
Selected Papers from the PATAT'02, LNCS 2740. Also available in the Proceedings
of PATAT'02, 90-103. Aug, 2002

Knowledge Discovery in a Hyper-Heuristic for Course
Timetabling Using Case-Based Reasoning

E.K. Burke1, B.L. MacCarthy2, S. Petrovic1, R. Qu1

1 School of Computer Science and Information Technology, Jubilee Campus,
University of Nottingham, Nottingham, NG8 1BB, U.K.

{ekb, sxp, rxq}@cs.nott.ac.uk
2 School of Mechanical, Materials, Manufacturing Engineering and Management,

University of Nottingham, University Park, Nottingham, NG7 2RD, U.K.
bart.maccarthy@nottingham.ac.uk

Abstract. This paper presents a new hyper-heuristic method using Case-Based
Reasoning (CBR) for solving course timetabling problems. The term Hyper-
heuristics has recently been employed to refer to “heuristics that choose heuris-
tics” rather than heuristics that operate directly on given problems. One of the
overriding motivations of hyper-heuristic methods is the attempt to develop
techniques that can operate with greater generality than is currently possible.
The basic idea behind this is that we maintain a case base of information about
the most successful heuristics for a range of previous timetabling problems to
predict the best heuristic for the new problem in hand using the previous
knowledge. Knowledge discovery techniques are used to carry out the training
on the CBR system to improve the system performance on the prediction. Initial
results presented in this paper are good and we conclude by discussing the con-
siderable promise for future work in this area.

1 Introduction

1.1 Case-Based Reasoning

What is Case-Based Reasoning? Many techniques from Artificial Intelligence (AI)
and Operational Research (OR) solve timetabling problems directly by employing
heuristics, meta-heuristics and hybrids on the problem in hand [1, 2, 3]. Case-Based
Reasoning (CBR) [4] is a Knowledge-Based technique that solves problems by em-
ploying the knowledge and experience from previous similar cases. Solutions or prob-
lem solving strategies that were used in solving earlier problems (cases) are main-
tained in a store (case base) for reuse. Adaptation usually needs to be carried out for

the new problem employs domain knowledge of some kind. The solved new problems
may be retained and the case base is thus updated. Leake [5] described CBR as fol-
lows:

“In CBR, new solutions are generated not by chaining, but by retriev-
ing the most relevant cases from memory and adapting them to fit new
situations.”

A case usually consists of two major parts: the problem itself represented in a certain
form to describe the conditions under which it should be retrieved; and the solution of
the problem or the lessons it will teach. Throughout this paper, the term source case is
used to denote the cases in the case base and the term target case is used to denote the
new problem to be solved.

A similarity measure is usually defined by a formula to calculate the similarity be-
tween source cases and the target case. The most similar source cases are retrieved for
the target case. The development of this similarity measure for large real-world prob-
lems such as those encountered in course timetabling presents one of the major re-
search challenges in this area.

Case-Based Reasoning in Scheduling and Optimization Problems. Timetabling
has been studied extensively over the years [1, 2, 3, 6, 7, 8, 9]. It can be thought of as
a special type of scheduling problem. The potential for CBR has been discussed for
different scheduling problems [10, 11]. A brief survey of CBR in scheduling was
presented in [10] where three Case-Based Scheduling systems, SMARTplan [12],
CBR-1 [13] and CABINS [14], were reviewed. The authors claimed that CBR is a
very good approach in expert scheduling systems and emphasized potential research in
dynamic scheduling. Other studies in case-based scheduling concerned a variety of
scheduling problems and issues, i.e. optimization [15], nurse rostering [16] and educa-
tional timetabling problems [17, 18].

1.2 Course Timetabling and Hyper-heuristics in Scheduling

Timetabling Problems. A general timetabling problem involves assigning a set of
events (meetings, matches, exams, courses, etc) into a limited number of timeslots
subject to a set of constraints. Constraints are usually classified into two particular
types: hard constraints and soft constraints. Hard constraints should under no circum-
stances be violated. Soft constraints are desirable but can be relaxed if necessary.

