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Abstract 

 

 

This paper combines the idea of a hierarchical 
distributed genetic algorithm with different inter-
agent partnering strategies. Cascading clusters of 
sub-populations are built from bottom up, with 
higher-level sub-populations optimising larger 
parts of the problem. Hence higher-level sub-
populations search a larger search space with a 
lower resolution whilst lower-level sub-
populations search a smaller search space with a 
higher resolution. The effects of different partner 
selection schemes amongst the agents on 
solution quality are examined for two multiple-
choice optimisation problems. It is shown that 
partnering strategies that exploit problem-
specific knowledge are superior and can counter 
inappropriate (sub-) fitness measurements. 

1 INTRODUCTION 

 

When hierarchically distributed evolutionary algorithms 
are combined with multi-agent structures a number of 
new questions become apparent. One of these questions is 
addressed in this paper: the issue of intelligently selecting 
mating partners from another population for an agent. 
This paper will look at seven different partnering 
strategies when combined with a genetic algorithm that 
uses a co-operative sub-population structure. We will 
evaluate the different strategies according to their 
optimisation performance of two scheduling problems. 

 

Genetic algorithms are generally attributed to Holland 
[1976] and his students in the 1970s, although 
evolutionary computation dates back further (refer to 
Fogel [1998] for an extensive review of early 
approaches). Genetic algorithms are stochastic meta-
heuristics that mimic some features of natural evolution. 

Canonical genetic algorithms were not intended for 
function optimisation, as discussed by De Jong [1993]. 
However, slightly modified versions proved very 
successful. For an introduction to genetic algorithms for 
function optimisation, see Deb [1996]. 

 

The twist when applying our type of distributed genetic 
algorithm lies in its special hierarchical structure. All sub-
populations follow different (sub-) fitness functions, so in 
effect only searching specific parts of the solution space. 
Following special crossover-operators these parts are then 
gradually merged to full solutions. The advantage of such 
a divide and conquer approach is reduced epistasis within 
the lower-level sub-populations which makes the 
optimisation task easier for the genetic algorithm. 

 

The paper is arranged as follows: the following section 
describes the nurse scheduling and tenant selection 
problems. Pyramidal genetic algorithms and their 
application to these two problems are detailed in section 
3. Section 4 explains the seven partnering strategies 
examined in the paper and section 5 describes their use 
and computational results. The final section discusses all 
findings and draws conclusions. 

 

 

2 THE NURSE SCHEDULING AND 

TENANT SELECTION PROBLEMS 

 

Two optimisation problems are considered in this paper, 
the nurse scheduling problem and the tenant selection 
problem. Both have a number of characteristics that make 
them an ideal testbed for the enhanced genetic algorithm 
using partnering strategies. Firstly, they are both in the 
class of NP-complete problems [Johnson 1998, Martello 
& Toth 1990], hence they are challenging problems. 
Secondly, they have proved resilient to optimisation by a 



standard genetic algorithm, with good solutions only 
found by using a novel strategy of indirectly optimising 
the problem with a decoder based genetic algorithm 
[Aickelin & Dowsland 2001]. Finally, both problems are 
similar multiple-choice allocation problems. For the nurse 
scheduling, the choice is to allocate a shift-pattern to each 
nurse, whilst for the tenant selection it is to allocate an 
area of the mall to a shop. However, as the following 
more detailed explanation of the two will show, the two 
problems also have some very distinct characteristics 
making them different yet similar enough for an 
interesting comparison of results. 

 

The nurse-scheduling problem is that of creating weekly 
schedules for wards of up to 30 nurses at a major UK 
hospital. These schedules have to satisfy working 
contracts and meet the demand for given numbers of 
nurses of different grades on each shift, whilst at the same 
time being seen to be fair by the staff concerned. The 
latter objective is achieved by meeting as many of the 
nurses’ requests as possible and by considering historical 
information to ensure that unsatisfied requests and 
unpopular shifts are evenly distributed. Due to various 
hospital policies, a nurse can normally only work a sub-
set of the in total 411 theoretically possible shift-patterns. 
For instance, a nurse should work either days or nights in 
a given week, but not both. The interested reader is 
directed to Aickelin & Dowsland [2000] and Dowsland 
[1998] for further details of this problem. 

