
                                                                       
A Recommender System based 
on the Immune Network 
 
Steve Cayzer, Uwe Aickelin1 

Information Infrastructure Laboratory  
HP Laboratories Bristol 
HPL-2002-1 
March 13th , 2002* 
 
E-mail: steve_cayzer@hp.com, uwe.aickelin@uwe.ac.uk  
 
 
artificial 
immune 
system, 
recommender 
system, 
collaborative 
filtering 
idiotypic 
network 
 

The immune system is a complex biological system with a  
highly distributed, adaptive and self-organising nature. This 
paper presents an artificial immune system (AIS) that exploits 
some of these characteristics and is applied to the task of film 
recommendation by collaborative filtering (CF). Natural 
evolution and in particular the immune system have not been 
designed for classical optimisation. However, for this problem, 
we  are not interested in finding a single optimum. Rather we 
intend to identify a sub-set of good matches on which 
recommendations can be based. It is our hypothesis that an AIS 
built on two central aspects of the biological immune system 
will be an ideal candidate to achieve this: Antigen - antibody 
interaction for matching and antibody - antibody interaction for  
diversity. Computational results are presented in support of 
this conjecture and compared to those found by other CF 
techniques.  

 

* Internal Accession Date Only    Approved for External Publication 
1   University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK   
 Copyright Hewlett-Packard Company 2002 



A Recommender System based on the Immune Network 
 

Steve Cayzer and Uwe Aickelin 
1Hewlett-Packard Laboratories, Filton Road, BS12 6QZ Bristol, UK, steve_cayzer@hp.com 

2University of the West of England, Coldharbour Lane, BS16 1QY Bristol, UK, uwe.aickelin@uwe.ac.uk 
 
 

Abstract-The immune system is a complex biological system 
with a highly distributed, adaptive and self-organising nature. 
This paper presents an artificial immune system (AIS) that 
exploits some of these characteristics and is applied to the task 
of film recommendation by collaborative filtering (CF). Natural 
evolution and in particular the immune system have not been 
designed for classical optimisation. However, for this problem, 
we are not interested in finding a single optimum. Rather we 
intend to identify a sub-set of good matches on which 
recommendations can be based. It is our hypothesis that an AIS 
built on two central aspects of the biological immune system will 
be an ideal candidate to achieve this: Antigen - antibody 
interaction for matching and antibody - antibody interaction for 
diversity. Computational results are presented in support of this 
conjecture and compared to those found by other CF 
techniques. 
 
I. INTRODUCTION 
 
 Over the last few years, a novel computational intelligence 
technique, inspired by biology, has emerged: the artificial 
immune system (AIS). This section introduces the AIS and 
shows how it can be used for solving computational 
problems. In essence, the immune system is used here as 
inspiration to create an unsupervised machine-learning 
algorithm. The immune system metaphor will be explored, 
involving a brief overview of the basic immunological 
theories that are relevant to our work. We also introduce the 
basic concepts of collaborative filtering (CF). 
 
Overview of the Immune System 
 A detailed overview of the immune system can be found in 
many textbooks [14]. Briefly, the purpose of the immune 
system is to protect the body against infection and includes a 
set of mechanisms collectively termed humoral immunity. 
This refers to a population of circulating white blood cells 
called B-lymphocytes, and the antibodies they create. 
 The features that are particularly relevant to our research 
are matching, diversity and distributed control. Matching 
refers to the binding between antibodies and antigens. 
Diversity refers to the fact that, in order to achieve optimal 
antigen space coverage, antibody diversity must be 
encouraged [11]. Distributed control means that there is no 
central controller, rather, the immune system is governed by 
local interactions between cells and antibodies. 
 The idiotypic network hypothesis [13] (disputed by some 
immunologists) builds on the recognition that antibodies can 
match other antibodies as well as antigens. Hence, an 
antibody may be matched by other antibodies, which in turn 
may be matched by yet other antibodies. This activation can 

continue to spread through the population and potentially has 
much explanatory power. The idiotypic network has been 
formalised by a number of theoretical immunologists [15]. 
 There are many more features of the immune system, 
including adaptation, immunological memory and protection 
against auto-immune attack. Since these are not directly 
relevant to this work, they will not be reviewed here. 
 
