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Abstract. This paper presents a new hyper-heuristic method using Case-Based 
Reasoning (CBR) for solving course timetabling problems. The term Hyper-
heuristics has recently been employed to refer to “heuristics that choose heuris-
tics” rather than heuristics that operate directly on given problems. One of the 
overriding motivations of hyper-heuristic methods is the attempt to develop 
techniques that can operate with greater generality than is currently possible. 
The basic idea behind this is that we maintain a case base of information about 
the most successful heuristics for a range of previous timetabling problems to 
predict the best heuristic for the new problem in hand using the previous 
knowledge. Knowledge discovery techniques are used to carry out the training 
on the CBR system to improve the system performance on the prediction. Initial 
results presented in this paper are good and we conclude by discussing the con-
siderable promise for future work in this area. 

1 Introduction 

1.1 Case-Based Reasoning 

What is Case-Based Reasoning? Many techniques from Artificial Intelligence (AI) 
and Operational Research (OR) solve timetabling problems directly by employing 
heuristics, meta-heuristics and hybrids on the problem in hand [1, 2, 3]. Case-Based 
Reasoning (CBR) [4] is a Knowledge-Based technique that solves problems by em-
ploying the knowledge and experience from previous similar cases. Solutions or prob-
lem solving strategies that were used in solving earlier problems (cases) are main-
tained in a store (case base) for reuse. Adaptation usually needs to be carried out for 



the new problem employs domain knowledge of some kind. The solved new problems 
may be retained and the case base is thus updated. Leake [5] described CBR as fol-
lows: 

“In CBR, new solutions are generated not by chaining, but by retriev-
ing the most relevant cases from memory and adapting them to fit new 
situations.” 

A case usually consists of two major parts: the problem itself represented in a certain 
form to describe the conditions under which it should be retrieved; and the solution of 
the problem or the lessons it will teach. Throughout this paper, the term source case is 
used to denote the cases in the case base and the term target case is used to denote the 
new problem to be solved. 

A similarity measure is usually defined by a formula to calculate the similarity be-
tween source cases and the target case. The most similar source cases are retrieved for 
the target case. The development of this similarity measure for large real-world prob-
lems such as those encountered in course timetabling presents one of the major re-
search challenges in this area. 
 
Case-Based Reasoning in Scheduling and Optimization Problems. Timetabling 
has been studied extensively over the years [1, 2, 3, 6, 7, 8, 9]. It can be thought of as 
a special type of scheduling problem. The potential for CBR has been discussed for 
different scheduling problems [10, 11]. A brief survey of CBR in scheduling was 
presented in [10] where three Case-Based Scheduling systems, SMARTplan [12], 
CBR-1 [13] and CABINS [14], were reviewed. The authors claimed that CBR is a 
very good approach in expert scheduling systems and emphasized potential research in 
dynamic scheduling. Other studies in case-based scheduling concerned a variety of 
scheduling problems and issues, i.e. optimization [15], nurse rostering [16] and educa-
tional timetabling problems [17, 18]. 

1.2 Course Timetabling and Hyper-heuristics in Scheduling 

Timetabling Problems. A general timetabling problem involves assigning a set of 
events (meetings, matches, exams, courses, etc) into a limited number of timeslots 
subject to a set of constraints. Constraints are usually classified into two particular 
types: hard constraints and soft constraints. Hard constraints should under no circum-
stances be violated. Soft constraints are desirable but can be relaxed if necessary.  

Over the last 40 years, there has been a considerable amount of research on time-
tabling problems [1, 2, 3, 19]. In the early days of educational timetabling research, 
graph coloring [20] and integer linear programming techniques were widely used [21]. 
Some of the latest approaches can be seen in [6, 7]. 

This paper concentrates on educational course timetabling problems. Modern heu-
ristic techniques have been successfully applied to course timetabling [6, 8, 9]. Tabu 
Search (e.g. [22]) and Simulated Annealing (e.g. [23]) have been successfully applied. 
Evolutionary Algorithms/Genetic Algorithms (GAs) (e.g. [24]) and Memetic Algo-
rithms (that hybridizes GAs with local search techniques) (e.g. [25]) have also been 



extensively studied. Constrained-Based techniques have also been widely employed 
(e.g. [26]). 

