the
document being generated, and aGraphics object that acts as
the interface through which all drawing functions are invoked.

The key advantage of generating SVGab initio is that the PERL
library functions can be set up to mirror exactly the functionality
that SVG provides. SVG-PL provides more than a hundred
functions for generating all possible SVG elements with
appropriate attributes and these functions can be broadly grouped
into the following five categories: Path and Shapes, Text and
Fonts, Links and Rendering, Extensions and Filter Effects,
Animation. PERL has the usual programming language control
constructs coupled with the ability to make certain functions be
‘private’ and invokable only in well-defined surrounding
contexts. For example, the generation of a closed path can be
achieved within a SVG-PLbeginCPath and endCPath
environment which then, in turn, allows the use of the private
unctions moveto , lineto , closepath , hlineto ,
vlineto , curveto , arcto etc. An extensive range of aliases
has been defined to help in generating compact PERL code so,
for example,b() , e() andd() will invoke the corresponding
begin...() , end...() , anddraw...() functions. Note
that SVG-PL automatically decides which boundary to close
when the alias functione() is called, although the user could
still explicitly close the open boundary by calling its
corresponding end...() function. Here is a short SVG-PL
example to generate code for moving to a specified point and
then generating a black-line curve having a stroke width of 5
points:

#cpath is a SVG-PL keyword for user
#customised paths

$g->b(cpath,style,"fill:none; stroke:black;
stroke-width:5");

$g->moveto("abs", $xoff, $yoff);

$g->curveto("rel", 0, 0, $xoff*1.5, 15,
$xoff*3, 0);

$g->e();

A complete PERL program (ignoring some initialisation code)
using SVG-PL, which generates a simple ‘Hello World’ SVG
drawing would be:

Hello World!

#OPEN FILE

my $svg = File->new();

$svg->open("Hello.svg", "public",
"encoding", "iso-8859-1", "silent");

#BEGIN GRAPHICS

my $g = $svg->beginGraphics();

TEXT lines

$g-
>b("svg","viewBox","0","0","600","400","wid
th","400","height","300");

$g-
>b("text","xval","200","yval","200","style"
,"font-size:24pt;

font-face:Helvetica");

$g->printTxt("Hello World");

$g->e();

$g->e();

$svg->close($g); # END line

In the first OPEN FILE line, a local variable ($svg) is defined
and initialised to be the reference to a newFile object. The
second line opens a file for output and prints the relevant headers
to the SVG file. The BEGIN GRAPHICS line creates a
Graphics object from the File object and all graphic
elements must be drawn usingGraphics methods only. The
TEXT lines first open a drawing area, then define a text marking
area for putting the text string ‘Hello World’ onto the page at a
specified location in user co-ordinates. The twoe() statements
close the text followed by the graphics area. TheENDline closes
first the Graphics object and finally the File object as well as the
output file.

The generated SVG code would look like the following:

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG
03March 2000//EN"

"http://www.w3.org/Graphics/SVG/SVG-
19990303.dtd>

<svg width="400" height="300" viewBox="0 0
400 300">

<text style="font-size:48;font-
face:Helvetica;fill:black;" x="75.992"

y="174">Hello World</text>

</svg>

Note that in this example the number of lines in the SVG code is
rather less than that in the Perl program, largely because of the

fixed overhead for invoking the libraries and setting up File and
Graphic objects. For larger examples the Perl code is about 50%
the size of the generated SVG because of the short aliases
already discussed and the availability of control constructs such
as ‘for’ and ‘while’ to simplify the generation of similarly-
structured SVG elements.

There are also functions which allow users define a set of x and
y coordinates as a pivot point to which a text string could be
aligned. For example one could indicate the top left hand corner
of a text string to be the point specified by the user-defined set of
x and y coordinates, and thus have the text aligned to the left and
bottom against the pivot point. An example SVG drawing
generated from use of such text alignment functions provided by
SVG-PL is shown in figure 1.:

Figure 1: SVG Drawing Generated From Text Alignment
Functions

SVG code produced using the current release of SVG-PL is, in
some sense, about 80% optimised. This is due to the fact that the
begin ...() and end...() constructs are a natural way
of expressing SVG's groupings of graphic primitives having the
same attributes and SVG-PL also has some low-level
optimisations that will, for example, convert multiplelineto
commands into a single one. It is hoped to implement better
optimisations in the near future. For example, attributes within a
group boundary are currently not remembered by SVG-PL; if
elements within a group boundary repeat the attributes already
defined in the group statement then the repeated attributes can be
discarded. Moreover, there is useful functionality in the
companion PDF-PL library for generating Acrobat/PDF (namely,
a function to save the current graphics state) which has not yet
been implemented in SVG-PL. This and other improvements are
planned for the next release of SVG-PL.

