
A Pyramidal Evolutionary Algorithm with Different Inter-Agent

Partnering Strategies for Scheduling Problems

in GECCO 2001: Proceedings of the Genetic and Evolutionary Computation Conference, late-
breaking papers volume, pp 1-8, San Francisco, USA, 2001.

Uwe Aickelin
School of Computer Science
University of Nottingham
NG8 1BB UK
uxa@cs.nott.ac.uk

Abstract

This paper combines the idea of a hierarchical
distributed genetic algorithm with different inter-
agent partnering strategies. Cascading clusters of
sub-populations are built from bottom up, with
higher-level sub-populations optimising larger
parts of the problem. Hence higher-level sub-
populations search a larger search space with a
lower resolution whilst lower-level sub-
populations search a smaller search space with a
higher resolution. The effects of different partner
selection schemes amongst the agents on
solution quality are examined for two multiple-
choice optimisation problems. It is shown that
partnering strategies that exploit problem-
specific knowledge are superior and can counter
inappropriate (sub-) fitness measurements.

1 INTRODUCTION

When hierarchically distributed evolutionary algorithms
are combined with multi-agent structures a number of
new questions become apparent. One of these questions is
addressed in this paper: the issue of intelligently selecting
mating partners from another population for an agent.
This paper will look at seven different partnering
strategies when combined with a genetic algorithm that
uses a co-operative sub-population structure. We will
evaluate the different strategies according to their
optimisation performance of two scheduling problems.

Genetic algorithms are generally attributed to Holland
[1976] and his students in the 1970s, although
evolutionary computation dates back further (refer to
Fogel [1998] for an extensive review of early
approaches). Genetic algorithms are stochastic meta-
heuristics that mimic some features of natural evolution.

Canonical genetic algorithms were not intended for
function optimisation, as discussed by De Jong [1993].
However, slightly modified versions proved very
successful. For an introduction to genetic algorithms for
function optimisation, see Deb [1996].

The twist when applying our type of distributed genetic
algorithm lies in its special hierarchical structure. All sub-
populations follow different (sub-) fitness functions, so in
effect only searching specific parts of the solution space.
Following special crossover-operators these parts are then
gradually merged to full solutions. The advantage of such
a divide and conquer approach is reduced epistasis within
the lower-level sub-populations which makes the
optimisation task easier for the genetic algorithm.

The paper is arranged as follows: the following section
describes the nurse scheduling and tenant selection
problems. Pyramidal genetic algorithms and their
application to these two problems are detailed in section
3. Section 4 explains the seven partnering strategies
examined in the paper and section 5 describes their use
and computational results. The final section discusses all
findings and draws conclusions.

2 THE NURSE SCHEDULING AND

TENANT SELECTION PROBLEMS

Two optimisation problems are considered in this paper,
the nurse scheduling problem and the tenant selection
problem. Both have a number of characteristics that make
them an ideal testbed for the enhanced genetic algorithm
using partnering strategies. Firstly, they are both in the
class of NP-complete problems [Johnson 1998, Martello
& Toth 1990], hence they are challenging problems.
Secondly, they have proved resilient to optimisation by a

standard genetic algorithm, with good solutions only
found by using a novel strategy of indirectly optimising
the problem with a decoder based genetic algorithm
[Aickelin & Dowsland 2001]. Finally, both problems are
similar multiple-choice allocation problems. For the nurse
scheduling, the choice is to allocate a shift-pattern to each
nurse, whilst for the tenant selection it is to allocate an
area of the mall to a shop. However, as the following
more detailed explanation of the two will show, the two
problems also have some very distinct characteristics
making them different yet similar enough for an
interesting comparison of results.

The nurse-scheduling problem is that of creating weekly
schedules for wards of up to 30 nurses at a major UK
hospital. These schedules have to satisfy working
contracts and meet the demand for given numbers of
nurses of different grades on each shift, whilst at the same
time being seen to be fair by the staff concerned. The
latter objective is achieved by meeting as many of the
nurses’ requests as possible and by considering historical
information to ensure that unsatisfied requests and
unpopular shifts are evenly distributed. Due to various
hospital policies, a nurse can normally only work a sub-
set of the in total 411 theoretically possible shift-patterns.
For instance, a nurse should work either days or nights in
a given week, but not both. The interested reader is
directed to Aickelin & Dowsland [2000] and Dowsland
[1998] for further details of this problem.

