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INTEGRABILITY FOR RELATIVISTIC SPIN
NETWORKS

JOHN C. BAEZ AND JOHN W. BARRETT

Abstract. The evaluation of relativistic spin networks plays a
fundamental role in the Barrett-Crane state sum model of Lorentz-
ian quantum gravity in 4 dimensions. A relativistic spin network
is a graph labelled by unitary irreducible representations of the
Lorentz group appearing in the direct integral decomposition of
the space of L2 functions on three-dimensional hyperbolic space.
To ‘evaluate’ such a spin network we must do an integral; if this
integral converges we say the spin network is ‘integrable’. Here we
show that a large class of relativistic spin networks are integrable,
including any whose underlying graph is the 4-simplex (the com-
plete graph on 5 vertices). This proves a conjecture of Barrett and
Crane, whose validity is required for the convergence of their state
sum model.

1. Introduction

In formulating a state sum model for 4-dimensional Lorentzian quan-
tum gravity, Barrett and Crane [11] used the notion of a ‘relativistic
spin network’, which is simply a graph with edges labelled by non-
negative real numbers. These numbers parametrize a certain class of
irreducible unitary representations of the Lorentz group. The model
involves a triangulation of spacetime, and for each 4-simplex one must
calculate an amplitude associated to a relativistic spin network whose
underlying graph is the complete graph on 5 vertices:
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To calculate this amplitude one must do an integral. In [11] this
integral was conjectured, but not proven, to converge. Here we prove
that it does in fact converge. More generally, one can associate a similar
integral to any relativistic spin network. To ‘evaluate’ a relativistic
spin network one must do this integral. We prove that this integral
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converges whenever the underlying graph of the spin network lies in
a certain large class. This class of graphs includes the tetrahedron
and all graphs obtained from it by repeatedly adding an extra vertex
connected by at least 3 edges to the existing graph. Thus in particular
this class includes the complete graph on 5 vertices.

The results of the paper are formulated in Section 2 and proved in
Section 3. These sections are developed in a self-contained manner, so
that the reader interested in the mathematical details can simply start
there.

The remainder of the introduction contains some background ma-
terial placing the results in their mathematical and physical contexts.
The mathematical part of the introduction explains how the integrals
we consider arise from the representation theory of the Lorentz group.
The physics part of the introduction sketches how this representation
theory has been used in constructing models of fundamental physics.

1.1. Mathematical context. Calculations in the representation the-
ory of compact Lie groups are conveniently expressed in terms of dia-
grams. Let a, b, ..., n and p, q ,... , z be representations of the group
and A : a⊗ b ⊗ . . . ⊗ n → p ⊗ . . .⊗ z an intertwining operator (a lin-
ear map which commutes with the action of the group). This can be
represented by a diagram:

A

n

. . .

. . .

zq

ba

p

Usually we fix some particular operators and represent them by dia-
grams like this; these operators are called the elementary operators,
or sometimes vertices, corresponding to the fact that the graph in the
diagram has just one vertex.

The identity operator is represented by a vertical line with no ver-
tex. Tensoring corresponds to joining diagrams together horizontally,
and composition of operators corresponds to joining diagrams verti-
cally. A trace on a representation, say a = p in the above diagram, is
represented by joining the edge for a round in a loop to the edge for p.
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These processes allow us to build various operators from the elemen-
tary ones, with the description in terms of elementary operators being
captured by a diagram: a graph with vertices labelled by elementary
operators and a certain number of free ends on the bottom and top,
corresponding to ‘inputs’ and ‘outputs’:

A

b

p
a

c

B

q
r

The power of this method comes from the fact that relations between
these intertwining operators correspond, in many cases, to deforma-
tions of the diagram which can be interpreted as moving the vertices
and edges in either two- or three-dimensional space (isotopies). This
theory was developed to its fullest extent in the generalisation from
compact Lie groups to a certain class of Hopf algebras, particularly the
quantum groups. Since a diagram with no free ends corresponds to
an intertwining operator from the trivial representation to itself, i.e.
essentially just a complex number, such Hopf algebras yield invariants
of knots and graphs embedded in three-dimensional space.