Over the last 40 years, there has been a considerable amount of research on time-
tabling problems [1, 2, 3, 19]. In the early days of educational timetabling research,
graph coloring [20] and integer linear programming techniques were widely used [21].
Some of the latest approaches can be seen in [6, 7].

This paper concentrates on educational course timetabling problems. Modern heu-
ristic techniques have been successfully applied to course timetabling [6, 8, 9]. Tabu
Search (e.g. [22]) and Simulated Annealing (e.g. [23]) have been successfully applied.
Evolutionary Algorithms/Genetic Algorithms (GAs) (e.g. [24]) and Memetic Algo-
rithms (that hybridizes GAs with local search techniques) (e.g. [25]) have also been

extensively studied. Constrained-Based techniques have also been widely employed
(e.g. [26]).

Hyper-heuristics in Scheduling. Hyper-heuristics can be defined to be “heuristics
that choose heuristics” or as “algorithms to pick the right algorithm for the right situa-
tion” [27]. The main reason for using the term hyper-heuristics rather than the widely
used tern meta-heuristics is that hyper-heuristics represent a method of from a variety
of different heuristics (that may include meta-heuristics).

Some research in scheduling has investigated this approach although it does not
always use the term “hyper-heuristics”. An approach was presented in [28] on open
shop scheduling problems using GAs to search a space of abstractions of solutions to
“evolve the heuristic choice”. GAs have been employed to construct a schedule
builder that chooses the optimal combinations of heuristics [29]. Another approach in
[30] used a GA to select the heuristic to order the exam in a sequential approach for
exam timetabling problems. A hybrid GA investigated for vehicle routing problems
has demonstrated promising results [31, 32].

Some other research on hyper-heuristics has also been carried out on a variety of
scheduling problems. Guided local search was used to select from a set of heuristics
and also different parameters for the traveling salesman problems [33]. In [27] a hy-
per-heuristic approach was used to select from a set of lower level heuristics accord-
ing to the characteristics of the current search space in a sales summit scheduling
problem.

2 Case-Based Heuristic Selection for Course Timetabling

2.1 Knowledge Discovery for Course Timetabling

The overall goal of our approach is to investigate CBR as a selector to choose (pre-
dict) the best (or a reasonably good) heuristic for the problem in hand according to the
knowledge obtained from solving previous similar problems. The goal is to avoid a
large amount of computation time and effort on the comparison and choosing of dif-
ferent heuristics. A large number of approaches and techniques in AI and OR have
been studied to solve a wide range of timetabling problems successfully over the
years. Comparisons have been carried out in some papers on using different ap-
proaches in solving a specific range of problems. Thus the development of heuristics
for timetabling is very well established and a reasonable amount of knowledge does
exist on which specific heuristic works well on what specific range of timetabling
problems. This provides a large number of cases that can be collected, studied and
stored in the case base, providing a good starting point for solving new course time-
tabling problems.

In knowledge engineering, techniques in knowledge discovery and machine learn-
ing have been employed with success in a number of ill-structured domains. Knowl-

edge discovery is the process of studying and investigating a collection of datasets to
discover information such as rules, regularities, or structures in the problem domain. It
was defined in [34] as a “non-trivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data”. A key step in the knowledge
discovery process is data mining that may employ a wide range of techniques from AI,
machine learning, knowledge acquisition and statistics. Knowledge discovery is usu-
ally carried out on databases and the application areas include medicine, finance, law
and engineering [35].

In our CBR system the previous most similar cases provide information that facili-
tates the prediction of the best heuristic for the target case. The retrieval in CBR is a
similarity-driven process that is carried out on cases described in specific forms. Thus
the key issues are the case representation (that should be in a proper form to describe
the relevant context within the timetabling problem) and how it influences the similar-
ity between cases which is what drives the retrieval to provide an accurate prediction
on heuristic selection.

Knowledge discovery techniques are employed to extract knowledge of meaning-
ful relationships within the case-based heuristic selector via iterative training proc-
esses on cases of course timetabling problems. There are two iterative training stages
used in the process. The first stage tries to discover the representation of cases with a
proper set of features and weights. The second stage trains the case base so that it
contains the proper collection of source cases. Both of the processes are carried out
iteratively. The overall objective is to obtain the highest accuracy on retrievals for
predictions of heuristics for target cases.

