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Abstract-The immune system is a complex biological system 

with a highly distributed, adaptive and self-organising nature. 

This paper presents an artificial immune system (AIS) that 

exploits some of these characteristics and is applied to the task 

of film recommendation by collaborative filtering (CF). Natural 

evolution and in particular the immune system have not been 

designed for classical optimisation. However, for this problem, 

we are not interested in finding a single optimum. Rather we 

intend to identify a sub-set of good matches on which 

recommendations can be based. It is our hypothesis that an AIS 

built on two central aspects of the biological immune system will 

be an ideal candidate to achieve this: Antigen - antibody 

interaction for matching and antibody - antibody interaction for 

diversity. Computational results are presented in support of this 

conjecture and compared to those found by other CF 

techniques. 

 

I. INTRODUCTION 

 

 Over the last few years, a novel computational intelligence 

technique, inspired by biology, has emerged: the artificial 

immune system (AIS). This section introduces the AIS and 

shows how it can be used for solving computational 

problems. In essence, the immune system is used here as 

inspiration to create an unsupervised machine-learning 

algorithm. The immune system metaphor will be explored, 

involving a brief overview of the basic immunological 

theories that are relevant to our work. We also introduce the 

basic concepts of collaborative filtering (CF). 

 

Overview of the Immune System 

 A detailed overview of the immune system can be found in 

many textbooks [14]. Briefly, the purpose of the immune 

system is to protect the body against infection and includes a 

set of mechanisms collectively termed humoral immunity. 

This refers to a population of circulating white blood cells 

called B-lymphocytes, and the antibodies they create. 

 The features that are particularly relevant to our research 

are matching, diversity and distributed control. Matching 

refers to the binding between antibodies and antigens. 

Diversity refers to the fact that, in order to achieve optimal 

antigen space coverage, antibody diversity must be 

encouraged [11]. Distributed control means that there is no 

central controller, rather, the immune system is governed by 

local interactions between cells and antibodies. 

 The idiotypic network hypothesis [13] (disputed by some 

immunologists) builds on the recognition that antibodies can 

match other antibodies as well as antigens. Hence, an 

antibody may be matched by other antibodies, which in turn 

may be matched by yet other antibodies. This activation can 

continue to spread through the population and potentially has 

much explanatory power. The idiotypic network has been 

formalised by a number of theoretical immunologists [15]. 

 There are many more features of the immune system, 

including adaptation, immunological memory and protection 

against auto-immune attack. Since these are not directly 

relevant to this work, they will not be reviewed here. 

 

Overview of Collaborative Filtering 

 In this paper, we are using an AIS as a CF technique. CF is 

the term for a broad range of algorithms that use similarity 

measures to obtain recommendations. The best-known 

example is probably the “people who bought this also 

bought” feature of the internet company Amazon [2]. 

However, any problem domain where users are required to 

rate items is amenable to CF techniques. Commercial 

applications are usually called recommender systems [16]. A 

canonical example is movie recommendation. 

 In traditional CF, the items to be recommended are treated 

as ‘black boxes’. That is, your recommendations are based 

purely on the votes of your neighbours, and not on the 

content of the item. The preferences of a user, usually a set of 

votes on an item, comprise a user profile, and these profiles 

are compared to build a neighbourhood. The key decisions to 

be made are: 

 Data encoding: Perhaps the most obvious representation 

for a user profile is a string of numbers, where the length is 

the number of items, and the position is the item identifier. 

Each number represents the 'vote' for an item. Votes are 

sometimes binary (e.g. did you visit this web page?) but can 

also be integers in a range (say [0,5]) or rational numbers. 

 Similarity Measure: The most common method to compare 

two users is a correlation-based measure like Pearson or 

Spearman, which gives two neighbours a matching score 

between -1 and 1. Vector based, e.g. cosine of the angle 

between vectors, and probabilistic methods are alternative 

approaches. 

 The canonical example is the k Nearest Neighbour 

algorithm, which uses a matching method to select k 

reviewers with high similarity measures. The votes from 

these reviewers, suitably weighted, are used to make 

predictions and recommendations. 