For our purposes, the problem can be modelled as
follows. Nurses are scheduled weekly on a ward basis
such that they work a feasible pattern with regards to their
contract and that the demand for all days and nights and
for all qualification levels is covered. In total three
qualification levels with corresponding demand exists. It
is hospital policy that more qualified nurses are allowed
to cover for less qualified one. Infeasible solutions with
respect to cover are not acceptable. A solution to the
problem would be a string, with the number of elements
equal to the number of nurses. Each element would then
indicate the shift-pattern worked by a particular nurse.
Depending on the nurses’ preferences, the recent history
of patterns worked, and the overall attractiveness of the
pattern, a penalty cost is then allocated to each nurse-
shift-pattern pair. These values were set in close
consultation with the hospital and range from 0 (perfect)
to 100 (unacceptable), with a bias to lower values. The
sum of these values gives the quality of the schedule. 52
data sets are available, with an average problem size of 30
nurses per ward and up to 411 possible shift-patterns per
nurse.

For comparison, all data sets were solved using a standard
IP package [Fuller 1998]. However, some remained
unsolved after each being allowed 15 hours run-time on a
Pentium II 200. Experiments with a number of descent

methods using different neighbourhoods, and a standard
simulated annealing implementation, were even less
successful and frequently failed to find feasible solutions.
The most successful approach to date is based on Tabu
Search [Dowsland 1998]. However, the quality of
solutions relies heavily on data-specific chains of moves
that work well because of the way in which the different
factors affecting the quality of a schedule are combined.
A straightforward genetic algorithm approach failed to
solve the problem [Aickelin & Dowsland 2000]. The best
evolutionary results to date have been achieved with an
indirect genetic approach employing a decoder function
[Aickelin & Dowsland 2001]. However, we believe that
there is further leverage in direct evolutionary approaches
to this problem. Hence we propose to use an enhanced
pyramidal genetic algorithm in this paper.

The second problem is a mall layout and tenant selection
problem; in future mall problem for short. The mall
problem arises both in the planning phase of a new
shopping centre and on completion when the type and
number of shops occupying the mall has to be decided. To
maximise revenue a good mixture of shops that is both
heterogeneous and homogeneous has to be achieved. Due
to the difficulty of obtaining real-life data because of
confidentiality, the problem and data used in this research
are constructed artificially, but closely modelled after the
actual real-life problem as described for instance in Bean
et al. [1988]. In the following, we will briefly outline our
model.

The objective of the mall problem is to maximise the rent
revenue of the mall. Although there is a small fixed rent
per shop, a large part of a shop’s rent depends on the sales
revenue generated by it. Therefore, it is important to
select the right number, size and type of tenants and to
place them into the right locations to maximise revenue.
As outlined in Bean et al. [1988], the rent of a shop
depends on the following factors:

• The attractiveness of the area in which the shop is
located.

• The total number of shops of the same type in the
mall.

• The size of the shop.

• Possible synergy effects with neighbouring similar
shops, i.e. shops in the same group (not used by Bean
et al.).

• A fixed amount of rent based on the type of the shop
and the area in which it is located.

This problem can be modelled as follows: Before placing
shops, the mall is divided into a discrete number of
locations, each big enough to hold the smallest shop size.
Larger sizes can be created by placing a shop of the same

type in adjacent locations. Hence, the problem is that of
placing i shop-types (e.g. menswear) into j locations,
where each shop-type can belong to one or more of l
groups (e.g. clothes shops) and each location is situated in
one of k areas. For each type of shop there will be a
minimum, ideal and maximum number allowed in the
mall, as consumers are drawn to a mall by a balance of
variety and homogeneity of shops.