However in this paper we are concerned with a generalisation in a
different direction, namely from compact to non-compact Lie groups,
and study a particular class of unitary representations of the Lorentz
group, SO0(3, 1). The subscript here indicates the connected compo-
nent of SO(3, 1) that contains the identity. This is the group covered
by SL(2,C).

We restrict attention to a particularly simple class of elementary
operators (vertices) which are invariant under all permutations of the
edges in the diagram. In essence, as will be explained below, the com-
posite intertwining operators depend only on the underlying graph of
the diagram and not on the way in which it is drawn on the plane;
the knot-theoretic considerations are absent. The difficulties in the
theory are of a different nature. The trace cannot be defined in all
circumstances since the representations are infinite-dimensional, and
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the ordinary trace of the identity operator is infinite. However we will
show that there is another perfectly good notion of trace provided that
the diagram is sufficiently connected.

The representations of the Lorentz group considered here are as fol-
lows. There is one for each real number p ≥ 0. The Hilbert space
of this representation (also denoted p) is the space of solutions to the
equation ∇2f = −(p2 + 1)f on three-dimensional hyperbolic space, H,
which have square-integrable boundary data on the sphere at infinity
[11]. This Hilbert space is characterised by a reproducing kernel on H,
Kp(x, y), which is a smooth, bounded, symmetric integral kernel that
solves the equation ∇2K = −(p2 + 1)K in both x and y. The formula
for K is given in Section 2. The Lorentz group acts by translations
on this Hilbert space, and the resulting representation is unitary and
irreducible.

The elementary operator A : p1⊗ · · · ⊗ pm → q1⊗ · · · ⊗ qn is defined
by

f1 ⊗ · · · ⊗ fm 7→
1

2π2

∫

H

Kq1(y1, z) · · ·Kqn(yn, z)f1(z) · · · fm(z) dz(1)

The result of applying the operator A is a function of the variables
y1, . . . , yn in H. However it is not clear that this function lies in the
Hilbert space q1 ⊗ · · · ⊗ qn. For now, we simply consider the formal
expressions that are obtained by composing these operators. We post-
pone the question about whether these converge to the consideration
of closed diagrams (those with no free ends).

The operator A can be thought of as an integral operator, albeit
with a distributional integral kernel,

A(x1, . . . , xm; y1, . . . , yn) =(2)

1

2π2

∫

H

Kq1(y1, z) · · ·Kqn(yn, z)δ(z, x1) · · · δ(z, xm) dz

with δ(x, y) the delta function for integration on H. With this nota-
tion, the composition of operators consists of multiplying their kernels
and integrating the common variables over H. The trace is naturally
expressed using the integral kernels in the same way. For example, the
trace of A over the first variable is∫

H

A(z, x2, . . . , xm; z, y2, . . . , yn) dz.

Combining the elementary operators as described above gives a de-
scription of the operator for a general diagram. Since composition and
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trace both involve joining a free end at the bottom of the diagram to
a free end on the top, the calculation always gives a factor of

∫

H

Kp(y1, x)δ(x, y2) dx = Kp(y1, y2)

for each internal edge, with variables y1, y2 corresponding to its two
vertices.

The operator for a diagram with just two free ends

y

y
p

1

0

q

can be described as follows. Associate a variable yi ∈ H to each ver-
tex in the diagram. Let E be the set of all edges in the interior of
the diagram (i.e., not meeting the boundary box). The corresponding
operator is

f 7→
∫ ∏

i

dyi
2π2

(∏

E

K

)
Kq(y1, x)f(y0).

In the main body of the paper we consider closed diagrams, those
with no free ends on the boundary rectangle. The naive idea for as-
sociating a number, or evaluation, to this graph would be to take the
trace of the previous graph. But this trace is always infinite. However,
by Schur’s lemma

y

y
p

1

0

q

= Λ

q

p

for some constant Λ, and in fact both sides are proportional to δ(p−q).
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In what follows, we show that a good definition for the evaluation of
the closed diagram

p

.

is the above constant Λ; this constant is given by a multiple integral
of products of K’s which converges in many cases. This definition is
presented afresh in Section 2 with no reference to the representation
theory sketched here. In that section, it is shown that this gives an
invariant of the graph which does not depend on the way in which the
diagram is drawn in the plane, nor on which edge is chosen to break it
into a diagram with two free ends.