 

For our purposes, the problem can be modelled as 
follows. Nurses are scheduled weekly on a ward basis 
such that they work a feasible pattern with regards to their 
contract and that the demand for all days and nights and 
for all qualification levels is covered. In total three 
qualification levels with corresponding demand exists. It 
is hospital policy that more qualified nurses are allowed 
to cover for less qualified one. Infeasible solutions with 
respect to cover are not acceptable. A solution to the 
problem would be a string, with the number of elements 
equal to the number of nurses. Each element would then 
indicate the shift-pattern worked by a particular nurse. 
Depending on the nurses’ preferences, the recent history 
of patterns worked, and the overall attractiveness of the 
pattern, a penalty cost is then allocated to each nurse-
shift-pattern pair. These values were set in close 
consultation with the hospital and range from 0 (perfect) 
to 100 (unacceptable), with a bias to lower values. The 
sum of these values gives the quality of the schedule. 52 
data sets are available, with an average problem size of 30 
nurses per ward and up to 411 possible shift-patterns per 
nurse. 

 

For comparison, all data sets were solved using a standard 
IP package [Fuller 1998]. However, some remained 
unsolved after each being allowed 15 hours run-time on a 
Pentium II 200. Experiments with a number of descent 

methods using different neighbourhoods, and a standard 
simulated annealing implementation, were even less 
successful and frequently failed to find feasible solutions. 
The most successful approach to date is based on Tabu 
Search [Dowsland 1998]. However, the quality of 
solutions relies heavily on data-specific chains of moves 
that work well because of the way in which the different 
factors affecting the quality of a schedule are combined. 
A straightforward genetic algorithm approach failed to 
solve the problem [Aickelin & Dowsland 2000]. The best 
evolutionary results to date have been achieved with an 
indirect genetic approach employing a decoder function 
[Aickelin & Dowsland 2001]. However, we believe that 
there is further leverage in direct evolutionary approaches 
to this problem. Hence we propose to use an enhanced 
pyramidal genetic algorithm in this paper. 

 

The second problem is a mall layout and tenant selection 
problem; in future mall problem for short. The mall 
problem arises both in the planning phase of a new 
shopping centre and on completion when the type and 
number of shops occupying the mall has to be decided. To 
maximise revenue a good mixture of shops that is both 
heterogeneous and homogeneous has to be achieved. Due 
to the difficulty of obtaining real-life data because of 
confidentiality, the problem and data used in this research 
are constructed artificially, but closely modelled after the 
actual real-life problem as described for instance in Bean 
et al. [1988]. In the following, we will briefly outline our 
model. 

 

The objective of the mall problem is to maximise the rent 
revenue of the mall. Although there is a small fixed rent 
per shop, a large part of a shop’s rent depends on the sales 
revenue generated by it. Therefore, it is important to 
select the right number, size and type of tenants and to 
place them into the right locations to maximise revenue. 
As outlined in Bean et al. [1988], the rent of a shop 
depends on the following factors: 

 

• The attractiveness of the area in which the shop is 
located. 

• The total number of shops of the same type in the 
mall. 

• The size of the shop. 

• Possible synergy effects with neighbouring similar 
shops, i.e. shops in the same group (not used by Bean 
et al.). 

• A fixed amount of rent based on the type of the shop 
and the area in which it is located. 

 

This problem can be modelled as follows: Before placing 
shops, the mall is divided into a discrete number of 
locations, each big enough to hold the smallest shop size. 
Larger sizes can be created by placing a shop of the same 



type in adjacent locations. Hence, the problem is that of 
placing i shop-types (e.g. menswear) into j locations, 
where each shop-type can belong to one or more of l 
groups (e.g. clothes shops) and each location is situated in 
one of k areas. For each type of shop there will be a 
minimum, ideal and maximum number allowed in the 
mall, as consumers are drawn to a mall by a balance of 
variety and homogeneity of shops. 

 

The size of shops is determined by how many locations 
they occupy within the same area. For the purpose of this 
study, shops are grouped into three size classes, namely 
small, medium, and large, occupying one, two, and three 
locations in one area of the mall respectively. For 
instance, if there are two locations to be filled with the 
same shop-type within one area, then this will be a shop 
of medium size. If there are five locations with the same 
shop-type assigned in the same area, then they will form 
one large and one medium shop etc. Usually, there will 
also be a maximum total number of small, medium and 
large shops allowed in the mall. 