2.2 Knowledge Discovery Process on Case-Based Heuristic Selection

Getting Started. In most knowledge discovery approaches, the development starts
from the data preparation. Cases in the system are represented by a list of feature-
value pairs. A set of features is used to describe the relevant characteristics of the
timetabling problems, and a value is given for each of these features in each case. The
current CBR system examines the source cases and target case that are produced arti-
ficially with specific characteristics as their problem part. These include problems
with different size, different timeslots, different rooms, etc. Some heuristics will work
well on some problems and less well on others. This means that the system has many
types of problems that are studied and collected. Appendix A presents a description of
the problem specifications. For every source case and target case, 5 heuristics (de-
scribed in Appendix B) are used to solve the problem beforehand. By checking the
penalties of the timetables produced, these heuristics are stored with each case in an
ascending order as its solution part.

The retrieval is a similarity-driven process that searches through the case base to
find the most similar source cases. The similarity measure employs a nearest-neighbor
method that calculates a weighted sum of the similarities between each pair of indi-
vidual features between cases. Formula (1) presents the similarity measure between
the source case Cs and the target case Ct in the system:

∑ +−
=

=

j

i
iii

ts

ftfsw

CCS

0

2 1)(*

1
),((1)

The notation is described as follows:
j is the number of features in the case representation
wi is the weight of the ith feature reflecting the relevance on the prediction
fsi, fti are the values of the ith feature in source case Cs and target case Ct respectively
The possible values of the features describing timetabling problems are all integers
(see Appendix C). So the higher the value of S(Cs, Ct), the more similar the two cases
are.

The performance of the system is tested on different sets of target cases. The train-
ing on the system is targeted at a reasonably high accuracy on all of the (quick) re-
trievals for the target cases. Within each retrieval, the best two heuristics of the re-
trieved case are compared with the best heuristic of the target case. If the best heuristic
of the target case maps onto any of the best two heuristics of the retrieved case, the
retrieval is concluded as successful. Actually, in the training processes, we found that
sometimes the penalties of the timetables produced by different heuristics are close or
equal to each other. We choose the best 2 heuristics to be stored with each source case
so that we have the best heuristic stored and still retain some randomness.

Training on the Case Representation. An initial case base is built up which contains
a set of different source cases with artificially selected specific constraints and re-
quirements from Appendix A. An initial list of features is first randomly selected to
represent cases. Each of the features is initially assigned with the same normalized
weights. There are 11 features (details of the which are given in Appendix C) in the
initial case representation.

Our knowledge discovery on the case representation to train the features and their
weights in the system adopts the iterative methodology presented in [36]. In every
iteration, we:

a) Analyze the retrieval failures.
b) Propose new features to address retrieval failures.
c) Select a discriminating set of features for the new case representation.
d) Evaluate the competence of this representation.

In our CBR system, the training for case representation is a recursive failure-driven
process carried out to refine the initial features and their weights. A schematic dia-
gram of the knowledge discovery on case representation is given in Fig. 1. The knowl-
edge discovery process in the system includes the following steps:

Adjusting feature weights. The best two heuristics of the retrieved case are com-
pared with the best one of the target case to see if the retrieval is successful (the best
heuristic of the target case mapped onto one of the best two of the retrieved case).
Adjustments on feature weights are iterative error-driven processes: the weights of the
features that result in the failures of the retrieval are penalized (decreased) and those

that can contribute successful retrievals are rewarded (increased) to discriminate the
source cases that should be retrieved from the others that should not be retrieved.

Removing irrelevant features. After certain rounds of iterative adjustments, the
weights of some of the features may be small enough to be removed from the feature
list. This means that these features are either irrelevant or less important and thus are
not needed in the case representation. Retaining the irrelevant features may confuse
the retrieval process, as the similarities between cases may be too close to each other,
thus reducing the number of the successful retrievals and decreasing the system per-
formance.

Introducing new features. When the adjustment of feature weights does not result
in a successful retrieval for a target case, new relevant features are added. New fea-
tures are proposed by studying if they can distinguish the correct source case from the
others, if they can give a prediction of success, or if they can express the specific
characteristics in a particular case.