1.2. Physics applications. The study of spin networks was initiated
by Penrose [21] in the early 1970’s, as part of an attempt to a find a
description of the geometry of spacetime that takes quantum mechanics
into account from the very start. These spin networks were simply
graphs with edges labelled by irreducible representations of SU(2) (i.e.
spins j = 0, 1

2
, 1, 3

2
, . . . ) and vertices labelled by intertwining operators.

Such spin networks are also implicit in Ponzano and Regge’s state
sum model of 3-dimensional quantum gravity, published in 1968 [23].
However, this was only realized much later [19].

The real surge of work on spin networks came in the early 1990’s,
when they were generalized to other groups and even quantum groups.
At this point, people began to use them systematically to construct
topological quantum field theories. For example, Reshetikhin and Tu-
raev [26] used spin networks to give a purely combinatorial description
of Chern-Simons theory and prove that it satisfies the Atiyah axioms
for a 3-dimensional TQFT. Shortly thereafter, Turaev and Viro [30]
used them to construct a q-deformed version of the Ponzano-Regge
model and prove that it, too, is a TQFT. We now recognize this theory
as a Euclidean signature version of 3d quantum gravity with nonzero
cosmological constant. Later, Crane and Yetter [13] used spin network
technology to construct a state sum model of a 4d TQFT. This appears
to be a quantization of BF theory with cosmological constant term.

One reason these topological quantum field theories are interesting
is that they share some features with a physically more important but
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also far more problematic theory: 4-dimensional quantum gravity. The
success of spin network methods in constructing TQFTs prompted var-
ious attempts to apply spin networks to 4d quantum gravity. These
attempts came from two main directions.

The first was work on ‘loop quantum gravity’, an approach to the
canonical quantization of Einstein’s equations. Here Rovelli and Smolin
[27] realized that SU(2) spin networks embedded in a 3-manifold rep-
resenting space can serve as an explicit basis of kinematical states.
Using this basis they showed how to construct operators corresponding
to observables such as the areas of surfaces and volumes of regions [28].
This work was soon made rigorous by Ashtekar, Lewandowski, Baez
and others, and spin networks quickly became a standard tool in this
field [1, 2, 3, 4, 5].

The second direction was work on state sum models of 4d quantum
gravity. Models of this sort were proposed by Barrett and Crane, first in
the Euclidean [10] and then in the Lorentzian signature [11]. Their orig-
inal models involve a triangulation of a fixed 4-manifold representing
spacetime, but there is also great interest in more abstract ‘spin foam
models’, where there is no underlying manifold [6, 7, 16, 22]. Again,
these models come in both Euclidean and Lorentzian versions. The
Lorentzian versions are more physically realistic, but they involve extra
difficulties due to the noncompactness of the Lorentz group SO0(3, 1),
the solution of which forms the main topic of this paper.

2. Evaluating relativistic spin networks

As discussed informally in the introduction, a relativistic spin net-
work is a graph with an assignment of a real number p ≥ 0 to each
edge. In what follows only relativistic spin networks whose underlying
graph is connected are considered.

•

p2

p1 p3

//
//

//
//

//
//

/

•
p4

p5

•

Figure 1. A relativistic spin network
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The idea of an evaluation is a function that gives a number for each
relativistic spin network. In [11] an integral was defined which deter-
mines a number for the relativistic spin network, if it converges. The
integral is based on the following kernel:

Kp(x, y) = Kp(r) =
sin pr

p sinh r
(3)

where x and y are two points in three-dimensional hyperbolic space, H,
and r is the distance between them. This formula defines the function
Kp(r) for p, r > 0, but it extends uniquely to a continuous function of
p, r ≥ 0, with Kp(0) = 1 and K0(r) = r/ sinh r.

The integral is defined as follows. First, to each vertex v ∈ V of the
graph we associate a variable xv ∈ H. Each edge e ∈ E thus has two
variables, xs(e) and xt(e), associated to its endpoints. Next, to each edge
e of the graph we associate a factor of Kp(xs(e), xt(e)), which depends
on the edge label p.