The size of shops is determined by how many locations
they occupy within the same area. For the purpose of this
study, shops are grouped into three size classes, namely
small, medium, and large, occupying one, two, and three
locations in one area of the mall respectively. For
instance, if there are two locations to be filled with the
same shop-type within one area, then this will be a shop
of medium size. If there are five locations with the same
shop-type assigned in the same area, then they will form
one large and one medium shop etc. Usually, there will
also be a maximum total number of small, medium and
large shops allowed in the mall.

To test the robustness and performance of our algorithms
thoroughly on this problem, 50 problem instances were
created. All problem instances have 100 locations
grouped into five areas. However, the sets differ in the
number of shop-types available (between 50 and 20) and
in the tightness of the constraints regarding the minimum
and maximum number of shops of a certain type or size.
Full details on how the data was created, its dimensions,
the differences between the sets can be found in [Aickelin
1999].

3 PYRAMIDAL GENETIC

ALGORITHMS

Both problems failed to be optimised with a standard
genetic algorithm [Aickelin & Dowsland 2000 and 2001].
Our previous research showed that the difficulties were
attributable to epistasis created by the constrained nature
of the optimisation. Briefly, epistasis refers to the ‘non-
linearity’ of the solution string [Davidor 1991], i.e.
individual variable values which were good in their own
right, e.g. a particular shift / location for a particular nurse
/ shop formed low quality solutions once combined. This
effect was created by those constraints that could only be
incorporated into the genetic algorithm via a penalty
function approach. For instance, most nurses preferred
working days; thus partial solutions with many ‘day’
shift-patterns have a higher fitness. However, combining
these shift-patterns leads to shortages at night and
therefore infeasible solutions. The situation for the mall
problem is similar yet more complex, as two types of

constraints have to be dealt with: size constraints and
number constraints.

In Aickelin & Dowsland [2000] we presented a simple
and on its own unsuccessful pyramidal genetic algorithm
for the nurse-scheduling problem. A pyramidal approach
can best be described as a hierarchical distributed genetic
algorithm where cascading clusters of sub-populations are
built from bottom up, with higher-level sub-populations
optimising larger parts of the problem. Thus, the
hierarchy is not within one string but rather between sub-
populations which optimise different string-portions.
Hence, higher-level sub-populations search a larger
search space with a lower resolution whilst lower-level
sub-populations search a smaller search space with a
higher resolution. This can be applied to the nurse-
scheduling problem in the following way:

• Agents in sub-populations 1, 2 and 3 have their
fitness based on cover and requests only for grade 1,
2 and 3 respectively.

• Agents in sub-populations 4, 5 and 6 have their
fitness based on cover and requests for grades (1+2),
(2+3), (3+1).

• Agents in sub-population 7 optimise cover and
requests for (1+2+3).

• Agents in sub-population 8 solve the original (all)
problem.

The full structure is illustrated in figure 1. Sub-solution
strings from lower populations are cascaded upwards
using suitable crossover and selection mechanisms. For
instance, fixed crossover points are used such that an
agent from sub-population (1) combined with one from
(2+3) forms a full solution. Although the full problem is
as epistatic as before, the sub-problems are less so as the
interaction between nurse grades is (partially) ignored.
Compatibility problems of combining the parts are
reduced by the pyramidal structure with its hierarchical
and gradual combining.

Using this approach improved solution quality in
comparison to a standard genetic algorithm was recorded.
However, the quality of solutions was still short of those
produced by Tabu Search. So far roulette wheel selection
based on fitness rank had been used to choose parents.
The fitness of each sub-string is calculated using a
substitute fitness measure based on the requests and cover
as detailed above, i.e. the possibility of more qualified
nurses covering for less-qualified ones is partially
ignored. Unsatisfied constraints are included via a penalty
function. This paper will investigate various partnering
strategies between the agents of the sub-populations to
improve upon these results.

Figure 1: Nurse Problem Pyramidal Structure.