 

To test the robustness and performance of our algorithms 
thoroughly on this problem, 50 problem instances were 
created. All problem instances have 100 locations 
grouped into five areas. However, the sets differ in the 
number of shop-types available (between 50 and 20) and 
in the tightness of the constraints regarding the minimum 
and maximum number of shops of a certain type or size. 
Full details on how the data was created, its dimensions, 
the differences between the sets can be found in [Aickelin 
1999]. 

 

 

3 PYRAMIDAL GENETIC 

ALGORITHMS 

 

Both problems failed to be optimised with a standard 
genetic algorithm [Aickelin & Dowsland 2000 and 2001]. 
Our previous research showed that the difficulties were 
attributable to epistasis created by the constrained nature 
of the optimisation. Briefly, epistasis refers to the ‘non-
linearity’ of the solution string [Davidor 1991], i.e. 
individual variable values which were good in their own 
right, e.g. a particular shift / location for a particular nurse 
/ shop formed low quality solutions once combined. This 
effect was created by those constraints that could only be 
incorporated into the genetic algorithm via a penalty 
function approach. For instance, most nurses preferred 
working days; thus partial solutions with many ‘day’ 
shift-patterns have a higher fitness. However, combining 
these shift-patterns leads to shortages at night and 
therefore infeasible solutions. The situation for the mall 
problem is similar yet more complex, as two types of 

constraints have to be dealt with: size constraints and 
number constraints. 

 

In Aickelin & Dowsland [2000] we presented a simple 
and on its own unsuccessful pyramidal genetic algorithm 
for the nurse-scheduling problem. A pyramidal approach 
can best be described as a hierarchical distributed genetic 
algorithm where cascading clusters of sub-populations are 
built from bottom up, with higher-level sub-populations 
optimising larger parts of the problem. Thus, the 
hierarchy is not within one string but rather between sub-
populations which optimise different string-portions. 
Hence, higher-level sub-populations search a larger 
search space with a lower resolution whilst lower-level 
sub-populations search a smaller search space with a 
higher resolution. This can be applied to the nurse-
scheduling problem in the following way: 

 

• Agents in sub-populations 1, 2 and 3 have their 
fitness based on cover and requests only for grade 1, 
2 and 3 respectively. 

• Agents in sub-populations 4, 5 and 6 have their 
fitness based on cover and requests for grades (1+2), 
(2+3), (3+1). 

• Agents in sub-population 7 optimise cover and 
requests for (1+2+3). 

• Agents in sub-population 8 solve the original (all) 
problem. 

 

The full structure is illustrated in figure 1. Sub-solution 
strings from lower populations are cascaded upwards 
using suitable crossover and selection mechanisms. For 
instance, fixed crossover points are used such that an 
agent from sub-population (1) combined with one from 
(2+3) forms a full solution. Although the full problem is 
as epistatic as before, the sub-problems are less so as the 
interaction between nurse grades is (partially) ignored. 
Compatibility problems of combining the parts are 
reduced by the pyramidal structure with its hierarchical 
and gradual combining. 

 

Using this approach improved solution quality in 
comparison to a standard genetic algorithm was recorded. 
However, the quality of solutions was still short of those 
produced by Tabu Search. So far roulette wheel selection 
based on fitness rank had been used to choose parents. 
The fitness of each sub-string is calculated using a 
substitute fitness measure based on the requests and cover 
as detailed above, i.e. the possibility of more qualified 
nurses covering for less-qualified ones is partially 
ignored. Unsatisfied constraints are included via a penalty 
function. This paper will investigate various partnering 
strategies between the agents of the sub-populations to 
improve upon these results. 



Figure 1: Nurse Problem Pyramidal Structure. 

 

Similar to the nurse problem, a solution to the mall 
problem can be represented by a string with as many 
elements as locations in the mall. Each element then 
indicates what shop-type is to be located there. The mall 
is geographically split into different regions, for instance 
north, east, south, west and central. Some of the 
objectives are regional; e.g. the size of a shop, the synergy 
effects, the attractiveness of an area to a shop-type, 
whereas others are global, e.g. the total number of shops 
of a certain type or size. 