The idea is then to integrate the product of these factors
∏

EK
over the variables in hyperbolic space. However, since this product
is invariant under the action of SO0(3, 1) as isometries of H, one of
the integrations is redundant, and would lead to an infinite value for
the integral. Thus we arbitrarily choose one vertex, say w, and omit
the integration over the variable associated to that vertex. Let V ′ =
V − {w} be the remaining set of vertices, and n the total number of
vertices.

The integral is then given as follows:

Iw(xw) =
1

(2π2)n−1

∫

Hn−1

∏

E

Kp(e)(xe(0), xe(1))
∏

v∈V ′
dxv(4)

The measure dx on hyperbolic space is the standard Riemannian vol-
ume measure for the unit hyperboloid. In spherical coordinates where
r is the distance from a fixed origin

dx = sinh2 r dr dΩ,

where dΩ is Lebesgue measure on the unit 2-sphere.
If the integral converges, it defines a function of the remaining vari-

able, xw. However the Lorentz invariance gives Iw(xw) = Iw(L(xw))
for any L ∈ SO0(3, 1), so the integral is actually a constant, say Iw.

The Lorentz invariance also implies that Iw is independent of the
choice of the vertex w. This follows from the formula

Iw(xw) =

∫

H

I(xw, xv) dxv
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where the integrand is obtained by integrating over all but two vari-
ables. This function is an invariant function on H ×H, and therefore
a function of the hyperbolic distance between its two arguments. Any
such function is symmetric in its arguments. This establishes the equal-
ity Iw(xw) = Iv(xv).

Definition 1. The evaluation of a relativistic spin network is defined
as the common value of Iw(xw) for any choice of vertex w and xw ∈ H.

Clearly this definition only works in the cases when the integral con-
verges. We have not yet been precise about what this means. The
best situation is when the integrand in the definition is integrable, i.e.,
when the Lebesgue integral of its absolute value exists. In this case we
say that the relativistic spin network is integrable. The results in this
paper refer to the integrable case. If the network is integrable for all
values of the edge labels p, then the graph will be called integrable, and
the evaluation defines a function of these edge labels. Our first result
is that this function is bounded:

Theorem 1. For an integrable graph, the relativistic spin network eval-
uation is bounded by a constant that is independent of the edge labels.

A more general situation is where the integral defines a generalised
function, or distribution, in the p variables. In this situation the rel-
ativistic spin network may not be integrable for specific values of the
edge labels p. However, the integrand in the definition of the evaluation
will become integrable after smoothing with suitable test functions in
the p variables. We are not going to be precise about the details of
the test functions, but will confine ourselves to noting some simple ex-
amples where this phenomenon occurs. In this case, the graph will be
called distributional. If the graph is not even distributional, it will be
called divergent.

Some simple cases, calculated in [11], illustrate these definitions. A
graph given by a single loop with one vertex on it:

•p

has the evaluation

Kp(x, x) = 1.

A graph with two vertices on a loop:

•
a

b

•
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has the evaluation

1

2π2

∫

H

Ka(x, y)Kb(y, x) dy =
2

πab

∫ ∞

0

sin ar sin br dr =
δ(a− b)
a2

.

This is an example of a relativistic spin network that is not integrable
for any values of a and b. However the result is well defined after
smoothing in a and b, so the graph is distributional. In general this
phenomenon occurs whenever the graph has a bivalent vertex.

In the simpler case of a closed network with two vertices joined with
just one edge:

• p •

the evaluation is a divergent integral for all values of the label p.

1

2π2

∫

H

Kp(x, y) dy =
1

2π2p

∫ ∞

0

sinh r sin pr dr.

More generally, any graph with a univalent vertex is divergent.
The theta graph with two vertices and three edges:

•

a

b

c •

is integrable and has the evaluation

1

2π2

∫

H

Ka(x, y)Kb(x, y)Kc(x, y) dy =
2

πabc

∫ ∞

0

sin ar sin br sin cr

sinh r
dr

=
1

4abc

(
tanh(

π

2
(b+ c− a)) + tanh(

π

2
(c+ a− b))

+ tanh(
π

2
(a+ b− c))− tanh(

π

2
(a+ b+ c))

)

The graphs with two vertices and more than three connecting edges
are also integrable and can be evaluated explicitly.