Demonstration projects are available at:
www.ep.cs.nott.ac.uk/projects/SVG/svgpl/

5. CONVERTING POSTSCRIPT TO SVG
PostScript is a page description language designed and
implemented by Adobe Systems, with the first version being
released in 1984. Since that time, PostScript has become an
industry standard for quality text and graphics, and has now
reached its third major version (PostScript Level 3). PostScript is
an interpreted graphics description language, which uses postfix
notation, and which is capable of specifying complex two-
dimensional paginated graphics in a manner which is both device
and resolution independent.

The Portable Document Format (PDF)[8] is another page
description standard which has been developed by Adobe
Systems, with an imaging model which is very similar to that of
Level 2 PostScript[9].

5.1 PostScript/PDF and SVG
As part of our SVG project, we have been developing a
Ghostscript driver to output SVG files. Ghostscript is a
PostScript interpreter, which is available under the terms of the
GNU Public License, and in commercial forms too. It is widely
used as a free PostScript interpreter on various operating
systems, both for on-screen display and for printing to various
printers through its various ‘back-end’ printer drivers. As well as
Ghostscript's wide use and extensibility, another benefit is that
because of PDF's similarity to PostScript, Ghostscript has been
modified so that it can interpret PDF as well as PostScript. Thus,
our SVG driver will effectively convert both PostScript and PDF
into SVG. In what follows, therefore, a reference to PostScript
input will also be applicable to PDF input. The graphics model
underlying PostScript and PDF is very similar to that of SVG,
thus making conversion relatively straightforward. Vector
graphics such as lines and curves can map directly from one to
the other, and text can be output using Cascading Style
Sheets[10] (CSS2). Text output must, of course, be careful to use
appropriate entities for characters such as<, >, and& if these are
to appear ‘as themselves’ and not be mistaken for XML
metasyntax. Care must also be taken to use the PostScript font
encoding vector to extract further information for characters
outside the normal ASCII range, such as accented characters and
symbols. Bitmapped images are converted to separate JPEG files
which can then be referenced from the SVG file using an
<image> element, which is similar to the HTML
element.

So, if care is taken with the issues outlined above, the basic
framework of PostScript to SVG conversion is relatively
straightforward, but problems begin to arise when attempting
optimisation of the generated SVG code. We have already seen,
when generating SVG directly from Perl scripts, that repeated
attributes (e.g. those specifying colour, fill-type, or font), and the
fact that XML is quite verbose, can lead to large file sizes. The
same issues arise when converting from PostScript and, at the
very least, the output needs to minimise the coordinate
information, making use of SVG's ability to specify absolute or
relative coordinates, and omittingx or y coordinates whenever
these remain unchanged. For example, when printing text along a
horizontal line, an initial (x,y) position is required, but
afterwards onlyx positions will be required. Attributes which
change infrequently are best handled by using SVG's groups to
set the attribute so that it does not need to be repeated within the
group. For example, if the fill colour was set to red, one would
wish to generate:

<g style="fill:#ff0000">

<path d="M20,20 L50,10 L80,80 L70,95"/>

...

</g>

The problem with trying to do this in a Ghostscript driver is that
GhostScript's internal interfaces are set up for writing printer
drivers where code for the target printer is to be generated as

quickly as possible and where optimisation is not a major issue.
There is a large amount of ‘graphic state’ information implicitly
present in GhostScript's data structures but it is not usually
necessary to probe this state extensively to generate adequate
code for a printer. Indeed, many target printers will be building
up their own internal notion of ‘state’ from the stream of
commands that they receive. For these reasons GhostScript
output drivers generally retain little or no knowledge of what has
gone before, or what is coming next.