 

The application of the pyramidal structure to the mall 
problem follows along similar lines to that of the nurse 
problem. In line with splitting the string into partitions 
with nurses of the same grade, the string is now split into 
the areas of the mall. Thus, we will have sub-strings with 
all the shops in one area in them. These can then be 
combined to create larger ‘parts’ of the mall and finally 
full solutions. 

 

However, the question arises how to calculate the 
substitute fitness measure of the partial strings. The 
solution chosen here will be a pseudo measure based on 
area dependant components only, i.e. global aspects are 
not taken into account when a substitute fitness for a 
partial string is calculated. Thus, sub-fitness will be a 
measure of the rent revenue created by parts of the mall, 
taking into account those constraints that are area based. 
All other constraints are ignored. A penalty function is 
used to account for unsatisfied constraints. 

 

Due to the complexity of the fitness calculations and the 
limited overall population size, we refrained from using 
several levels in the hierarchical design as we did with the 
nurse scheduling. Instead a simpler two level hierarchy is 
used as shown in figure 2: Five sub-populations 
optimising the five areas separately (1,2,3,4, 5) and one 
main population optimising the original problem (all). A 
special crossover then selects one solution from each sub-

population and pastes them together to form a full 
solution. 

 

Figure 2: Mall Problem Pyramidal Structure. 

 

The remainder of this paper will investigate ways to try to 
improve on previously found poor results by suggesting 
ways of combining partial strings more intelligently. An 
alternative, particularly for the mall problem, would be a 
more gradual build-up of sub-populations. Without 
increasing the overall population size, this would lead to 
more and hence smaller sub-populations. However, this 
more gradual approach might have enabled the algorithm 
to find good feasible solutions by more slowly joining 
together promising building blocks. This is in contrast to 
the relatively harsh two-level and three-level design 
where building blocks had to ‘succeed’ immediately. 
Exploring the exact benefits of a gradual build-up of sub-
solutions would make for another challenging area of 
possible future research. 

 

 

4 PARTNERING STRATEGIES 

 

The problem of how to pick crossover partners has been 
noted in both competitive and co-operative co-
evolutionary algorithms. Many strategies have been 
presented in the literature as summarised for instance by 
Bull [1997]. In this paper seven such strategies are 
compared for their effectiveness in fighting epistasis in 
the pyramidal genetic algorithm optimising the nurse 
scheduling and the mall problems. 

 

Rank-Selection (S): This is the method used so far in our 
algorithms. Agents are assigned a sub-fitness score based 
as closely as possible on the contribution of their partial 
string to full solutions. All agents are then ranked within 
each sub-population and selection follows a roulette 

1+2+3 

1+2 

all 

3+1 2+3 

1 3 2 

2 1 

all 

3 4 5 



wheel scheme based on the ranks [e.g. Aickelin & 
Dowsland 2000]. 

 

Random (R): Agents choose their mating partners 
randomly from amongst all those in the sub-population 
their sub-population is paired with [e.g. Bull & Fogarty 
1993]. 

 

Best (B): In this strategy each agent is paired with the 
currently best agent of the other sub-population(s). In case 
of a tie, the agent with the lower population index is 
chosen [e.g. Potter & De Jong 1994]. 

 

Distributed (D): The idea behind this approach is to match 
agents with similar ones to those paired with previously 
[e.g. Ackely & Littman 1994]. To achieve this each sub-
population is spaced out evenly across a single toroidal 
grid. Subsequently, agents are paired with others on the 
same grid location in the appropriate other sub-
populations. Children created by this are inserted in an 
adjacent grid location. This is said to be beneficial to the 
search process because a consistent co-evolutionary 
pressure emerges since all offspring appear in their 
parents’ neighbourhoods [Husbands 1994]. In our 
algorithms we use local mating with the neighbourhood 
set to the eight agents surrounding the chosen location. 

 

Joined (J): In nature, some species carry others internally 
with the relationship propagated from generation to 
generation [e.g. Iba 1996]. Thus, each agent represents a 
complete solution; i.e. all the parts have been joined 
together. In our case, this results in all sub-populations 
solving the original problem, i.e. we have a traditional 
parallel genetic algorithm. This means that all sub-
populations use the full fitness function for evaluation and 
rank-proportional selection. 