Now we can extend these examples by stating our main results on
integrability. In what follows, we call the complete graph on 4 vertices
the ‘tetrahedron’:

•
@@

@@
@@

@ •

•

~~~~~~~ •
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and call the complete graph on 5 vertices the ‘4-simplex’:

•
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Theorem 2. The tetrahedron is an integrable graph.

Theorem 3. A graph obtained from an integrable graph by connecting
an extra vertex to the existing graph by at least three extra edges is
integrable. A graph obtained from an integrable graph by adding extra
edges is integrable. A graph constructed by joining two disjoint inte-
grable graphs at a vertex is integrable.

Theorem 3 allows the construction of a large class of integrable
graphs. Starting with a graph which is known to be integrable, such
as the theta graph or the tetrahedron, then one can construct larger
integrable graphs by successively carrying out the operations described
in the theorem. In particular, the 4-simplex is integrable because it is
obtained by adding a vertex connected by four edges to the tetrahe-
dron.

3. Proof of the Main Results

In equation (4) we defined the evaluation of a relativistic spin net-
work as a certain integral over n-tuples of points in hyperbolic space.
To prove Theorems 2 and 3, we need to show this integral converges.
Before starting the proofs, we give an informal outline of the procedure.

Our procedure is to integrate over one point at a time, treating the
remaining points as fixed. This is justified by the theorems of Fubini
and Tonelli concerning the Lebesgue integral of a function of several
variables [29].

For an example of this procedure, consider the integral∫

H

dxKp1(x, x1)Kp2(x, x2) · · ·Kpn(x, xn)

11



for fixed x1, . . . , xn ∈ H. To prove that this integral converges we need
a bound on the kernel K (proved below in Lemma 1): for any ε > 0,
there exists a constant c (independent of p) such that

|Kp(r)| ≤ ce−(1−ε)r.

Using this, it follows that the integral is bounded by

cn
∫

H

dx e−(1−ε)(r1+···+rn)

where ri = d(x, xi). Now suppose we can find a ‘barycentre’ for the
points xi, that is, a point b ∈ H such that

r := d(x, b) ≤ 1

n
(r1 + · · ·+ rn)

for all x. Then if we work in spherical coordinates centered at b, we
see that the integral is bounded by

4πcn
∫ ∞

0

e−(1−ε)nr sinh2 r dr.

which converges for all n ≥ 3 providing we pick 0 < ε < 1/3.
This example illustrates the importance of adding 3 or more new

edges for each new vertex in the graph. To prove our main results, we
now prove the above bound on the kernel K, construct the required
barycentres, and give an improved version of the above estimate. Fi-
nally, we give a careful treatement of the tetrahedron graph.

We begin the formal proofs by bounding K. First note that |sin pr| ≤
pr so that for p > 0

|Kp(r)| =
|sin pr|
p sinh r

≤ r

sinh r
.(5)

This bound on Kp(r) also holds when r is zero, as long as we define
r/ sinh r to equal 1 when r = 0. The right-hand side of the inequality
is K0(r).

Proof of Theorem 1. By inequality 5, the evaluation of a relativistic
spin network is bounded by the evaluation of the network with the
edge label p = 0 for each edge.

Now we give the detailed estimates needed for Theorems 2 and 3.

Lemma 1. For any ε > 0, there exists a constant c such that

|Kp(r)| ≤ ce−(1−ε)r

for all p ≥ 0 and r ≥ 0. Also, |Kp(r)| ≤ 1 for all p, r.
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Proof. Since the function r/ sinh r is bounded and is asymptotic to re−r

as r → +∞, for any ε > 0 there exists c with
r

sinh r
≤ ce−(1−ε)r.