 Many improvements on this method are possible [10]. For 

example, the user profiles are usually extremely sparse 

because many items are not rated. This means that similarity 

measurements are both inefficient (the so-called ‘curse of 

dimensionality’) and difficult to calculate due to the small 

overlap. Default votes are sometimes used for items a user 



has not explicitly voted on, and these can increase the overlap 

size [4]. Dimensionality reduction methods, such as Single 

Value Decomposition, both improve efficiency and increase 

overlap [3]. Other pre-processing methods are often used, e.g. 

clustering [1]. Content-based information can be used to 

enhance the pure CF approach [10], [6]. Finally, the 

weighting of each neighbour can be adjusted by training, and 

there are many learning algorithms available for this [7]. All 

these improvements could in principle be applied to our AIS 

but in the interests of a clear and uncluttered comparison we 

have kept the CF algorithm as simple as possible. 

 The evaluation of a CF algorithm usually centres on its 

accuracy. There is a difference between prediction (given a 

movie, predict a given user’s rating of that movie) and 

recommendation (given a user, suggest movies that are likely 

to attract a high rating). Prediction is easier to assess 

quantitatively but recommendation is a more natural fit to the 

movie domain. We present results evaluating both these 

behaviours. 

 

Using an AIS for Collaborative Filtering 

 To us, the attraction of the immune system is this: if an 

adaptive pool of antibodies can produce 'intelligent' 

behaviour, can we harness the power of this computation to 

tackle the problem of preference matching and 

recommendation? Thus, in the first instance we intend to 

build a model where known user preferences are our pool of 

antibodies and the new preferences to be matched is the 

antigen in question. 

 Our conjecture is that if the concentrations of those 

antibodies that provide a better match are allowed to increase 

over time, we should end up with a subset of good matches. 

However, we are not interested in optimising, i.e. in finding 

the one best match. Instead, we require a set of antibodies 

that are a close match but which at the same time distinct 

from each other for successful recommendation. This is 

where we propose to harness the idiotypic effects of binding 

antibodies to similar antibodies to encourage diversity. 

 The next section presents more details of our problem and 

explains the AIS model we intend to use. We then describe 

the experimental set-up and present some initial results. 

Finally we review the results and discuss some possibilities 

for future work. 

 

 

2. ALGORITHMS 

 

Application of the AIS to the EachMovie Tasks 

 The EachMovie database [5] is a public database, which 

records explicit votes of users for movies. It holds 2,811,983 

votes taken from 72,916 users on 1,628 films. The task is to 

use this data to make predictions and recommendations. In 

the former case, we provide an estimated vote for a 

previously unseen movie. In the latter case, we present a 

ranked list of movies that the user might like. 

 The basic approach of CF, is to use information from a 

neighbourhood to make useful predictions and 

recommendations. The central task we set ourselves is to 

identify a suitable neighbourhood. The SWAMI (Shared 

Wisdom through the Amalgamation of Many Interpretations) 

framework [9] is a publicly accessible software for CF 

experiments. Its central algorithm is as follows: 

 
Select a set of test users randomly from the database 

FOR each test user t 

 Reserve a vote of this user, i.e. hide from predictor) 

 From remaining votes create a new training user t’ 

 Select neighbourhood of k reviewers based on t’ 

 Use neighbourhood to predict vote 

 Compare this with actual vote and collect statistics 

NEXT t 
 

 The code shown in italics indicates a place where SWAMI 

allows an implementation-dependent choice of algorithm. We 

use an AIS to perform selection and prediction as below. 

 

Algorithm Choices 

 We use the SWAMI data encoding: 

  { } { } { }{ }nn scoreidscoreidscoreidUser ,...,,, 2211=  

Where id corresponds to the unique identifier of the movie 

being rated and score to this user’s score for that movie. This 

captures the essential features of the data available. 