 

Attractiveness (A): The five strategies described so far are 
general and do not make use of problem specific 
knowledge. However, there is a growing body of research 
[e.g. Stanley et al. 1994, Wolpert & Macready 1995], as 
well as our own previous work, which suggests that 
approaches that exploit problem specific knowledge 
achieve better results. Here pairing is done as for the 
rank-selection strategy (S). However, the pair is only 
accepted with a probability proportional to their fitness or 
substitute fitness once combined. The probabilities are 
scaled such that if the (substitute) fitness fcomb is equal or 
greater to the best-known fitness fbest the pairing is 
automatically accepted. Otherwise the probability is fcomb / 
fbest for the mall problem and the inverse for the nurse 
scheduling. 

 

Partner Choice (C): This approach again exploits problem 
specific knowledge and was inspired by an idea presented 

by Ronald [1995]. He solves Royal Roads and multi-
objective optimisation problems using a genetic algorithm 
where the first parent is chosen following standard rules, 
i.e. proportional to its fitness. However, the second parent 
is not chosen according to its fitness, but depending on its 
‘attractiveness’ to the first parent, which is measured on a 
different scale. Our approach will be slightly different. 
The first parent is still chosen according to its rank. But 
rather than picking one agent from the appropriate sub-
population as the second parent, ten candidates are chosen 
at random. The second parent will then be chosen as the 
one that creates the fittest children with the first parent. 

 

 

5 EXPERIMENTAL RESULTS 

5.1 THE MODEL 

 

To allow for fair comparison, the parameters and 
strategies used for both problems are kept as similar as 
possible. Both have a total population of 1000 agents. 
These are split into sub-populations of size 100 for the 
lower-levels and a main population of size 300 for the 
nurse scheduling and respectively of size 500 for the mall 
problem. In principle, two types of crossover take place: 
within sub-populations a two-parent-two-children 
parameterised uniform crossover with p=0.66 for genes 
coming from one parent takes place. 

 

Between sub-populations a fixed-point crossover is used 
such that appropriate parts are assembled. For instance, in 
the nurse problem agents of sub-population 1 and 2 would 
parent a new child for sub-population 1+2. All in all 50% 
of children are created via the uniform and the remainder 
with the fixed-point crossover. For some of the fixed 
point cases a choice exists, e.g. in the nurse problem new 
agents of sub-population 1+2+3 can be created in four 
different ways, either (1+2) + (3), (2+3) +(1), (3+1)+(2) 
or (1)+(2)+(3). In these situations there is an equal 
probability for each child to be created in either way. 
Parent selection followed the seven strategies outlined 
above. 

 

Each new solution created undergoes mutation with a 1% 
bit mutation probability, where a mutation would re-
initialise the bit in the feasible range. The algorithm is run 
in generational mode to accommodate the sub-population 
structure better. In every generation the worst 90% of 
parents of all sub-populations are replaced. For all fitness 
and sub-fitness function calculations a fitness score as 
described before is used. Constraint violations are 
penalised with a dynamic penalty parameter, which 
adjusts itself depending on the (sub)-fitness difference 
between the best and the best feasible agent in each (sub-) 
population. Full details on this type of weight and how it 



was calculated can be found in Smith & Tate [1993] and 
Aickelin & Dowsland [2000]. The stopping criterion is 
the top sub-population showing no improvement for 50 
generations. 

 

To obtain statistically sound results all experiments were 
conducted as 20 runs over all problem instances. All 
experiments were started with the same set of random 
seeds, i.e. with the same initial populations. The results 
are presented in feasibility and cost respectively rent 
format. Feasibility denotes the probability of finding a 
feasible solution averaged over all problem instances. 
Cost / Rent refer to the objective function value of the 
best feasible solution for each problem instance averaged 
over the number of instances for which at least one 
feasible solution was found. 

 

Should the algorithm fail to find a single feasible solution 
for all 20 runs on one problem instance, a censored 
observation of one hundred in the nurse case and zero for 
the mall problem is made instead. As we are minimising 
the cost for the nurses and maximising the rent of the 
mall, this is equivalent to a very poor solution. For the 
nurse-scheduling problem, the cost represents the sum of 
unfulfilled nurses’ requests and unfavourable shift-
patterns worked. For the mall, the values for the rent are 
in thousands of pounds per year. 