The second part follows because r/ sinh r is bounded by 1.

Next we construct a barycentre for any finite collection of points in
hyperbolic space, beginning with the case of two points.

Lemma 2. Suppose p1, p2 ∈ H and let p be the midpoint of the geodesic
from p1 to p2. For any point q ∈ H we have

d(p, q) ≤ 1

2
(d(p1, q) + d(p2, q))

Proof. Using notation as in this picture:

p
 1 p

 2

q

p

r
 1

r
 2

r

we need to show r ≤ 1
2
(r1 + r2). By the law of cosines for hyperbolic

trigonometry [24] we have

cosh d cosh r = cosh r1 + cos θ sinh d sinh r,

cosh d cosh r = cosh r2 − cos θ sinh d sinh r.

Adding these equations we obtain

cosh d cosh r = cosh(
r1 − r2

2
) cosh(

r1 + r2

2
).

By the triangle inequality we have |r1 − r2| ≤ 2d, so

cosh r ≤ cosh(
r1 + r2

2
),

from which the desired result follows.

There are a variety of ways of constructing a barycentre for 3 or more
points. First we give an intuitive method for 3 points, followed by an
proof that a barycentre exists for any finite number of points.

13



A barycentre for 3 points can be constructed by an iterative process.
Begin by constructing midpoints of the geodesics between the points
p1, p2 and p3 as in this picture:

p
 1

�� ������

������

2
p

p
 1p

p
 3p

 2

 3

Lemma 2 implies the inequality

d(p1, q) + d(p2, q) + d(p3, q) ≥ d(p′1, q) + d(p′2, q) + d(p′3, q).

Iterating this process, we obtain a sequence of nested triangles in hy-
perbolic space:

The vertices converge to a point p, the unique point contained in all
the triangles. By repeated use of the above inequality

3d(p, q) ≤ d(p1, q) + d(p2, q) + d(p3, q),

so that p is a barycentre.
The following constructions work for all n. First, consider the case

where the points lie along a straight line, i.e. a geodesic γ ∈ H. Then
since γ is isometric to the real line with its usual metric, the arithmetric
mean of the points is defined. The next lemma shows that this is a
barycentre.

Lemma 3. Suppose γ ⊂ H is a geodesic, and p1, p2, . . . , pn ∈ γ. Then
the arithmetic mean p of the points has the property that for any point
q ∈ H we have

d(p, q) ≤ 1

n
(d(p1, q) + d(p2, q) + · · ·+ d(pn, q)).

14



Proof. This is proved by iteration. Suppose p1 and p2 are two points
in the set which are the farthest distance apart. Then using Lemma 2,
we can replace both p1 and p2 by the barycentre of p1 and p2 without
increasing the quantity

d(p1, q) + d(p2, q) + · · ·+ d(pn, q).

By iterating this process, all of the points in the set converge to the
arithmetic mean p.

Now the main result on barycentres is proved.

Lemma 4. Suppose p1, p2, . . . , pn ∈ H. Then there exists a point p
such that for any point q ∈ H we have

d(p, q) ≤ 1

n
(d(p1, q) + d(p2, q) + · · ·+ d(pn, q)).

Proof. This is proved by induction on n. The induction starts with
n = 2 by Lemma 2. Let b be a barycentre for the first n − 1 points.
Then by the induction hypothesis

(n− 1)d(b, q) + d(pn, q) ≤ d(p1, q) + d(p2, q) + · · ·+ d(pn, q).

Next we find a barycentre p for n − 1 points at b and 1 point at pn.
To do this, note that all these points lie on a geodesic, and so the
barycentre is constructed by Lemma 3. We thus have

nd(p, q) ≤ (n− 1)d(b, q) + d(pn, q)

≤ d(p1, q) + d(p2, q) + · · ·+ d(pn, q).

Next we prove an improved version of the estimate given at the
beginning of this section. Suppose x1, . . . , xn are fixed in H and rij =
d(xi, xj).

Lemma 5. If n ≥ 3, the integral

J =

∫

H

dx |Kp1(x, x1)Kp2(x, x2) · · ·Kpn(x, xn)|

converges, and for any 0 < ε < 1/3 there exists a constant C > 0 such
that for any choice of the points x1, . . . , xn,

J ≤ C exp

(
−n− 2− nε

n(n− 1)