Fig. 1 Schematic Diagram of Knowledge Discovery on Featrues and Their Weights

Due to the complexity of the problem, at the beginning we do not know what features
are relevant to the similarity-driven retrieval and which should be used to represent
cases. Also we do not know their weights as we do not know how important they are
to properly calculate the similarity that influences the heuristic selection. By using the
recursive knowledge discovery process presented above, irrelevant and less important
features are removed from the initial feature list. The feature vector that gives the
highest accuracy on retrievals for all of the target cases will be employed as the basis
for the second stage of knowledge discovery. The trained case representation (with 6
features left) after the first stage of training is presented in Appendix D.

no

yes

Knowledge Discovery

Introduce new
features

Adjust
Weights Remove irrele-

vant features

Knowledge
Discovery

Case Base

Initial
Features Satisfied?

Discovery
Features

Retrieval

Target
Cases

Training on the Case Base. Case selection is a particularly important issue in build-
ing up a case base. Sometimes, keeping irrelevant source cases can decrease the sys-
tem performance and increase the space and time requirements of the system. The
objective of the second stage training is to select a collection of relevant cases without
redundancy for the case base.

Firstly we build up two initial case bases with source cases of 9 different sizes with
10, 15, … to 50 courses in them:

a) “OneSet” – For each size, 5 source cases are produced, each has one of the 5
heuristics listed in Appendix A as its best heuristic. We name this case base
“OneSet” as it contains one set of the 5 heuristics for cases with different sizes
(thus in “OneSet” there are 9 * 5 = 45 source cases).

b) “TwoSet” – For each size, 10 source cases are produced, each two have one of
the 5 heuristics listed in Appendix A as their best heuristic. It is named
“TwoSet” and in total there are 9 * 5 * 2 = 90 source cases in “TwoSet”.

The target cases are produced with the size of 10, 20, 30, … to 100 courses, for each
size with 10 instances. Thus there are 10 * 10 = 100 target cases to be tested on the
two initial case bases. The best heuristics for each of them is obtained beforehand to
evaluate the retrieval.

A database is built up containing these two case bases and the target case set. The
training process on these two initial case bases is carried out recursively using the
“Leave-One-Out” strategy: Each time a source case is removed from the case base we
test to see if the number of successful retrievals on the case base for all of the target
cases is increased. If removing a source case decreases the number of successful re-
trievals, it will be restored back to the case base as it may contribute to successful
retrievals for certain types of cases. Otherwise, if the number of successful retrievals
increases or does not change, it will be removed from the case base as a redundant
case. The process stops when the highest number of retrievals is obtained on all the
target cases.

Finally after the second stage of training, there are 14 and 15 source cases left in
the original two case bases, respectively. To test the system performance, an experi-
ment is carried out on both the initial and trained case bases for another set of target
cases that are, of course, not the same as those of the training set. The accuracies of
the system performance on these case bases are shown in Table 1.

Table 1 Accuracies of System Performance on Initial and Trained Case Bases

Case Base Retrieval Accuracy

“OneSet” (45 cases) 42%

“TwoSet” (90 cases) 60%

Trained Case Base from “OneSet” (15 cases) 70%

Trained Case Base from “TwoSet” (14 cases) 71%

We can observe that the initial “TwoSet” provides better performance than that of

“OneSet”. By storing more source cases, the system is equipped with more knowledge
and thus is capable of providing better performance during the retrieval. We can also
see that the second training process removes quite a lot of source cases that are redun-
dant or that are harmful to the performance of the CBR system. With a smaller number
of more relevant source cases retained in the case bases, the system performance is
improved to provide higher accuracies of predictions of suitable heuristics. To obtain
better system performance, a higher number of relevant source cases need to be se-
lected in the case base.

3 Conclusion and Future Work

This paper presents the first step of our work in developing a hyper-heuristic method
using CBR for heuristic selection on course timetabling problems. Knowledge discov-
ery techniques employ relatively simple methods and just a few training processes are
carried out. The results are good and indicate the possible advantages of employing
knowledge discovery techniques in the course timetabling domain. We believe better
results may be obtained after further training processes are carried out which employ a
range of knowledge discovery techniques.