To achieve the desirable code optimisation of grouping elements
together where possible, the GhostScript SVG driver must save
substantial extra state information to decide when it is worth
while to start a group. This grouping of repeated graphical
elements is possible in SVG by using<symbol> or <g>
elements with IDs specified inside a<defs> section, which are
then rendered using the<use> element. However, extracting
repeated paths is difficult inside a Ghostscript driver. One
possibility here, is to routinely group all paths, giving each one
an ID, and to retain knowledge of that group in memory. When a
subsequent matching path is found the original definition can
then be re-used. Ghostscript already enables one optimisation in
that it recognises rectangles internally and provides output
drivers with a procedure for filling them and/or stroking the
perimeter. In this case, the SVG output can use the<rect>
element instead of a filled or stroked path containing four lines
(which is all that is possible in PostScript).

5.2 Size and speed issues

Simple vector graphics are likely to be smaller as SVG files than
as application-generated PostScript files, because the latter
typically contain a sizeable overhead in the size of the PostScript
prologue prepended to all files (perhaps 10KB or more). As we
have already noted, an SVG file has a certain overhead in its
header declarations but thereafter it need only contain the
elements actually required to fully render the equivalent image.
More complex graphics will generally be a similar size, or larger,
in SVG because of the syntactic overhead of XML.

Rendering of SVG created from PostScript should be about as
fast as that seen by displaying the PostScript on the same
machine, since the SVG will no loops or procedures, and will
have utilised at least some of the file size optimisations.

5.3 Software
It is hoped that by the time of publication the Ghostscript SVG
driver will be available. For further information please see:
www.ep.cs.nott.ac.uk/projects/SVG/ps2svg/

6. CONVERTING FLASH TO SVG
Macromedia's Flash format is currently the most widely used
vector graphics and animation format on the Web. Flash movies
are distributed as SWF (pronounced ‘swiff’) files, a compact
binary file format that requires an additional browser plug-in to
be available in order for the movie to be viewed. Objects in Flash
movies are described by standard vector graphics primitives such
as lines and curves. Bitmap objects can be included in Flash
files, and all the objects can be animated; user interactions can
be specified; and sound can be streamed into the movie.

Flash files are created using a Flash editor available from
Macromedia, which generates files with afla extension. These
files are editable by Flash tools and the objects, images and
animations can be altered. Flash movies for Web distribution are
turned into final form by exporting them as SWF files from
within the editor. This format stops the file from being editable
and is a compact format suitable for Web distribution. The SWF
format defines shapes, which are then placed onto a stage using a
transformation matrix to scale and position them. The
transformation matrix can be altered from frame to frame to
create the animation effects. This leads to sequences of controls
such as:

Define shape 1

Define shape 2

Place shape 1

Place shape 2

Show frame 1

Place shape 1 in new position

Place shape 2 in new position

Show frame 2

In comparing SWF and SVG the key differences in the semantics
of the graphics primitives, their grouping into shapes and the
manipulation of these shapes have to be addressed.

6.1 Grouping Graphics Primitives into Shapes
Both SVG and SWF allow shapes to be built up from paths
described using position, line and curve primitives (note that
SWF curve primitives are described using quadratic B-splines).
In both languages the graphics primitives have associated
properties such as fill and stroke colours, and patterns. SVG uses
a similar model to PostScript and PDF in that a path is a set of
points that have equivalent stroke and fill properties. SWF, on
the other hand, has a more flexible method of defining paths,
where adjacent primitives can be described in the same path but
with different associated fill or stroke properties. This can best
be described by looking at the following simple shape (figure 2).

Figure 2. A shape showing semantic path differences

In PostScript, PDF and SVG this shape is likely to be defined by
two paths. The first path (which describes the left-hand side of
the rectangle) sets the fill colour to blue and is defined in the
following manner:

move to A, line to B, line to D, line to C,
close path

The second path (which describes the right-hand side of the
rectangle) sets the fill colour to red and may be defined as:

move to C, line to D, line to F, lineto E,
close path

For comparison, one way in which Flash could define the shape
is as follows:

move to A, line to B with fill left = blue,
line to D with fill left = blue, line to C
with fill left = blue and fill right = red,
line to E with fill right = red, line to F
with fill right = red, line to D with fill
right = red, move to A, line to C with fill
right of blue

The example above illustrates that in SWF, each line can have
two fill styles, one of which fills to the left of the line, the other
to the right. This difference causes some problems when
converting SWF into SVG. Start and end coordinates of
individual lines need to be compared and those with adjoining
coordinates and similar attributes can be assigned to SVG paths.