 EachMovie vote data links a person with a movie and 

assigns a score (taken from the set {0, 0.2, 0.4, 0.6, 0.8, 1.0} 

where 0 is the worst). User demographic information (e.g. 

age and gender) is provided but this is not used in our 

encoding. Content information about movies (e.g. category) 

is similarly not used. 

 

Similarity Measure 

The Pearson measure is used to compare two users u and v: 
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 Where u and v are users, n is the number of overlapping 

votes (i.e. movies for which both u and v have voted), ui is 

the vote of user u for movie i and ū is the average vote of 

user u over all films (not just the overlapping votes). The 

measure is amended as follows 
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 The two default values are required because it is 

impossible to calculate a Pearson measure in such cases. Both 

were set to 0. Some experimentation showed that an overlap 

penalty P was beneficial (this lowers the absolute correlation 

for users with only a small overlap) but that the exact value 



was not critical. We choose a value of 100 because this is the 

maximum overlap expected. 

 

Neighbourhood Selection 

 For a Simple Pearson predictor, neighbourhood selection 

means simply choosing the best k (absolute) correlation 

scores, where k is the neighbourhood size. Not every 

potential neighbour will have rated the film to be predicted. 

Reviewers who did not vote on the film are not added to the 

neighbourhood. 

 

For the AIS predictor, a more involved procedure is required: 

 
Initialise AIS 

Encode user for whom to make predictions as antigen Ag 

WHILE (AIS not stabilised) & (Reviewers available) DO 

 Add next user as an antibody Ab 

 Calculate matching scores between Ab and Ag 

 Calculate matching scores between Ab and other antibodies 

 WHILE (AIS at full size) & (AIS not stable) DO  

  Iterate AIS 

 OD 

OD 

 

 Our AIS behaves as follows: At each step (iteration) an 

antibody’s concentration is increased by an amount 

dependent on its matching to the antigen and decreased by an 

amount which depends on its matching to other antibodies. In 

absence of either, an antibody’s concentration will slowly 

decrease over time. Antibodies with a sufficiently low 

concentration are removed from the system, whereas 

antibodies with a high concentration may saturate. An AIS 

iteration is governed by the following equation: 
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 This is a slightly modified version of Farmer et al’s 

equation [8]. In particular, the first term is simplified as we 

only have one antigen, and we normalise the suppression 

term to allow a ‘like for like’ comparison between the 

different rate constants. k1 and k2 were varied as described in 

the next section. k3 was fixed at 0.1, while the concentration 

range was set at 0–100 (initially 10). We fixed N at 100. The 

matching function is the absolute value of the Pearson 

correlation measure. This allows us to have both positively 

and negatively correlated users in our neighbourhood, which 

increases the pool of neighbours available to us. 

 The AIS is considered stable after iterating for ten 

iterations without changing in size. Stabilisation thus means 

that a sufficient number of ‘good’ neighbours have been 

identified and therefore a prediction can be made. ‘Poor’ 

neighbours would be expected to drop out of the AIS after a 

few iterations. 

 Once the AIS has stabilised using the above algorithm, we 

use the antibody concentration to weigh the neighbours. 

However, early experiments showed that the most recently 

added antibodies were at a disadvantage compared to earlier 

antibodies. This is because they have had no time to mature 

(i.e. increase in concentration). Likewise, the earliest 

antibodies had saturated. To overcome this, we reset the 

concentrations and allow a limited run of the AIS to 

differentiate the concentrations: 

 
Reset AIS (set all antibodies to initial concentrations) 

WHILE (No antibody at maximum concentration) DO 

 Iterate AIS 

OD 
 

Prediction 

 We predict a rating pi by using a weighted average over N, 

the neighbourhood of u, which was taken as the entire AIS. 
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 Where wuv is the weight between users u and v, ruv is the 

correlation score between u and v, and xv is the concentration 

of the antibody corresponding to user v. 

 

Evaluation 

 

 Prediction Accuracy: We take the mean absolute error, 

where np is the number of predictions: 
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 Mean number of recommendations: This is the total 

number of unique films rated by the neighbours. 