Similar to the nurse problem, a solution to the mall
problem can be represented by a string with as many
elements as locations in the mall. Each element then
indicates what shop-type is to be located there. The mall
is geographically split into different regions, for instance
north, east, south, west and central. Some of the
objectives are regional; e.g. the size of a shop, the synergy
effects, the attractiveness of an area to a shop-type,
whereas others are global, e.g. the total number of shops
of a certain type or size.

The application of the pyramidal structure to the mall
problem follows along similar lines to that of the nurse
problem. In line with splitting the string into partitions
with nurses of the same grade, the string is now split into
the areas of the mall. Thus, we will have sub-strings with
all the shops in one area in them. These can then be
combined to create larger ‘parts’ of the mall and finally
full solutions.

However, the question arises how to calculate the
substitute fitness measure of the partial strings. The
solution chosen here will be a pseudo measure based on
area dependant components only, i.e. global aspects are
not taken into account when a substitute fitness for a
partial string is calculated. Thus, sub-fitness will be a
measure of the rent revenue created by parts of the mall,
taking into account those constraints that are area based.
All other constraints are ignored. A penalty function is
used to account for unsatisfied constraints.

Due to the complexity of the fitness calculations and the
limited overall population size, we refrained from using
several levels in the hierarchical design as we did with the
nurse scheduling. Instead a simpler two level hierarchy is
used as shown in figure 2: Five sub-populations
optimising the five areas separately (1,2,3,4, 5) and one
main population optimising the original problem (all). A
special crossover then selects one solution from each sub-

population and pastes them together to form a full
solution.

Figure 2: Mall Problem Pyramidal Structure.

The remainder of this paper will investigate ways to try to
improve on previously found poor results by suggesting
ways of combining partial strings more intelligently. An
alternative, particularly for the mall problem, would be a
more gradual build-up of sub-populations. Without
increasing the overall population size, this would lead to
more and hence smaller sub-populations. However, this
more gradual approach might have enabled the algorithm
to find good feasible solutions by more slowly joining
together promising building blocks. This is in contrast to
the relatively harsh two-level and three-level design
where building blocks had to ‘succeed’ immediately.
Exploring the exact benefits of a gradual build-up of sub-
solutions would make for another challenging area of
possible future research.

4 PARTNERING STRATEGIES

The problem of how to pick crossover partners has been
noted in both competitive and co-operative co-
evolutionary algorithms. Many strategies have been
presented in the literature as summarised for instance by
Bull [1997]. In this paper seven such strategies are
compared for their effectiveness in fighting epistasis in
the pyramidal genetic algorithm optimising the nurse
scheduling and the mall problems.

Rank-Selection (S): This is the method used so far in our
algorithms. Agents are assigned a sub-fitness score based
as closely as possible on the contribution of their partial
string to full solutions. All agents are then ranked within
each sub-population and selection follows a roulette

1+2+3

1+2

all

3+1 2+3

1 3 2

2 1

all

3 4 5

wheel scheme based on the ranks [e.g. Aickelin &
Dowsland 2000].

Random (R): Agents choose their mating partners
randomly from amongst all those in the sub-population
their sub-population is paired with [e.g. Bull & Fogarty
1993].

Best (B): In this strategy each agent is paired with the
currently best agent of the other sub-population(s). In case
of a tie, the agent with the lower population index is
chosen [e.g. Potter & De Jong 1994].

Distributed (D): The idea behind this approach is to match
agents with similar ones to those paired with previously
[e.g. Ackely & Littman 1994]. To achieve this each sub-
population is spaced out evenly across a single toroidal
grid. Subsequently, agents are paired with others on the
same grid location in the appropriate other sub-
populations. Children created by this are inserted in an
adjacent grid location. This is said to be beneficial to the
search process because a consistent co-evolutionary
pressure emerges since all offspring appear in their
parents’ neighbourhoods [Husbands 1994]. In our
algorithms we use local mating with the neighbourhood
set to the eight agents surrounding the chosen location.

Joined (J): In nature, some species carry others internally
with the relationship propagated from generation to
generation [e.g. Iba 1996]. Thus, each agent represents a
complete solution; i.e. all the parts have been joined
together. In our case, this results in all sub-populations
solving the original problem, i.e. we have a traditional
parallel genetic algorithm. This means that all sub-
populations use the full fitness function for evaluation and
rank-proportional selection.