Overview of Collaborative Filtering 
 In this paper, we are using an AIS as a CF technique. CF is 
the term for a broad range of algorithms that use similarity 
measures to obtain recommendations. The best-known 
example is probably the “people who bought this also 
bought” feature of the internet company Amazon [2]. 
However, any problem domain where users are required to 
rate items is amenable to CF techniques. Commercial 
applications are usually called recommender systems [16]. A 
canonical example is movie recommendation. 
 In traditional CF, the items to be recommended are treated 
as ‘black boxes’. That is, your recommendations are based 
purely on the votes of your neighbours, and not on the 
content of the item. The preferences of a user, usually a set of 
votes on an item, comprise a user profile, and these profiles 
are compared to build a neighbourhood. The key decisions to 
be made are: 
 Data encoding: Perhaps the most obvious representation 
for a user profile is a string of numbers, where the length is 
the number of items, and the position is the item identifier. 
Each number represents the 'vote' for an item. Votes are 
sometimes binary (e.g. did you visit this web page?) but can 
also be integers in a range (say [0,5]) or rational numbers. 
 Similarity Measure: The most common method to compare 
two users is a correlation-based measure like Pearson or 
Spearman, which gives two neighbours a matching score 
between -1 and 1. Vector based, e.g. cosine of the angle 
between vectors, and probabilistic methods are alternative 
approaches. 
 The canonical example is the k Nearest Neighbour 
algorithm, which uses a matching method to select k 
reviewers with high similarity measures. The votes from 
these reviewers, suitably weighted, are used to make 
predictions and recommendations. 
 Many improvements on this method are possible [10]. For 
example, the user profiles are usually extremely sparse 
because many items are not rated. This means that similarity 
measurements are both inefficient (the so-called ‘curse of 
dimensionality’) and difficult to calculate due to the small 
overlap. Default votes are sometimes used for items a user 



has not explicitly voted on, and these can increase the overlap 
size [4]. Dimensionality reduction methods, such as Single 
Value Decomposition, both improve efficiency and increase 
overlap [3]. Other pre-processing methods are often used, e.g. 
clustering [1]. Content-based information can be used to 
enhance the pure CF approach [10], [6]. Finally, the 
weighting of each neighbour can be adjusted by training, and 
there are many learning algorithms available for this [7]. All 
these improvements could in principle be applied to our AIS 
but in the interests of a clear and uncluttered comparison we 
have kept the CF algorithm as simple as possible. 
 The evaluation of a CF algorithm usually centres on its 
accuracy. There is a difference between prediction (given a 
movie, predict a given user’s rating of that movie) and 
recommendation (given a user, suggest movies that are likely 
to attract a high rating). Prediction is easier to assess 
quantitatively but recommendation is a more natural fit to the 
movie domain. We present results evaluating both these 
behaviours. 
 
Using an AIS for Collaborative Filtering 
 To us, the attraction of the immune system is this: if an 
adaptive pool of antibodies can produce 'intelligent' 
behaviour, can we harness the power of this computation to 
tackle the problem of preference matching and 
recommendation? Thus, in the first instance we intend to 
build a model where known user preferences are our pool of 
antibodies and the new preferences to be matched is the 
antigen in question. 
 Our conjecture is that if the concentrations of those 
antibodies that provide a better match are allowed to increase 
over time, we should end up with a subset of good matches. 
However, we are not interested in optimising, i.e. in finding 
the one best match. Instead, we require a set of antibodies 
that are a close match but which at the same time distinct 
from each other for successful recommendation. This is 
where we propose to harness the idiotypic effects of binding 
antibodies to similar antibodies to encourage diversity. 
 The next section presents more details of our problem and 
explains the AIS model we intend to use. We then describe 
the experimental set-up and present some initial results. 
Finally we review the results and discuss some possibilities 
for future work. 
 