There are many more complex and elaborate techniques that can be investigated
and integrated into the CBR system to improve its performance. For example, for the
case representation we currently employs a simple technique that is manually carried
out to choose the features and adjust their weights. This can be seen as a feature selec-
tion task, which is the problem of selecting a set of features to be used as the data
format in the system to achieve high accuracy of prediction. Feature selection is an
important issue in machine learning [37] for which a variety of traditional techniques
exist. Some recent work employing AI methods such as evolutionary algorithms [38]
to optimize the feature selection also provide a wider range of possible research direc-
tions. For complex timetabling problems, these more efficient algorithms can be em-
ployed to carry out the searching on features more effectively when dealing with lar-
ger data sets. Our future work will study and compare these different techniques to
optimize the case representation to improve the system performance on a wider range
of larger timetabling problems. New features are being studied and introduced into the
system. For example, some refined features such as the number of rooms with a range
of capacities, the number of courses with more than a certain number of constraints,
etc can be introduced to give a more specific description of problems. Other issues
relating to knowledge discovery in the CBR system may include how to deal with the
incomplete data in case bases and how to involve domain knowledge in the system.
User interaction in knowledge discovery is also important on tasks like judgment and
decision-making, in which humans usually perform better than a machine.

The current system uses 5 simple heuristics to implement the analysis and testing
on the case-based heuristic selection. Future work will study more heuristics in the

system. Also the testing cases are artificially produced to give a systematic analysis on
as many types of problem as possible. After the initial study of using CBR as a heuris-
tic selector we have increased our understanding of the area. Real-world benchmark
timetabling data (such as that presented in [39]) will be collected and stored in the
case base for solving real-world problems. Adaptation may also need to be conducted
to utilize domain knowledge on some of the heuristics retrieved for the new problem.

4 References

1. Carter, M.W., Laporte, G.: Recent developments in practical examination timetabling. In:
[6]. (1995) 3 – 21

2. Carter, M.W., Laporte, G.: Recent developments in practical course timetabling. In: [9].
(1997) 3 – 19

3. Schaef, A.: A Survey of Automated Timetabling. Artificial Intelligence Review. 13 (1999)
87 – 127

4. Kolodner, J.L. Case-Based Reasoning. Morgan Kaufmann, 1993.
5. Leake, D. (ed.): Case-Based Reasoning: Experiences, Lessons and Future Directions.

AAAI Press, Menlo Park, CA. 1996.
6. Burke, E.K., Erben, W. (eds.): The Practice and Theory of Automated Timetabling: Se-

lected Papers from the Third International Conference. Lecture Notes in Computer Sci-
ence 2079. Springer-Verlag, Berlin. 2000.

7. Burke, E., Petrovic, S.: Recent research directions in automated timetabling. European
Journal of Operational Research. 140(2) (2002) 266 – 280

8. Burke, E.K., Ross, P. (eds.): The Practice and Theory of Automated Timetabling: Selected
Papers from the First International Conference. Lecture Notes in Computer Science 1153.
Springer-Verlag, Berlin. 1995

9. Burke, E.K., Carter, M. (eds.): The Practice and Theory of Automated Timetabling: Se-
lected Papers from the Second International Conference. Lecture Notes In Computer Sci-
ence 1408. Springer-Verlag, Berlin. 1997.

10. MacCarthy, B.L., Jou, P.: Case-based reasoning in scheduling. In: Khan MK, Wright CS
(eds.). Proceedings of the Symposium on Advanced Manufacturing Processes, Systems
and Techniques (AMPST96), (MEP Publications Ltd, 1996), (1996) 211 – 218

11. Schmidt, G.: Case-based reasoning for production scheduling. International Journal of
Production Economics, 56-57 (1998) 537 – 546

12. Koton, P.: SMARTlan: A case-based resource allocation and scheduling system. Proceed-
ings of Workshop on Case-Based Reasoning (DARPA). (1989) 285 – 289

13. Bezirgan, A.: A case-based approach to scheduling constraints. In: Dorn, J. and Froeschl,
K.A. (eds.), Scheduling of Production Processes. Ellis Horwood Limited. (1993) 48 – 60

14. Miyashita, K., Sycara, K.: CABINS: A framework of knowledge acquisition and iterative
revision for schedule improvement and reactive repair. Artificial Intelligence, 76 (1995)
377 – 426

15. Cunningham, P., Smyth, B.: Case-based reasoning in scheduling: reusing solution compo-
nents. The International Journal of Production Research. 35 (1997) 2947 – 2961.