Attractiveness (A): The five strategies described so far are
general and do not make use of problem specific
knowledge. However, there is a growing body of research
[e.g. Stanley et al. 1994, Wolpert & Macready 1995], as
well as our own previous work, which suggests that
approaches that exploit problem specific knowledge
achieve better results. Here pairing is done as for the
rank-selection strategy (S). However, the pair is only
accepted with a probability proportional to their fitness or
substitute fitness once combined. The probabilities are
scaled such that if the (substitute) fitness fcomb is equal or
greater to the best-known fitness fbest the pairing is
automatically accepted. Otherwise the probability is fcomb /
fbest for the mall problem and the inverse for the nurse
scheduling.

Partner Choice (C): This approach again exploits problem
specific knowledge and was inspired by an idea presented

by Ronald [1995]. He solves Royal Roads and multi-
objective optimisation problems using a genetic algorithm
where the first parent is chosen following standard rules,
i.e. proportional to its fitness. However, the second parent
is not chosen according to its fitness, but depending on its
‘attractiveness’ to the first parent, which is measured on a
different scale. Our approach will be slightly different.
The first parent is still chosen according to its rank. But
rather than picking one agent from the appropriate sub-
population as the second parent, ten candidates are chosen
at random. The second parent will then be chosen as the
one that creates the fittest children with the first parent.

5 EXPERIMENTAL RESULTS

5.1 THE MODEL

To allow for fair comparison, the parameters and
strategies used for both problems are kept as similar as
possible. Both have a total population of 1000 agents.
These are split into sub-populations of size 100 for the
lower-levels and a main population of size 300 for the
nurse scheduling and respectively of size 500 for the mall
problem. In principle, two types of crossover take place:
within sub-populations a two-parent-two-children
parameterised uniform crossover with p=0.66 for genes
coming from one parent takes place.

Between sub-populations a fixed-point crossover is used
such that appropriate parts are assembled. For instance, in
the nurse problem agents of sub-population 1 and 2 would
parent a new child for sub-population 1+2. All in all 50%
of children are created via the uniform and the remainder
with the fixed-point crossover. For some of the fixed
point cases a choice exists, e.g. in the nurse problem new
agents of sub-population 1+2+3 can be created in four
different ways, either (1+2) + (3), (2+3) +(1), (3+1)+(2)
or (1)+(2)+(3). In these situations there is an equal
probability for each child to be created in either way.
Parent selection followed the seven strategies outlined
above.

Each new solution created undergoes mutation with a 1%
bit mutation probability, where a mutation would re-
initialise the bit in the feasible range. The algorithm is run
in generational mode to accommodate the sub-population
structure better. In every generation the worst 90% of
parents of all sub-populations are replaced. For all fitness
and sub-fitness function calculations a fitness score as
described before is used. Constraint violations are
penalised with a dynamic penalty parameter, which
adjusts itself depending on the (sub)-fitness difference
between the best and the best feasible agent in each (sub-)
population. Full details on this type of weight and how it

was calculated can be found in Smith & Tate [1993] and
Aickelin & Dowsland [2000]. The stopping criterion is
the top sub-population showing no improvement for 50
generations.

To obtain statistically sound results all experiments were
conducted as 20 runs over all problem instances. All
experiments were started with the same set of random
seeds, i.e. with the same initial populations. The results
are presented in feasibility and cost respectively rent
format. Feasibility denotes the probability of finding a
feasible solution averaged over all problem instances.
Cost / Rent refer to the objective function value of the
best feasible solution for each problem instance averaged
over the number of instances for which at least one
feasible solution was found.

Should the algorithm fail to find a single feasible solution
for all 20 runs on one problem instance, a censored
observation of one hundred in the nurse case and zero for
the mall problem is made instead. As we are minimising
the cost for the nurses and maximising the rent of the
mall, this is equivalent to a very poor solution. For the
nurse-scheduling problem, the cost represents the sum of
unfulfilled nurses’ requests and unfavourable shift-
patterns worked. For the mall, the values for the rent are
in thousands of pounds per year.