6.2 Properties of Groups and Shapes
A further difference between SVG and SWF is that SVG has a
hierarchical model whereas Flash is essentially linear. Groupings
of primitives in SVG can support sub-groups which have
inherited properties, enabling common properties to be
abstracted up the hierarchy and to affect whole sub-groups.
Groups and sub-groups can be named, and named groups can be
referenced through the Document Object Model. Properties such
as styles, fill colour etc. can be manipulated through the DOM by
JavaScript or other XML transformation techniques such as XSL.
If the groups are designed intelligently then DOM manipulations
can be used to facilitate object re-use and reduce file size. For
example, let us assume the effect required is to draw the outline
of a black circle within a square filled in red. If a similar shape is
required, but with the circle filled in blue (i.e. in a later frame in
an animation) (see figure 3.), there is no need to define two
separate circles; rather, the fill-colour attribute of the circle could
be altered.

Figure 3. How JavaScript manipulations of the DOM can
alter a graphic

There are many ways this could be achieved, one of which is as
follows:

<g name="coloured-square-circle-shape"

style="fill: #ff0000; stroke: none;">

<rect id="outer-rect" x="0" y="0"

width="20" height="20"/>

<g name="inner-circle" style="stroke:

#000000; stroke-width="2">

<circle cx="10" cy="10" r="10"/>

DB

A

F

C E

A. B.

</g>

</g>

This shape defines the black outlined circle in the red square. In
order to change the fill colour of the circle to blue the following
JavaScript could be written:

el=document.SVGref.getElementById(inner-
circle)

sty = el.getStyle()

sty.setProperty("fill","#0000ff")

Similarly, the SWF format labels shapes with unique identifiers,
based upon the way in which the original Flash movie (.fla) file
was edited from the Flash browser. These shapes can have colour
or transformation matrices applied to them on a frame by frame
basis. In transforming SWF to SVG it is therefore quite likely
that the shapes labelled in the SWF file can be directly translated
into SVG without requiring any major reworking of groups, and
that transformations applied to these shapes in SWF can be
represented by DOM manipulations of the associated SVG
groups.

6.3 Animation
Animation within SVG files can be managed in one of three
ways:

• using SVG's own declarative animation model;

• manipulating the document object model (DOM);

• using the Synchronised Multimedia Integration Language
(SMIL) [11].

A discussion of SMIL is beyond the scope of this paper and so
we shall restrict our attention to the first two animation methods
listed above.

The SVG declarative animation model allows a named group to
be animated over a period of time using the<animate>
element. The object is referenced and the attribute to be
animated is specified. This attribute can be any valid XML
attribute such as opacity, style or a transformation matrix. The
start and end values (or a list of applicable intermediate values)
for the attribute are specified and a duration (or absolute start
and end times) are specified. The SVG rendering engine then
calculates the intermediate steps and performs the animation.

Animations on SVG elements can also be accomplished by
explicitly manipulating the Document Object Model tree from a
time-line and one way to do this is by using JavaScript.
JavaScript functions can be used to obtain and manipulate
attribute values of named SVG elements (groups of primitives)
which can then be exported into the DOM. Using JavaScript
these functions can be called from within a timer function. Thus
by periodically altering the transformation matrix applied to a
given SVG element the effect of animation is achieved. Because
JavaScript is a programming language, there is more frame-by-
frame flexibility in this approach than in SVG's native method
and JavaScript functions can be written to calculate values for
element attributes before setting them up in the altered tree.

This DOM-based manipulation of SVG elements is analogous to
SWF's animation model and so, by calling Javascript functions
that manipulate attributes such as a transformation matrix, SWF
animations can be directly modelled in SVG.

6.4 Text
One of the major benefits of SVG is that it is an XML-based
graphics language, and so text is searchable and indexable by
Web search engines. Text in SWF is maintained in two forms, as
glyphs and as codes. SWF has a font object that defines the
character outlines. To reduce file size, only those characters used
in the file are defined in the font definition, with a code table
that defines the ASCII character codes for these characters. Thus
when translating SWF to SVG, text can either by specified as
character codes, or an SVG font can be built up using the glyphs
and used as the character representation.