 
2. ALGORITHMS 
 
Application of the AIS to the EachMovie Tasks 
 The EachMovie database [5] is a public database, which 
records explicit votes of users for movies. It holds 2,811,983 
votes taken from 72,916 users on 1,628 films. The task is to 
use this data to make predictions and recommendations. In 
the former case, we provide an estimated vote for a 
previously unseen movie. In the latter case, we present a 
ranked list of movies that the user might like. 
 The basic approach of CF, is to use information from a 
neighbourhood to make useful predictions and 
recommendations. The central task we set ourselves is to 

identify a suitable neighbourhood. The SWAMI (Shared 
Wisdom through the Amalgamation of Many Interpretations) 
framework [9] is a publicly accessible software for CF 
experiments. Its central algorithm is as follows: 
 
Select a set of test users randomly from the database 
FOR each test user t 
 Reserve a vote of this user, i.e. hide from predictor) 
 From remaining votes create a new training user t’ 
 Select neighbourhood of k reviewers based on t’ 
 Use neighbourhood to predict vote 
 Compare this with actual vote and collect statistics 
NEXT t 
 
 The code shown in italics indicates a place where SWAMI 
allows an implementation-dependent choice of algorithm. We 
use an AIS to perform selection and prediction as below. 
 
Algorithm Choices 
 We use the SWAMI data encoding: 
  { } { } { }{ }nn scoreidscoreidscoreidUser ,...,,, 2211=  
Where id corresponds to the unique identifier of the movie 
being rated and score to this user’s score for that movie. This 
captures the essential features of the data available. 
 EachMovie vote data links a person with a movie and 
assigns a score (taken from the set {0, 0.2, 0.4, 0.6, 0.8, 1.0} 
where 0 is the worst). User demographic information (e.g. 
age and gender) is provided but this is not used in our 
encoding. Content information about movies (e.g. category) 
is similarly not used. 
 
Similarity Measure 
The Pearson measure is used to compare two users u and v: 
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 Where u and v are users, n is the number of overlapping 
votes (i.e. movies for which both u and v have voted), ui is 
the vote of user u for movie i and � is the average vote of 
user u over all films (not just the overlapping votes). The 
measure is amended as follows 
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 The two default values are required because it is 
impossible to calculate a Pearson measure in such cases. Both 
were set to 0. Some experimentation showed that an overlap 
penalty P was beneficial (this lowers the absolute correlation 
for users with only a small overlap) but that the exact value 



was not critical. We choose a value of 100 because this is the 
maximum overlap expected. 
 
Neighbourhood Selection 
 For a Simple Pearson predictor, neighbourhood selection 
means simply choosing the best k (absolute) correlation 
scores, where k is the neighbourhood size. Not every 
potential neighbour will have rated the film to be predicted. 
Reviewers who did not vote on the film are not added to the 
neighbourhood. 
 
For the AIS predictor, a more involved procedure is required: 
 
Initialise AIS 
Encode user for whom to make predictions as antigen Ag 
WHILE (AIS not stabilised) & (Reviewers available) DO 
 Add next user as an antibody Ab 
 Calculate matching scores between Ab and Ag 
 Calculate matching scores between Ab and other antibodies 
 WHILE (AIS at full size) & (AIS not stable) DO  
  Iterate AIS 
 OD 
OD 
 
 Our AIS behaves as follows: At each step (iteration) an 
antibody’s concentration is increased by an amount 
dependent on its matching to the antigen and decreased by an 
amount which depends on its matching to other antibodies. In 
absence of either, an antibody’s concentration will slowly 
decrease over time. Antibodies with a sufficiently low 
concentration are removed from the system, whereas 
antibodies with a high concentration may saturate. An AIS 
iteration is governed by the following equation: 
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� This� is� a� slightly� modified� version� of� Farmer� et� al’ s�
equation� [8].� In� particular,� the� first� term� is� simplified� as�we�
only� have� one� antigen,� and� we� normalise� the� suppression�
term� to� allow� a� ‘like� for� like’ � comparison� between� the�
different�rate�constants.�k1�and�k2�were�varied�as�described�in�
the�next�section.�k3�was�fixed�at�0.1,�while�the�concentration�
range�was�set�at�0–100�(initially�10).�We�fixed�N�at�100.�The�
matching� function� is� the� absolute� value� of� the� Pearson�
correlation� measure.� This� allows� us� to� have� both� positively�
and�negatively�correlated�users� in�our�neighbourhood,�which�
increases�the�pool�of�neighbours�available�to�us.�

� The� AIS� is� considered� stable� after� iterating� for� ten�
iterations� without� changing� in� size.� Stabilisation� thus� means�
that� a� sufficient� number� of� ‘good’ � neighbours� have� been�
identified� and� therefore� a� prediction� can� be� made.� ‘Poor’ �
neighbours�would�be�expected�to�drop�out�of�the�AIS�after�a�
few�iterations.�
� Once�the�AIS�has�stabilised�using�the�above�algorithm,�we�
use� the� antibody� concentration� to� weigh� the� neighbours.�
However,� early� experiments� showed� that� the� most� recently�
added�antibodies�were�at�a�disadvantage�compared�to�earlier�
antibodies.�This� is�because� they�have�had�no� time� to�mature�
(i.e.� increase� in� concentration).� Likewise,� the� earliest�
antibodies� had� saturated.� To� overcome� this,� we� reset� the�
concentrations� and� allow� a� limited� run� of� the� AIS� to�
differentiate�the�concentrations:�
�
Reset�AIS�(set�all�antibodies�to�initial�concentrations)�
WHILE�(No�antibody�at�maximum�concentration)�DO�
� Iterate�AIS�
OD�
�
Prediction�
� We�predict�a�rating�pi�by�using�a�weighted�average�over�N,�
the�neighbourhood�of�u,�which�was�taken�as�the�entire�AIS.�
�

( )

)(

)4(

absolutenotrelativeNBxrw

w

vvw
up

vuvuv

Nv
uv

Nv
iuv

i

=

−
+=

�

�

∈

∈
�

�
� Where� wuv� is� the�weight� between�users�u� and�v,� ruv� is� the�
correlation�score�between�u�and�v,�and�xv�is�the�concentration�
of�the�antibody�corresponding�to�user�v.�
�
Evaluation�
�
� Prediction� Accuracy:� We� take� the� mean� absolute� error,�
where�np�is�the�number�of�predictions:�
�
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� Mean� number� of� recommendations:� This� is� the� total�
number�of�unique�films�rated�by�the�neighbours.�
�
� Mean�overlap�size:�This�is�the�number�of�recommendations�
that�the�user�has�also�seen.�
�
� Mean�accuracy�of�recommendations:�Each�overlapped�film�
has� an� actual� vote� (from� the� antigen)� and� a� predicted� vote�
(from�the�neighbours).�The�overlapped�films�were�ranked�on�
both� actual� and� predicted� vote,� breaking� ties� by� movie� ID.�
The� two� ranked� lists�were� compared�using�Kendall’ s�Tau� �.�
This�measure�reflects�the�level�of�concordance�in�the�lists�by�



counting�the�number�of�discordant�pairs.�To�do�this�we�order�
the�films�by�vote�and�apply�the�following�formulae:�
�
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� Where�n� is� the�overlap� size�and�ri� is� the� rank�of� film� i�as�
recommended� by� the�neighbourhood.�Note� that� i� here� refers�
to� the� antigen� rank� of� the� film,� not� the� film� ID.� ND� is� the�
number� of� discordant� pairs,� or,� equivalently,� the� expected�
cost�of�a�bubble�sort�to�reconcile�the�two�lists.�D�is�set�to�one�
if�the�rankings�are�discordant.�
�
� Mean� number� of� reviewers.� This� is� the� number� of�
reviewers�looked�at�before�the�AIS�stabilised.�
�
� Mean� number� of� neighbours:� This� is� the� final� number� of�
neighbours�in�the�stabilised�AIS.�
�
�
3�EXPERIMENTS�
�
� Experiments� were� carried� out� on� a� Pentium� 700� with�
256MB� RAM,� running�Windows�2000.�The�AIS�was� coded�
in�JavaTM�JDK1.3.�Each�run�involved�looking�at�up�to�15,000�
reviewers�(20%�of�the�EachMovie�data�set,�randomly�chosen)�
to� provide� predictions� and� recommendations� for� 100� users.�
Averaged� statistics� are� then� taken� for� each� run.� Runtimes�
ranged� from� 5� to� 60� minutes,� largely� dependent� on� the�
number�of�reviewers.�
�
Experiments�on�Simple�AIS�
� Initial� experiments�concentrated�on�a�simple�AIS,�with�no�
idiotypic� effects.� The� goal� was� to� find� a� good� stimulation�
rate,� but� also� to� ensure� that� the� ‘baseline’ � system� operates�
similarly� to� a� Simple� Pearson� predictor� (SP).� Therefore,� we�
set� the� suppression� rate� to� zero,� and� varied� only� the�
stimulation� rate,� i.e.� the� weighting� given� to� antigen�binding.�
Other�parameters�had�been�fixed�by�preliminary�experiments.�
�
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Effect of stimulation on number of users looked at 
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Figure�1:�Effect�of�stimulation�rate�on�neighbourhood�and�reviewers.�
�
� The� graphs� show� averaged� results� over� five� runs� at� each�
stimulation�rate.�The�bars�show�standard�deviations.�In�order�
to� have� a� fair� comparison,� the� Simple� Pearson� parameters�
(neighbourhood� and� number� of� reviewers� looked� at)� match�
the� AIS� values� for� each� rate.� In� figure� 2,� we� show� the�
prediction� error,� number� of� recommendations,� number� of�
overlaps� and� recommendation� accuracy� for� each� algorithm.�
Note� that� low�prediction�error�values�are�better,�whereas�for�
the�other�measures�we�are�looking�for�high�values.�
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Effect of stimulation on recommendation accuracy

0.35

0.4

0.45

0.5

0.55

0 0.2 0.4 0.6 0.8 1

Stimulation Rate

R
ec

om
m

en
da

ti
on

 A
cc

ur
ac

y 
(K

en
da

ll'
s 

Ta
u)

AIS (av)

SP (av)