5.2 RESULTS

Table 1 shows the results found by our algorithms for the
two problems (N = Nurse problem, M = Mall problem)
using the seven different partnering strategies in
combination with the pyramidal structure. The results are
compared to those found by the standard genetic
algorithm (SGA) [Aickelin & Dowsland 2000 and 2001]
and the Tabu Search results [Dowsland 1998] for the
nurse problem and theoretical bounds for the mall
problem (both referred to as ‘bound’). A number of
interesting observations can be made.

In the nurse scheduling case, the SGA approach failed to
find good or even feasible solutions for many data sets.
This can be explained by the high degree of epistasis
present and the inability of the unmodified genetic
algorithm to deal with it. Once the pyramidal structure
with rank-based selection (S) is introduced, results
improve significantly, however they are still below those
found by Tabu Search. For the mall problem, the situation
is different. Results found by the SGA are fairly good
with high feasibility. This indicates the higher number of
feasible solutions for this problem. Solution quality seems
reasonably good, too. However, the addition of the
pyramidal structure (S) results in a marked deterioration
of results.

How can these different results be explained? With the
nurse scheduling, the objective function value of a partial
solution was obtained by summing the cost values of the
nurses and shift-patterns involved. Furthermore, we were
able to define relatively meaningful sub-fitness scores by
exploiting the ‘cumulative’ nature of the covering
constraints due to the grade structure. Hence the substitute
fitness scores calculated allowed for an effective
recombination of partial solutions for the nurse-
scheduling problem. Thus, there is a good correlation
between the sub-fitness of an agent (and hence its rank
and its chance of being selected) and the likelihood that it
will form part of a good solution. This also explains why
the random (R) scheme produces worse results. The best
(B) strategy although giving better results than the
random selection fails to solve many problems. However,
closer observation of experiments showed that it solved
some single data sets well. This indicates that genetic
variety is as important as fitness in the evolution of good
solutions.

Both the distributed (D) and joint (J) strategies again fail
to provide better solutions than the rank-based selection.
The distributed strategy is similar to the random strategy
as it too ignores fitness scores for selection. Choosing
from a fixed pool does have some benefits as the results
are better than for complete random choice. The joint
strategy works almost as well as the rank-selection. This
shows that the principle of the ‘dividing and conquering’
works well with the nurse problem split along the grade
boundaries. The slightly poorer results can be explained
by the ‘full’ evaluation of all sub-strings although only
‘parts’ are passed on. Thus, some of the correlation
described above is lost.

The two best strategies both outperforming (S) are partner
selection based on attractiveness (A) and choice (C).
Again this further confirms that the partial sub-fitness
scores are a good criterion of selection for the pyramidal
algorithm. Overall, (C) is better than (A) which
corresponds to (C) having a higher selection pressure than
(A), which in turn has a higher selection pressure than (S).
To conclude, it seems that for this problem a good
correlation between agents’ sub-fitness, the pyramidal
structure and good full solutions exist. Hence, the scheme
with the highest selection pressure using most problem
specific information scores best. However, the results also
show that even this scheme cannot compete with the Tabu
Search results, something we will discuss in the
concluding section.

With the Mall Problem, the situation is more complicated
since unlike for the nurse problem a large part of the
objective function is a source of epistasis, which the
proposed partitioning of the string will not eliminate fully.
The constraints are a second source for epistasis. In

contrast to the objective function, these depend largely on
the whole string, as for instance the total number of shops
of a particular size allowed. Only after adding up the
shops and sizes for all areas is it known if a solution is
feasible or not. So unsurprisingly, a combination of these
partial solutions is often unsuccessful because it usually
violates the overall constraints.

On their own, solutions of the sub-populations are
extremely unlikely to be feasible for the overall problem,
as they covered only one fifth of the string. It is equally
unlikely for those solutions in the main population, which
are formed from the five sub-populations, to be feasible.
Although these solutions are of high rent, because the
sub-populations ignore the main constraints, their
combination is unlikely to produce an overall feasible
solution.