 

 Mean overlap size: This is the number of recommendations 

that the user has also seen. 

 

 Mean accuracy of recommendations: Each overlapped film 

has an actual vote (from the antigen) and a predicted vote 

(from the neighbours). The overlapped films were ranked on 

both actual and predicted vote, breaking ties by movie ID. 

The two ranked lists were compared using Kendall’s Tau τ. 

This measure reflects the level of concordance in the lists by 



counting the number of discordant pairs. To do this we order 

the films by vote and apply the following formulae: 
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 Where n is the overlap size and ri is the rank of film i as 

recommended by the neighbourhood. Note that i here refers 

to the antigen rank of the film, not the film ID. ND is the 

number of discordant pairs, or, equivalently, the expected 

cost of a bubble sort to reconcile the two lists. D is set to one 

if the rankings are discordant. 

 

 Mean number of reviewers. This is the number of 

reviewers looked at before the AIS stabilised. 

 

 Mean number of neighbours: This is the final number of 

neighbours in the stabilised AIS. 

 

 

3 EXPERIMENTS 

 

 Experiments were carried out on a Pentium 700 with 

256MB RAM, running Windows 2000. The AIS was coded 

in JavaTM JDK1.3. Each run involved looking at up to 15,000 

reviewers (20% of the EachMovie data set, randomly chosen) 

to provide predictions and recommendations for 100 users. 

Averaged statistics are then taken for each run. Runtimes 

ranged from 5 to 60 minutes, largely dependent on the 

number of reviewers. 

 

Experiments on Simple AIS 

 Initial experiments concentrated on a simple AIS, with no 

idiotypic effects. The goal was to find a good stimulation 

rate, but also to ensure that the ‘baseline’ system operates 

similarly to a Simple Pearson predictor (SP). Therefore, we 

set the suppression rate to zero, and varied only the 

stimulation rate, i.e. the weighting given to antigen binding. 

Other parameters had been fixed by preliminary experiments. 
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Effect of stimulation on number of users looked at 
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Figure 1: Effect of stimulation rate on neighbourhood and reviewers. 

 

 The graphs show averaged results over five runs at each 

stimulation rate. The bars show standard deviations. In order 

to have a fair comparison, the Simple Pearson parameters 

(neighbourhood and number of reviewers looked at) match 

the AIS values for each rate. In figure 2, we show the 

prediction error, number of recommendations, number of 

overlaps and recommendation accuracy for each algorithm. 

Note that low prediction error values are better, whereas for 

the other measures we are looking for high values. 
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Effect of stimulation on recommendation accuracy
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Effect of Stimulation on number of recommendations
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Effect of Stimulation on number of overlaps
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Figure 2: Effect of stimulation rate on prediction and recommendation. 

 

 It can be seen that the simple AIS gives broadly similar 

prediction performance to the Simple Pearson. The MAE 

measurements from different runs are not normally 

distributed, so a non-parametric statistic is appropriate. We 

performed a Wilcoxon analysis, which showed that the 

difference between prediction errors of SP and AIS is zero 

with 95% confidence. In addition, the choice of an 

appropriate stimulation rate did make a significant difference 

(a rate of 0.2 compared with 0.02 at the 95% level). 

 For recommendation, the AIS performs better than the SP 

at stimulation rates above 0.1. Again, we performed a 

positive 95% Wilcoxon analysis to assess significance. We 

excluded cases where a recommendation score was 

unavailable (due to an insufficient number of overlaps). The 

number of recommendations and overlaps show similar 

trends though the AIS gives a more constant value. Again, 

some stimulation was beneficial. 

 In later experiments, the stimulation rate was fixed at one 

of the better values (0.2, 0.3 or 0.5), in order to give us a 

good base to work on. These values give us generally good 

performance, while keeping a good neighbourhood size and 

still evaluating a reasonable number of reviewers. 