∑

i<j

rij

)
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Proof. Define ri = d(xi, x). Using Lemma 1 we obtain

|Kp1(x, x1) · · ·Kpn(x, xn)| ≤ cne−(1−ε)P ri.

If we work in spherical coordinates using the barycentre of the points
x1, x2, . . . , xn as our origin, this implies

J ≤ 4πcn
∫ ∞

0

e−(1−ε)P ri sinh2 r dr.

We next break this integral over r into two parts, and estimate these
separately using two bounds:

∑
ri ≥ nr

from Lemma 4, and
∑

ri ≥ nM

where

M =
1

n
min
x

∑
ri.

We obtain

J ≤ 4πcn
[∫ M

0

e−n(1−ε)M sinh2 r dr +

∫ ∞

M

e−n(1−ε)r sinh2 r dr

]

≤ 4πcn
[∫ M

0

e−n(1−ε)M+2r dr +

∫ ∞

M

e−n(1−ε)r+2r dr

]

≤ Ce−(n−2−nε)M

for some constant C > 0 depending only on ε and n. Finally, the
triangle inequality implies

∑
ri ≥

1

n− 1

∑

i<j

rij

for all choices of x1, x2, . . . , xn, so

M ≥ 1

n(n− 1)

∑

i<j

rij .

Proof of Theorem 3. Firstly, consider introducing an extra vertex con-
nected to an integrable graph γ by three or more extra edges. Lemma
5 shows that doing the integral over the extra vertex first introduces
an extra multiplicative factor of J in the integral of

∏
E |K| for the

graph γ. However the function J is bounded so the new graph is also
integrable.
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Adding an extra edge does not affect the integrability of a graph
because |K| < 1, by Lemma 1.

Finally, for two integrable graphs joined by identifying one vertex
we have that the evaluation of the resulting graph is the product of
the evaluations of the two pieces, and so in particular the graph is
integrable. This follows from taking the vertex where the two pieces
are joined as the vertex which is not integrated over in the definition
of the evaluation.

By using Lemma 5 to evaluate a bound for the integral one vertex
at a time, one can actually prove that the n-simplex is integrable for
n ≥ 5. However to do the important cases of the tetrahedron and the
4-simplex requires a more sensitive bound at the stage where there are
3 vertices.

Proof of Theorem 2. We need to show for any choice of numbers pij ≥ 0
for 1 ≤ i < j ≤ 4 and a point x1 ∈ H, the integral

I =

∫

H3

dx2 dx3 dx4 |Kp12(x1, x2)Kp13(x1, x3)Kp14(x1, x4)

Kp23(x2, x3)Kp24(x2, x4)Kp34(x3, x4)|

converges.
First we integrate out x4 using Lemma 5, obtaining

I ≤ C

∫

H2

dx2 dx3 e
− 1

6
(1−3ε)(r12+r13+r23) |Kp12(x1, x2)Kp13(x1, x3)Kp23(x2, x3)|

where rij = d(xi, xj).
Next integrate over another variable, say x3. With

L =

∫

H

dx3 e
− 1

6
(1−3ε)(r13+r23) |Kp13(x1, x3)Kp23(x2, x3)|

this gives

I ≤ C

∫

H

dx2 Le
− 1

6
(1−3ε)r12 |Kp12(x1, x2)|.(6)

By equation (5) we have

L ≤
∫

H

dx3
r13r23 e

− 1
6

(1−3ε)(r13+r23)

sinh r13 sinh r23

≤
∫

H

dx3
(r13 + r23)

2e−
1
6

(1−3ε)(r13+r23)

sinh r13 sinh r23

(7)

17



To get a good bound on the integral here, we resort to a coordinate
system in which two of the coordinates are

k =
1

2
(r13 + r23), ` =

1

2
(r13 − r23),

while the third is the angle φ between x3 and a given plane containing
the geodesic between x1 and x2. The ranges of these coordinates are

r/2 ≤ k <∞, −r/2 ≤ ` ≤ r/2, 0 ≤ φ < 2π,

where we set r = r12. Coordinates of this sort can also be defined
in Euclidean space, where they are closely akin to prolate spheroidal
coordinates [20], but here all the formulas are a bit different, since we
are working in hyperbolic space. The main thing we need is a formula
for the volume form in these coordinates,

dx3 = 2
sinh r13 sinh r23

sinh r
dk d`dφ

which is proved in the Appendix.
Using this formula we can do the integral (7) in the (k, `, φ) coordi-

nate system, obtaining

L ≤ 8

∫ 2π

0

dφ