16. Scott, S., Simpson, R., Ward, R.: Combining case-based reasoning and constraint logic
programming techniques for packaged nurse rostering systems. Proceedings of the Third
UK Case-Based Reasoning Workshop. 1997.

17. Burke, E.K., MacCarthy, B. Petrovic, S., Qu, R.: Structured cases in CBR – re-using and
adapting cases for timetabling problems. Journal of Knowledge-based System, 13(2-3)
(2000) 159 – 165

18. Burke, E.K., MacCarthy, B.L. Petrovic, S., Qu, R.: Case-based reasoning in course time-
tabling: an attribute graph approach. In: Aha, D.W. and Watson, I. (eds.): Case-Based
Reasoning Research and Development. Proceedings of 4th International Conference on
Case-Based Reasoning (ICCBR2001). Lecture Notes in Artificial Intelligence 2080. Van-
couver, Canada. (2000) 90 – 104

19. Burke, E.K., Jackson, K.S., Kingston, J.H., Weare, R.F.: Automated timetabling: the sate
of the art. The Computer Journal, 40(9) (1997) 565 – 571

20. Werra, D.: Graphs, hypergraphs and timetabling. Methods of Operations Research (Ger-
many F.R.), 49 (1985) 201 – 213

21. Carter, M.W.: A lagrangian relaxation approach to the classroom assignment problem.
IFOR. 27(2) (1986) 230 – 246

22. Costa, D.: A Tabu Search Algorithm for Computing an Operational Timetable. EJOR, 76
(1994) 98 – 110

23. Abramson, D.: Constructing School Timetables using Simulated Annealing: Sequential
and Parallel Algorithms. Management Science, 37(1) (1991) 98 – 113

24. Corne, D., Ross, P.: Peckish Initialisation Strategies for Evolutionary Timetabling. In: [6],
(1995) 227 – 240

25. Carrasco, A.P., Pato, M.V.: A Multiobjective Genetic Algorithm for the Class/Teacher
Timetabling Problem. In: [19]. (2000) 3 – 17

26. Zervoudakis, K., Stamatopoulos, P.: A Generic Object-Oriented Constraint-Based Model
for University Course Timetabling. In: [19], (2000) 28 – 47

27. Burke E., Kendall, G, Newall, J. Hart, E., Ross, P and Schulenberg S: Hyper-heuristic: An
Emerging Direction in Modern Search Technology. In: Glover and Kochenberg (eds.)
Handbook of Meta-Heuristics. Kluwer 2003, 457 – 474

28. Fang, H.L., Ross, P., Corne, D.: A Promising Hybrid GA/Heuristic Approach for Open-
Shop Scheduling Problems. The 11th European Conference on Artificial Intelligence
(ECAI’94). John Wiley & Sons, Ltd, 1994.

29. Hart, E., Ross, P., Nelson, J.: Solving a Real-world Problem Using an Evolving Heuristi-
cally Driven Schedule. Evolutionary Computation, 6: (1998) 61 – 80

30. Terashima-Marin, H., Ross, P., Valenzuela-Rendon, M.: Evolution of Constraint Satisfac-
tion Strategies in Examination Timetabling. Proceedings of the Genetic and Evolutionary
Computation Conference 1999 (GECCO-99), Morgan Kaufmann, (1999) 635 – 642

31. Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. Proceedings of CP-98. (1998) 417 – 431

32. Berger, J., Sassi, M., Salois, S.: A Hybrid Genetic Algorithm for the Vehicle Routing
Problem with Windows and Itinerary Constraints. Proceedings of the Genetic and Evolu-
tionary Computation Conference 1999 (GECCO-99), Morgan Kaufmann, (1999) 44 – 51