The situation is only slightly better with those solutions
formed by an agent of the sub-populations and an agent of
the main population. Usually, even if the agent of the
main population is feasible, the children were not. Again,
even though the partial string from the sub-population
agent was of high rent, it was usually incompatible with
the rest of the string, resulting in too many or too few
shops of some types. Thus, in contrast to the nurse-
scheduling problem, their sub-fitness scores are a far
poorer predictor for the compatibility of the parts to form
complete solutions.

This is confirmed by the above average performance of
the random strategy (R) and the extremely poor results
found by the best strategy (B). Similarly to before, the
distributed strategy (D) performs well again giving credit
to the idea of even selection pressure without relying on
fitness scores, whereas the joint strategy (J) performs
poorly suffering both from the unsuitable sub-fitness
scores and the now hindering pyramidal structure.

Overall, the real winners are again the more complex
strategies of choice (C) and attraction (A). At first this
seems contradictory as these rely heavily upon the sub-
fitness scores. However, apart from the rank-based initial
selection of the first parent, subsequent fitness
calculations are made after combining the agents. Since
the mall pyramid only has two layers, these combinations
are always full solution and hence the full fitness score is
used. Thus, the direct link between high fitness and good
solutions is re-established. Of the two, (A) performs better
than (C). This seems to show that a certain amount of
randomness is still important here, which again might be
an indication for the lower predictive quality of the sub-
fitness scores.

 N Cost N Feas M Rent M Feas

Bound 8.8 100% 2640 100%

SGA 54.2 33% 1850 94%

S 17.6 75% 1540 78%

R 37.4 54% 1790 86%

B 27.1 57% 1490 70%

D 26.5 61% 1770 84%

J 19.9 71% 1590 78%

A 12.2 83% 1950 98%

C 11.1 87% 1910 94%

Table 1: Experimental Results (N = Nurse, M = Mall).

6 CONCLUSIONS

This paper has shown the effect different partner
strategies have on a pyramidal genetic algorithm solving
two different optimisation problems from the area of
multiple-choice scheduling. The result for the five simple
strategies (S, R, B, D and J) differ for both problems. This
is a reflection of the accurateness of the sub-fitness
measure in the sense of its predictive power for sub-
solutions to form full solutions following the pyramidal
recombination strategies. Therefore, in the case of the
nurse problem with a good match between sub-fitness and
usefulness for recombination the simple strategies worked
well, whereas for the mall problem with its poorer
correlation between the two it did not.

For both problems the distributed partnering strategy (D)
gives consistent results. This leads to the question
whether some form of fitness sharing might have been
beneficial to some or all of the partnering strategies. We
are taking up this idea in our ongoing research into
pyramidal genetic algorithms.

The two more advanced strategies (A) and (C) use most
problem specific knowledge and work well for both
problems. They worked well for the nurse problem
because the sub-fitness scores are meaningful. They also
worked well for the mall problem because the partners are
chosen based on a fitness score after recombination,
which in this case equals the full original fitness score.
Thus, choosing parents ‘post-birth’ after evaluating
possible children can overcome possible shortcomings in
the sub-fitness measure.

It has to be noted that overall none of the partnering
schemes managed to outperform the Tabu Search
algorithm or come as close to the bounds as we had
hoped. However, one has to remember that the Tabu
Search uses highly problem-specific hill-climbing
routines, some of which also relied heavily on certain
criteria present in the actual data used. For different or
more random data this would probably no longer hold.

Therefore, without adding a more specific hill-climbing
component it would not be possible to reach this level of
solution quality. It is our conclusion that pyramidal
genetic algorithms (with or without hill-climbing) benefit
greatly from the right choice of partnering strategy as this
improves solution quality and negates possible
shortcoming of the chosen sub-fitness scores.

References

Ackley D H & Littman M L (1994), “Altruism in the
Evolution of Communication”, in R Brooks & P Maes
(eds.) Artificial Life IV, MIT Press, Mass., pp40-48.