∫ ∞

r/2

dk

∫ r/2

−r/2
d`

k2e−
1
3

(1−3ε)k

sinh r

or doing the integral over φ and ` and then k,

L ≤ 16πr

sinh r

∫ ∞

r/2

k2e−
1
3

(1−3ε)k dk

≤ (Ar3 +B)e−
1
6

(1−3ε)r

sinh r
(8)

for some constants A and B independent of all the parameters in this
problem.

We conclude the proof by using this bound on L to bound the integral
I. By (5) and (6) we have

I ≤ C

∫

H

dx2 Le
− 1

6
(1−3ε)r |Kp12(x1, x2)|

≤ 4πC

∫ ∞

0

Lre−
1
6

(1−3ε)r sinh r dr

and by (8) this gives

I ≤ 4πC

∫ ∞

0

r(Ar3 +B)e−
1
3

(1−3ε)r dr.

The right-hand side is finite so the proof is complete.

18



4. Remarks and Conclusions

Theorem 3 gives a large class of integrable graphs, starting with the
theta and tetrahedron graphs. However there are further examples of
integrable graphs. For example, the graph in Figure 1 is also integrable,
but cannot be constructed from any integrable graph by the methods
of Theorem 3. Its integrability follows by applying Lemma 5 to one of
the trivalent vertices.

It seems reasonable to conjecture that any 3-edge-connected graph
is integrable. A 3-edge-connected graph is one that remains connected
when any edge is removed or any pair of edges are removed.

It seems that the bound in Theorem 1 should be dramatically im-
proved. Indeed, K satisfies the bound |K| < 1/(p sinh r) for r > 1/p,
thus for large p one expects the evaluation to behave like 1/p for each
edge variable. By inspection, this is the case for the theta-graph. We
conjecture that a similar bound is true for all graphs not containing
edge-loops (edges with both ends at the same vertex).

It would also be interesting to consider the obvious generalization of
this theory to other dimensions. For applications to quantum gravity,
one would want the (n + 1)-simplex to be an integrable graph when
labelled by any representations of SO0(n, 1) appearing in the direct
integral decomposition of the space of L2 functions on n-dimensional
hyperbolic space.

5. Appendix: Spheroidal Coordinates in Hyperbolic Space

If we fix two points x1, x2 in three-dimensional hyperbolic space, and
pick a hyperbolic plane containing the geodesic between these points,
we can define spheroidal coordinates on hyperbolic space as follows.
Given any point x3 in hyperbolic space, its first two coordinates are

k =
1

2
(r13 + r23), ` =

1

2
(r13 − r23),

where rij is the distance from xi to xj. The third coordinate is the
angle φ between x3 and a given plane containing the geodesic between
x1 and x2. The ranges of these coordinates are

r/2 ≤ k <∞, −r/2 ≤ ` ≤ r/2, 0 ≤ φ < 2π,

where we set r = r12.
In these coordinates, the volume form on hyperbolic space is given

by

dx3 = 2
sinh r13 sinh r23

sinh r
dk d`dφ.

19



To prove this, it is easiest to consult the following picture and use the
method of infinitesimals (or differential forms):

x
 1

a
 1

a
 2

r
 23

r
 23

x
 3

r
13

 2

r
 13

x

θ

θ

dd

The area of the infinitesimal parallelogram formed as we vary r13 and
r23 by amounts dr13 and dr23 is sin θ a1a2, where θ is the angle between
the geodesics from x3 to x1 and x2. Evidently sin θ ai = dri3, so this
area is dr13 dr23/ sin θ = 2dk d`/ sin θ. As we vary θ by an amount dθ,
this parallelogram sweeps out an infinitesimal paralleliped of volume

dx3 = 2
sinh y

sin θ
dk d`dφ,

where y is the distance from x3 to the geodesic between x1 and x2.
With the help of the following picture:

x
 1

x
 1

r
 23

 2

r
 13

x

θ

y

r

repeated use of the hyperbolic law of sines gives

sinh y =
sinh r13 sinh r23

sinh r
sin θ

and thus

dx3 = 2
sinh r13 sinh r23

sinh r
dk d`dφ.
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