33. Voudouris, C., Tsang, E.P.K.: Guided Local Search and Its Application to the Travelling
Salesman Problem. European Journal of Operational Research, Anbar Publishing 113(2)
(1999) 469 – 499

34. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery
in Databases. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, Uthurusamy, R. (eds.): Ad-
vances in Knowledge Discovery and Data Mining. AAAI Press, Melo Park, CA, (1996) 1
– 34

35. Piatetsky-Shapiro, G.: Knowledge Discovery in Databases. AAAI Press, 1991.
36. Cunningham, P., Bonzano, A.: Knowledge Engineering Issues in Developing a Case-

Based Reasoning Application. Knowledge-Based Systems, 12 (1999) 371 – 379

37. Hall, M.A., Smith, L.: Practical Feature Subset Selection Machine Learning. Proceedings
of the Australian Computer Science Conference. 1996.

38. Freitas, A: A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discov-
ery. To appear in: Ghosh, A., Tsutsui, S. (eds.): Advances in Evolutionary Computation.
Springer, 2002.

39. Carter, W.M., Laporte, G.: Examination Timetabling: Algorithmic Strategies and Applica-
tions, Journal of the Operational Research Society, 74 (1996) 373 – 383

40. Burke, E., Newall, J. and Weare, R.: A Simple Heuristically Guided Search for the Time-
tabling Problem. Proceedings of the International ICSC Symposium on Engineering of In-
telligent Systems (EIS'98), (1998) 574 – 579

Appendix A: Course Timetabling Problems Specification

Hard constraints:
1. Two courses cannot be scheduled into the same timeslot
2. A course should be carried out n times a week
3. Each course has a specific room requirement with type and capacity
4. There is a specified number of periods for each course timetabling problem

Soft constraints:
1. One course should be scheduled before or after another
2. Inclusive/exclusive - a course should/should not be scheduled into a fixed

timeslot
3. Consecutive - a course should/should not be scheduled into a timeslot con-

secutive to that of another

Appendix B: Heuristics Used in the System

1. LD – Largest degree first.
All the courses not yet scheduled are inserted into an “unscheduled list” in descend-
ing order according to the number of conflicts the course has with the other courses.
This heuristic tries to schedule the most difficult courses first.

2. LDT – Largest degree first with tournament selection.
This heuristic is presented in [40]. It is similar to LD except that a course employing
tournament selection is selected from a subset of the “unscheduled list”. Here, a
probability value of 30% is used to get a subset from the list. This heuristic tries to
schedule the most difficult courses first but also give some randomness.

3. HC – Hill climbing.
An initial timetable is constructed randomly then is improved by hill climbing.

4. CD – Color degree.
Courses in the “unscheduled list” are ordered by the number of conflicts they have
with those courses that are already scheduled in the timetable. Usually those courses
with a large number of such conflicts are harder to schedule than courses with a
smaller number of conflicts.

5. SD – Saturation degree.

Courses in the “unscheduled list” are ordered by the number of periods left in the
timetable for them to be scheduled validly. This heuristic gives higher priority to
courses with fewer periods available.

Appendix C: Initial Features and Their Weights for Cases

f0: number of hard constraints / number of events
f1: number of soft constraints / number of events
f2: number of constraints / number of events
f3: number of periods / number of events
f4: number of rooms / number of events
f5: number of not consecutive courses / number of constraints
f6: number of consecutive courses / number of constraints
f7: number of hard constraints / number of constraints
f8: number of soft constraints / number of constraints
f9: number of hard constraints / number of periods
f10: number of soft constraints / number of periods
normalized weight wi = factori * 1 / sum of weights of all the features
initial factori = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

Appendix D: Trained Features and Their Weights

f0: number of exclusive courses / number of events
f1: number of inclusive courses / number of events
f2: number of constraints / number of events
f3: number of rooms / number of events
f4: number of hard constraints / number of periods
f5: number of not consecutive courses / number of constraints
normalized weight wi = factori * 1 / sum of weights of all the features
factori = {45, 10, 10, 15, 30, 6}