 

5.2 RESULTS 

 

Table 1 shows the results found by our algorithms for the 
two problems (N = Nurse problem, M = Mall problem) 
using the seven different partnering strategies in 
combination with the pyramidal structure. The results are 
compared to those found by the standard genetic 
algorithm (SGA) [Aickelin & Dowsland 2000 and 2001] 
and the Tabu Search results [Dowsland 1998] for the 
nurse problem and theoretical bounds for the mall 
problem (both referred to as ‘bound’). A number of 
interesting observations can be made. 

 

In the nurse scheduling case, the SGA approach failed to 
find good or even feasible solutions for many data sets. 
This can be explained by the high degree of epistasis 
present and the inability of the unmodified genetic 
algorithm to deal with it. Once the pyramidal structure 
with rank-based selection (S) is introduced, results 
improve significantly, however they are still below those 
found by Tabu Search. For the mall problem, the situation 
is different. Results found by the SGA are fairly good 
with high feasibility. This indicates the higher number of 
feasible solutions for this problem. Solution quality seems 
reasonably good, too. However, the addition of the 
pyramidal structure (S) results in a marked deterioration 
of results. 

 

How can these different results be explained? With the 
nurse scheduling, the objective function value of a partial 
solution was obtained by summing the cost values of the 
nurses and shift-patterns involved. Furthermore, we were 
able to define relatively meaningful sub-fitness scores by 
exploiting the ‘cumulative’ nature of the covering 
constraints due to the grade structure. Hence the substitute 
fitness scores calculated allowed for an effective 
recombination of partial solutions for the nurse-
scheduling problem. Thus, there is a good correlation 
between the sub-fitness of an agent (and hence its rank 
and its chance of being selected) and the likelihood that it 
will form part of a good solution. This also explains why 
the random (R) scheme produces worse results. The best 
(B) strategy although giving better results than the 
random selection fails to solve many problems. However, 
closer observation of experiments showed that it solved 
some single data sets well. This indicates that genetic 
variety is as important as fitness in the evolution of good 
solutions. 

 

Both the distributed (D) and joint (J) strategies again fail 
to provide better solutions than the rank-based selection. 
The distributed strategy is similar to the random strategy 
as it too ignores fitness scores for selection. Choosing 
from a fixed pool does have some benefits as the results 
are better than for complete random choice. The joint 
strategy works almost as well as the rank-selection. This 
shows that the principle of the ‘dividing and conquering’ 
works well with the nurse problem split along the grade 
boundaries. The slightly poorer results can be explained 
by the ‘full’ evaluation of all sub-strings although only 
‘parts’ are passed on. Thus, some of the correlation 
described above is lost. 

 

The two best strategies both outperforming (S) are partner 
selection based on attractiveness (A) and choice (C). 
Again this further confirms that the partial sub-fitness 
scores are a good criterion of selection for the pyramidal 
algorithm. Overall, (C) is better than (A) which 
corresponds to (C) having a higher selection pressure than 
(A), which in turn has a higher selection pressure than (S). 
To conclude, it seems that for this problem a good 
correlation between agents’ sub-fitness, the pyramidal 
structure and good full solutions exist. Hence, the scheme 
with the highest selection pressure using most problem 
specific information scores best. However, the results also 
show that even this scheme cannot compete with the Tabu 
Search results, something we will discuss in the 
concluding section. 

 

With the Mall Problem, the situation is more complicated 
since unlike for the nurse problem a large part of the 
objective function is a source of epistasis, which the 
proposed partitioning of the string will not eliminate fully. 
The constraints are a second source for epistasis. In 



contrast to the objective function, these depend largely on 
the whole string, as for instance the total number of shops 
of a particular size allowed. Only after adding up the 
shops and sizes for all areas is it known if a solution is 
feasible or not. So unsurprisingly, a combination of these 
partial solutions is often unsuccessful because it usually 
violates the overall constraints. 