�
Effect of Stimulation on number of recommendations
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Effect of Stimulation on number of overlaps
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Figure�2:�Effect�of�stimulation�rate�on�prediction�and�recommendation.�
�
� It� can� be� seen� that� the� simple� AIS� gives� broadly� similar�
prediction� performance� to� the� Simple� Pearson.� The� MAE�
measurements� from� different� runs� are� not� normally�
distributed,� so� a� non-parametric� statistic� is� appropriate.� We�
performed� a� Wilcoxon� analysis,� which� showed� that� the�
difference� between� prediction� errors� of� SP� and� AIS� is� zero�
with� 95%� confidence.� In� addition,� the� choice� of� an�
appropriate�stimulation�rate�did�make�a�significant�difference�
(a�rate�of�0.2�compared�with�0.02�at�the�95%�level).�
� For� recommendation,� the�AIS�performs�better� than� the�SP�
at� stimulation� rates� above� 0.1.� Again,� we� performed� a�
positive� 95%� Wilcoxon� analysis� to� assess� significance.� We�
excluded� cases� where� a� recommendation� score� was�
unavailable� (due� to�an� insufficient�number�of�overlaps).�The�
number� of� recommendations� and� overlaps� show� similar�
trends� though� the� AIS� gives� a� more� constant� value.� Again,�
some�stimulation�was�beneficial.�
� In� later�experiments,� the� stimulation� rate�was� fixed�at�one�
of� the� better� values� (0.2,� 0.3� or� 0.5),� in� order� to� give� us� a�
good� base� to� work� on.�These�values�give�us�generally�good�
performance,� while� keeping� a� good� neighbourhood� size� and�
still�evaluating�a�reasonable�number�of�reviewers.�
�
Experiments�on�the�Idiotypic�AIS�
� Having�fixed�all�the�simple�parameters,�we�tested�the�effect�
of� suppression� for� stimulation� rates�of� 0.2,� 0.3� and�0.5.�Not�
surprisingly� we� found� that� suppression� changed� the� number�
of�reviewers�looked�at�and�the�number�of�neighbours:�
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Figure�3:�Effect�of�suppression�rate�on�neighbourhood�size�and�reviewers.�
�
� We� then� tested� the� effect� of� suppression� on� the� AIS�
performance.� Here� we� fixed� the� baseline� rate� at� stimulation�
only�(no�suppression),�and�took�measurements�relative�to�this�
baseline.�Again,�it�should�be�noted�that�the�first�graph�shows�
prediction�error�(hence,�a�good�result�is�low).�
�
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Effect of suppression on recommendation accuracy
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Effect of suppression on number of overlaps
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Effect of suppression on number of recommendations
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Figure�4:�Effect�of�suppression�rate�on�prediction�and�recommendation.�
�
� Again,� the�graphs� show�averaged� results�over� five� runs�at�
each� suppression� rate.� The� bars� show� standard� deviations�
(similar� size�bars� for� rates�0.2�and�0.5�have�been�omitted� in�
the� interests� of� clarity).� At� low� levels� of� stimulation,�
prediction� accuracy� is� not� significantly� affected.� However�
recommendation� accuracy� is� improved� significantly� (95%�
Wilcoxon).�For�instance,�for�0.3�stimulation,�rates�from�0.05�
to� 0.2� gave� a� significantly� improved� performance.� In� actual�
terms,�the�Kendall�measure�rises�from�0.5�to�nearly�0.6.�This�
means� that� the� chance� of� any� two� randomly� sampled� pairs�
being�correctly�ranked�has�risen�from�60%�to�80%.�Too�much�
suppression�had�a�detrimental�effect�on�all�measures.�
�
�
4.�CONCLUSIONS�
�
It� is�not�particularly�surprising� that� the�simple�AIS�performs�
similarly�to�the�SP�predictor.�This�is�because�they�are,�at�their�
core,� based� around� the� same�algorithm.�The�stimulation� rate�
(in� absence� of� any� idiotypic� effect)� is� effectively� setting� a�
threshold� for� correlation.� This� has� both� strengths� and�
weaknesses.� It� has� been� shown� that� a� threshold� is� useful� in�
discarding� the� potentially� misleading� predictions� of� poorly�
correlated� reviewers� [10].� On� the� other� hand,� a� rigid�
threshold� means� that� one� has� to� ‘prejudge’ � the� appropriate�
level� to� avoid� both� premature� convergence� and� empty�
communities.� Indeed,� detailed� examination� of� the� individual�
runs� showed� that� the� AIS� had� a� tendency� to� fill� its�
neighbourhood� either� early� or� not� at� all.� The� setting� of� a�
threshold� also� means� that� sufficiently� good� antibodies� are�
taken� on� a� first� come,� first� served� basis.� It� is� interesting� to�
observe� that� such� a� strategy� nevertheless� seems� (in� these�
experiments)� to� provide� a� more� constant� level� of� overlaps,�
and�better�recommendation�quality.�
� The� richness� of� our� AIS� model� comes� when� we� allow�
interactions� between� antibodies.� Early,� qualitative�
experimentation�with� the� idiotypic�network�showed�antibody�
concentration� rising� and� falling� dynamically� as� the�
population� varied.� For� instance,� in� the� simple� AIS,� the�
concentration� of� an� antibody� will� monotonically� increase� to�
saturation,�or�decrease�to�elimination,�unaffected�by�the�other�
antibodies.�However,� there� is�a�delicate�balance� to�be�struck�
between�stimulation�and�suppression.�An�imbalance�may�lead�
to�a�loss�in�population�size�or�diversity.�The�graphs�show�that�

a� small� amount� of� suppression� may� indeed� be� beneficial� to�
AIS� performance,� in� particular� recommendation.� It� is�
interesting� to� note� that� the� increase� in� recommendation�
quality�occurs�with�a� relatively�constant�overlap�size.�At� too�
high� levels� of� suppression,� it� is� harder� to� fill� the�
neighbourhood,�with� consequent� lack�of� diversity�and�hence�
recommendation�accuracy.�
� We� believe� that� these� initial� results� show� two� things.�
Firstly,� population� effects� can� be� beneficial� for� CF�
algorithms,� particularly� for� recommendation;� secondly,� that�
CF�is�a�promising�new�application�area�for�artificial�immune�
systems.�In�fact,�we�can�widen�the�context,�since�the�process�
of�neighbourhood�selection�described�in�this�paper�can�easily�
be�generalized�to�the�task�of�ad-hoc�community�formation.�
�
�
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