6.5 Performance issues
Two major performance issues in a Web animation environment
are file size and rendering speed. The first of these relates to the
question of code optimisation and will be addressed in the next
sub-section. Turning to the question of speed, animations need to
be rendered at a specified frame rate, and the rendering of the
frames must occur within the time span for the frame.
Additionally the graphic/animation as a whole must be as
compact as possible to allow downloading from the Web in a
reasonable time.

The latest SVG browsers now implement native SVG declarative
animation elements. Unfortunately, SWF animations do not map
very simply onto this animation model and so our converter
currently supports animations via manipulation of the DOM. For
simple animations the speed at which a new transformation
matrix can be applied to a named graphic element is dependent
on the complexity of the element. Obviously the simpler the
graphic, the smaller the number of data points that have to be
calculated by the application of translations, rotations and skews.

6.6 Code optimisation
In creating SVG files there are certain optimisations that should
be undertaken and these are very similar to the optimisations
already discussed for translating from PostScript. The data for a
path is stored as an XML attribute, with key letters equating to
positioning (M), line (L), and curve (C) commands. Where
possible the translation software should analyse the path data and
optimise the paths. Likely candidates for optimisation include
using the simplified commands that draw purely horizontal or
vertical lines (H or V) wherever a horizontal or vertical line is
drawn; this is because lines of this type require only one data
point as opposed to two. e.g. a horizontal line should not be
defined as<path d="M 10 10 L 20 10"/> but instead
as<path d="M 10 10 H 20"/>. Similar considerations
apply to curves (especially when translating from quadratic B-
splines (SWF) into cubic Béziers (SVG). A mindless translation
of two adjoining quadratic B-splines simply replaces the
quadratic splines with two cubic Béziers (and this inflates the

amount of data since an extra set of control points is required–
although it should be noted that later releases of the SVG
specification enable quadratic B-splines to be specified).
However, if the tangents to the splines are equivalent at the end

of one curve and at the beginning of the other, then the two
quadratic splines may be replacable by a single cubic Bézier,
leading to a reduction in the path data. This kind of problem
occurs in many forms in any translation from a simpler graphics
language into a richer one. For example, a circle in SWF might
be represented by eight quadratic B-splines: to convert this
graphic to SVG the splines could be replaced intelligently as
described above, or the optimisation could go a stage further in
attempting to recognise the graphic as a circle and utilising the
circle element instead, leading to a large reduction in data
points.

Native SVG files, being XML based, are unlikely to be as small
as SWF files, which have a very compact representation. There
are many factors which affect SVG file sizes e.g. whether text is
maintained as glyphs or as codes and which animation model is
used. SVG files use XML links to point to included bitmap
images, whereas SWF files tend to embed the images into the
movie. Thus if one particular image is used in different movies
being disseminated over the Web there is a likelihood of it being
cached in SVG, whereas in SWF it will be downloaded again.
Comparing SWF with SVG directly is therefore misleading, it is
more accurate to pre-compress the SVG files before doing the
comparison. In this way, even allowing for the above
discrepancies, at least comparison is between two like files (both
compressed binary). Tests on the movies indicate that a
compressed SVG file is about one and a half to two times the
size of its SWF counterpart.

6.7 Software
An application has been written in C, that outputs SVG from an
input SWF movie. The application can be accessed through a
Web forms interface, whereby a SWF file is uploaded and a SVG
file is returned. At present the application has restrictions in that
only version 2 of Flash is supported and features such as sprites
and sound are unsupported. The converter can be accessed from:

www.ep.cs.nott.ac.uk/projects/SVG/flash2svg

7. CONCLUSIONS
By the end of 2001, SVG is very likely to be adopted as a vector
graphics standard for the Web. It will mark the first time that
XML, with its innate tree model, and tree-node attributes, has
been used as the framework for a graphics format. Insofar as
SVG's elements give a standardised vocabulary for Web
graphics, with easy text searchability then the new standard is to
be welcomed. Equally, the large number of XML parsers, many
of them in the public domain, will enable SVG to be analysed
and transformed. However, as we have discovered in this paper
there is a need for something more than mere tree
transformations when rendering quality graphics. In the end SVG
is ‘an interpreted data structure’ rather than a full programming
language. The graphic semantics of the attributes at the SVG
tree's internal nodes are of crucial importance; the suitability of
JavaScript tree-manipulation functions, for modelling the higher-
order functionality found in other graphics languages, has to be
tackled.