 

On their own, solutions of the sub-populations are 
extremely unlikely to be feasible for the overall problem, 
as they covered only one fifth of the string. It is equally 
unlikely for those  solutions in the main population, which 
are formed from the five sub-populations, to be feasible. 
Although these solutions are of high rent, because the 
sub-populations ignore the main constraints, their 
combination is unlikely to produce an overall feasible 
solution. 

 

The situation is only slightly better with those solutions 
formed by an agent of the sub-populations and an agent of 
the main population. Usually, even if the agent of the 
main population is feasible, the children were not. Again, 
even though the partial string from the sub-population 
agent was of high rent, it was usually incompatible with 
the rest of the string, resulting in too many or too few 
shops of some types. Thus, in contrast to the nurse-
scheduling problem, their sub-fitness scores are a far 
poorer predictor for the compatibility of the parts to form 
complete solutions. 

 

This is confirmed by the above average performance of 
the random strategy (R) and the extremely poor results 
found by the best strategy (B). Similarly to before, the 
distributed strategy (D) performs well again giving credit 
to the idea of even selection pressure without relying on 
fitness scores, whereas the joint strategy (J) performs 
poorly suffering both from the unsuitable sub-fitness 
scores and the now hindering pyramidal structure. 

 

Overall, the real winners are again the more complex 
strategies of choice (C) and attraction (A). At first this 
seems contradictory as these rely heavily upon the sub-
fitness scores. However, apart from the rank-based initial 
selection of the first parent, subsequent fitness 
calculations are made after combining the agents. Since 
the mall pyramid only has two layers, these combinations 
are always full solution and hence the full fitness score is 
used. Thus, the direct link between high fitness and good 
solutions is re-established. Of the two, (A) performs better 
than (C). This seems to show that a certain amount of 
randomness is still important here, which again might be 
an indication for the lower predictive quality of the sub-
fitness scores. 

 

 N Cost N Feas M Rent M Feas 

Bound 8.8 100% 2640 100% 

SGA 54.2 33% 1850 94% 

S 17.6 75% 1540 78% 

R 37.4 54% 1790 86% 

B 27.1 57% 1490 70% 

D 26.5 61% 1770 84% 

J 19.9 71% 1590 78% 

A 12.2 83% 1950 98% 

C 11.1 87% 1910 94% 

Table 1: Experimental Results (N = Nurse, M = Mall). 

 

 

6 CONCLUSIONS 

 

This paper has shown the effect different partner 
strategies have on a pyramidal genetic algorithm solving 
two different optimisation problems from the area of 
multiple-choice scheduling. The result for the five simple 
strategies (S, R, B, D and J) differ for both problems. This 
is a reflection of the accurateness of the sub-fitness 
measure in the sense of its predictive power for sub-
solutions to form full solutions following the pyramidal 
recombination strategies. Therefore, in the case of the 
nurse problem with a good match between sub-fitness and 
usefulness for recombination the simple strategies worked 
well, whereas for the mall problem with its poorer 
correlation between the two it did not. 

 

For both problems the distributed partnering strategy (D) 
gives consistent results. This leads to the question 
whether some form of fitness sharing might have been 
beneficial to some or all of the partnering strategies. We 
are taking up this idea in our ongoing research into 
pyramidal genetic algorithms. 

 

The two more advanced strategies (A) and (C) use most 
problem specific knowledge and work well for both 
problems. They worked well for the nurse problem 
because the sub-fitness scores are meaningful. They also 
worked well for the mall problem because the partners are 
chosen based on a fitness score after recombination, 
which in this case equals the full original fitness score. 
Thus, choosing parents ‘post-birth’ after evaluating 
possible children can overcome possible shortcomings in 
the sub-fitness measure. 

 



It has to be noted that overall none of the partnering 
schemes managed to outperform the Tabu Search 
algorithm or come as close to the bounds as we had 
hoped. However, one has to remember that the Tabu 
Search uses highly problem-specific hill-climbing 
routines, some of which also relied heavily on certain 
criteria present in the actual data used. For different or 
more random data this would probably no longer hold. 

 

Therefore, without adding a more specific hill-climbing 
component it would not be possible to reach this level of 
solution quality. It is our conclusion that pyramidal 
genetic algorithms (with or without hill-climbing) benefit 
greatly from the right choice of partnering strategy as this 
improves solution quality and negates possible 
shortcoming of the chosen sub-fitness scores. 
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