 

Experiments on the Idiotypic AIS 

 Having fixed all the simple parameters, we tested the effect 

of suppression for stimulation rates of 0.2, 0.3 and 0.5. Not 

surprisingly we found that suppression changed the number 

of reviewers looked at and the number of neighbours: 
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Effect of suppression on number of reviewers looked at

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.2 0.4 0.6 0.8 1

Suppression Rate

N
u
m
b
e
r 
re
v
ie
w
e
rs

Rate 0.2

Rate 0.3

Rate 0.5

 
Figure 3: Effect of suppression rate on neighbourhood size and reviewers. 

 

 We then tested the effect of suppression on the AIS 

performance. Here we fixed the baseline rate at stimulation 

only (no suppression), and took measurements relative to this 

baseline. Again, it should be noted that the first graph shows 

prediction error (hence, a good result is low). 
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Effect of suppression on recommendation accuracy
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Effect of suppression on number of overlaps
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Effect of suppression on number of recommendations

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0 0.2 0.4 0.6 0.8 1

Suppression rate

N
u
m
b
e
r 
o
f 
re
c
o
m
m
e
n
d
a
ti
o
n
s
 

(r
e
la
ti
v
e
 t
o
 b
a
s
e
li
n
e
)

Rate 0.2

Rate 0.3

Rate 0.5

 
Figure 4: Effect of suppression rate on prediction and recommendation. 

 

 Again, the graphs show averaged results over five runs at 

each suppression rate. The bars show standard deviations 

(similar size bars for rates 0.2 and 0.5 have been omitted in 

the interests of clarity). At low levels of stimulation, 

prediction accuracy is not significantly affected. However 

recommendation accuracy is improved significantly (95% 

Wilcoxon). For instance, for 0.3 stimulation, rates from 0.05 

to 0.2 gave a significantly improved performance. In actual 

terms, the Kendall measure rises from 0.5 to nearly 0.6. This 

means that the chance of any two randomly sampled pairs 

being correctly ranked has risen from 60% to 80%. Too much 

suppression had a detrimental effect on all measures. 

 

 

4. CONCLUSIONS 

 

It is not particularly surprising that the simple AIS performs 

similarly to the SP predictor. This is because they are, at their 

core, based around the same algorithm. The stimulation rate 

(in absence of any idiotypic effect) is effectively setting a 

threshold for correlation. This has both strengths and 

weaknesses. It has been shown that a threshold is useful in 

discarding the potentially misleading predictions of poorly 

correlated reviewers [10]. On the other hand, a rigid 

threshold means that one has to ‘prejudge’ the appropriate 

level to avoid both premature convergence and empty 

communities. Indeed, detailed examination of the individual 

runs showed that the AIS had a tendency to fill its 

neighbourhood either early or not at all. The setting of a 

threshold also means that sufficiently good antibodies are 

taken on a first come, first served basis. It is interesting to 

observe that such a strategy nevertheless seems (in these 

experiments) to provide a more constant level of overlaps, 

and better recommendation quality. 

 The richness of our AIS model comes when we allow 

interactions between antibodies. Early, qualitative 

experimentation with the idiotypic network showed antibody 

concentration rising and falling dynamically as the 

population varied. For instance, in the simple AIS, the 

concentration of an antibody will monotonically increase to 

saturation, or decrease to elimination, unaffected by the other 

antibodies. However, there is a delicate balance to be struck 

between stimulation and suppression. An imbalance may lead 

to a loss in population size or diversity. The graphs show that 

a small amount of suppression may indeed be beneficial to 

AIS performance, in particular recommendation. It is 

interesting to note that the increase in recommendation 

quality occurs with a relatively constant overlap size. At too 

high levels of suppression, it is harder to fill the 

neighbourhood, with consequent lack of diversity and hence 

recommendation accuracy. 

 We believe that these initial results show two things. 

Firstly, population effects can be beneficial for CF 

algorithms, particularly for recommendation; secondly, that 

CF is a promising new application area for artificial immune 

systems. In fact, we can widen the context, since the process 

of neighbourhood selection described in this paper can easily 

be generalized to the task of ad-hoc community formation. 
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