Aickelin U (1999). “Genetic Algorithms for Multiple-
Choice Optimisation Problems.” PhD Dissertation,
University of Wales, Swansea, United Kingdom.

Aickelin U and Dowsland K (2000). “Exploiting problem
structure in a genetic algorithm approach to a nurse
rostering problem.” Journal of Scheduling 3, 139-153.

Aickelin U and Dowsland K (2001). “An indirect genetic
algorithm approach to a nurse scheduling problem.”
Under review by the Journal of Computing and
Operational Research.

Bean J, Noon C, Ryan S, Salton G (1988), “Selecting
Tenants in a Shopping Mall,” Interfaces 18, 1-9.

Bull, L. (1997) Evolutionary Computing in Multi-Agent
Environments: Partners. In T.Baeck (ed.) Proceedings of
the Seventh International Conference on Genetic
Algorithms. Morgan

Kaufmann, pp370-377.Bull L & Fogarty T C (1993),
“Coevolving Communicating Classifier Systems for
Tracking”, in R F Albrecht, C R Reeves & N C Steele
(eds.) Artificial Neural Networks and Genetic Algorithms,
Springer-Verlag, New York, pp522-527.

Davidor Y. (1991), Epistasis Variance: A Viewpoint on
GA-Hardness, Foundations of Genetic Algorithms 1, 23-
35, G Rawlins (Ed), Morgan Kaufmann, 1991.

De Jong K. Genetic Algorithms are NOT Function
Optimisers. In Whitley D. Editor. Foundations of Genetic
Algorithms 2. San Mateo: Morgan Kaufmann Publishers,
1993:5-17.

Deb K. Genetic Algorithms for Function Optimisation.
Genetic Algorithms and Soft Computing 1996:4-31.

Dowsland K.A., Nurse Scheduling with Tabu Search and
Strategic Oscillation, European Journal of Operational
Research 106, 393-407 (1998).

Fogel D. Evolutionary Computation: The Fossil Record.
IEEE Press, 1998.

Fuller E. Tackling Scheduling Problems Using Integer
Programming. Master Thesis, University of Wales
Swansea, United Kingdom, 1998.

Holland J. Adaptation in Natural and Artificial Systems.
Ann Arbor: University of Michigan Press, 1976.

Husbands P (1994), “Distributed Coevolutionary Genetic
Algorithms for Multi-Criteria and Multi-Constraint
Optimisation”, in T C Fogarty (ed.) Evolutionary
Computing, Springer-Verlag, pp150-165.

Iba H (1996), “Emergent Co-operation for Multiple
Agents Using Genetic Programming”, in H-M Voigt, W
Ebeling, I Rechenberg & H-P Schwefel (eds.) Parallel
Problem Solving from Nature - PPSN IV, Springer,
Berlin, pp32-41.

Johnson D.S. private communication 1998.

Martello S. and Toth P., Knapsack Problems, Wiley,
Chichester, 1990

Potter M. & De Jong K. (1994), “A Co-operative
Coevolutionary Approach to Function Optimisation”, in
Y Davidor, H-P Schwefel & R Manner (eds.) Parallel
Problem Solving From Nature - PPSN III, Springer-
Verlag, Berlin, pp249-259.

Ronald E (1995), When Selection Meets Seduction, pp
167-173 in Eshelman L, Proceedings of the International
Conference on Genetic Algorithms, Morgan Kaufmann
Publishers, San Francisco, 1995.

Smith A. and Tate D. (1993), Genetic Optimisation Using
a Penalty Function, Proceedings ICGA 5, 499-505,
Forrest S (ed.), Morgan Kaufmann, 1993.

Stanley A E, Ashlock D, Testatsion L (1994), “Iterated
Prisoner’s Dilemma with Choice and Refusal of
Partners”, in C G Langton (ed.) Artificial Life III,
Addison-Wesley, Redwood City, pp131-146.

Wolpert D & Macready W (1995), No Free Lunch
Theorem for Search, SFI-TR-95-02-010, The Santa Fe
Institute, Santa Fe, pp 1-38, 1995.