The definition of SVG has clearly been motivated by the fact that
much of the existing graphic material to be converted, from
languages such as PostScript and SWF, will already be in ‘final

format’ with absolute co-ordinates in place and little or no need
for any dynamic behaviour. At this level SVG does an adequate
job and will provide a sound framework for Web graphics.

Different graphics formats have different internal structures and
different degrees of ‘object orientation’. In order for graphics to
be considered ‘smart’, the underlying format must support
intelligent structural descriptions of the graphic. If graphics can
be generated that make maximum use of hierarchical groupings
then the graphics become more usable. Consider a vector
drawing of an aeroplane: if the fuselage, wings and windows are
grouped together, and the attributes describing the colour, are
extrapolated to the top of these groups, then a template aeroplane
can be created. This allows simple DOM manipulations to create
a blue aeroplane with red wings and black windows, or a purple
aeroplane with green wings and transparent windows (opacity is
supported in SVG).

Interestingly, the existence of similar data structures in two given
graphic formats is not necessarily helpful in translating from one
to the other. PDF has an innate tree structure of pages which is of
no help at all in translating from PDF to SVG where the tree
structure represents hierarchical relationships of graphic objects
within a single page. More generally, graphics can only be
considered smart if the internal structures of the format
accurately reflect the abstract structure and projected use of the

graphic–the generation and translation tools then need to be able
to generate the correct groupings and labellings of the individual
graphical elements. What we find is that formats such as SWF
give sufficient ‘object’ information to enable translation to a rich
format such as SVG to be undertaken, with only a minimal need
for intelligent feature extraction, whereas other formats, such as
PostScript, prove difficult, largely because much of its semantics
is implicit in a complex ‘graphic state’ coupled to a procedure
and argument passing mechanism more reminiscent of a low-
level assembly language.

By contrast, at the level of graphical primitives, those in
PostScript and PDF are well aligned with SVG in terms of the
way that lines are stroked and mitred, shapes are filled and so
on. Here the conversion from Flash, with its ideas of having fill
patterns on either side of a line, rather than as part of an implied
closed shape, can cause some very tricky translation problems.

The interesting open questions are whether SVG's various
options for animation will be robust enough for real-life use and
whether and how SVG will develop beyond the ‘final form’
approach to allow for Web schematics (e.g. something as
procedurally simple as Brian Kernighan's PIC[12]) to be directly
implemented in SVG, procedures and all, with the procedural
mechanisms not necessarily involving the dynamic rewriting and
re-interpretation of tree-like data structures

8. REFERENCES
[1] World Wide Web Consortium. Scalable Vector Graphics.

http://www.w3.org/Graphics/SVG/Overview.html

[2] World Wide Web Consortium. Extensible Markup
Language. http://www.w3.org/XML

[3] World Wide Web Consortium. Scalable Vector Graphics.
http://www.w3.org/Graphics/SVG/Overview.html.

[4] World Wide Web Consortium. Document Object Model.
http://www.w3.org/DOM/.

[5] European Computer Manufacturer's Association. Standard
ECMA-262 ECMAScript.http://www.ecma.ch/.

[6] Petrotechnical Open Software Corporation. How to get the
ISO CGM Specifications.
http://www.posc.org/technical/cgmpip/get_cgm.shtml.

[7] Lofton Henderson, Anne Mumford. The CGM Handbook.
Academic Press. 1993.

[8] Adobe Systems. Portable Document Format Reference
Manual. 1993. Addison Wesley.

[9] Adobe Systems. PostScript Language Reference Manual.
1985. Addison Wesley

[10]World Wide Web Consortium. Cascading Style Sheets.
http://www.w3.org/Style/CSS.

[11]World Wide Web Consortium. Synchronised Multimedia.
http://www.w3.org/AudioVideo/

[12]Brian W. Kernighan. PIC, A Graphics Language for
Typesetting. Software Practice and Experience. 12(1).
January 1982