 
Hyper-heuristics in Scheduling. Hyper-heuristics can be defined to be “heuristics 
that choose heuristics” or as “algorithms to pick the right algorithm for the right situa-
tion” [27]. The main reason for using the term hyper-heuristics rather than the widely 
used tern meta-heuristics is that hyper-heuristics represent a method of from a variety 
of different heuristics (that may include meta-heuristics). 

Some research in scheduling has investigated this approach although it does not 
always use the term “hyper-heuristics”. An approach was presented in [28] on open 
shop scheduling problems using GAs to search a space of abstractions of solutions to 
“evolve the heuristic choice”. GAs have been employed to construct a schedule 
builder that chooses the optimal combinations of heuristics [29]. Another approach in 
[30] used a GA to select the heuristic to order the exam in a sequential approach for 
exam timetabling problems. A hybrid GA investigated for vehicle routing problems 
has demonstrated promising results [31, 32]. 

Some other research on hyper-heuristics has also been carried out on a variety of 
scheduling problems. Guided local search was used to select from a set of heuristics 
and also different parameters for the traveling salesman problems [33]. In [27] a hy-
per-heuristic approach was used to select from a set of lower level heuristics accord-
ing to the characteristics of the current search space in a sales summit scheduling 
problem. 

 

2   Case-Based Heuristic Selection for Course Timetabling  

2.1 Knowledge Discovery for Course Timetabling 

The overall goal of our approach is to investigate CBR as a selector to choose (pre-
dict) the best (or a reasonably good) heuristic for the problem in hand according to the 
knowledge obtained from solving previous similar problems. The goal is to avoid a 
large amount of computation time and effort on the comparison and choosing of dif-
ferent heuristics. A large number of approaches and techniques in AI and OR have 
been studied to solve a wide range of timetabling problems successfully over the 
years. Comparisons have been carried out in some papers on using different ap-
proaches in solving a specific range of problems. Thus the development of heuristics 
for timetabling is very well established and a reasonable amount of knowledge does 
exist on which specific heuristic works well on what specific range of timetabling 
problems. This provides a large number of cases that can be collected, studied and 
stored in the case base, providing a good starting point for solving new course time-
tabling problems. 

In knowledge engineering, techniques in knowledge discovery and machine learn-
ing have been employed with success in a number of ill-structured domains. Knowl-



edge discovery is the process of studying and investigating a collection of datasets to 
discover information such as rules, regularities, or structures in the problem domain. It 
was defined in [34] as a “non-trivial process of identifying valid, novel, potentially 
useful, and ultimately understandable patterns in data”. A key step in the knowledge 
discovery process is data mining that may employ a wide range of techniques from AI, 
machine learning, knowledge acquisition and statistics. Knowledge discovery is usu-
ally carried out on databases and the application areas include medicine, finance, law 
and engineering [35]. 

In our CBR system the previous most similar cases provide information that facili-
tates the prediction of the best heuristic for the target case. The retrieval in CBR is a 
similarity-driven process that is carried out on cases described in specific forms. Thus 
the key issues are the case representation (that should be in a proper form to describe 
the relevant context within the timetabling problem) and how it influences the similar-
ity between cases which is what drives the retrieval to provide an accurate prediction 
on heuristic selection. 

Knowledge discovery techniques are employed to extract knowledge of meaning-
ful relationships within the case-based heuristic selector via iterative training proc-
esses on cases of course timetabling problems. There are two iterative training stages 
used in the process. The first stage tries to discover the representation of cases with a 
proper set of features and weights. The second stage trains the case base so that it 
contains the proper collection of source cases. Both of the processes are carried out 
iteratively. The overall objective is to obtain the highest accuracy on retrievals for 
predictions of heuristics for target cases. 

2.2 Knowledge Discovery Process on Case-Based Heuristic Selection 

Getting Started. In most knowledge discovery approaches, the development starts 
from the data preparation. Cases in the system are represented by a list of feature-
value pairs. A set of features is used to describe the relevant characteristics of the 
timetabling problems, and a value is given for each of these features in each case. The 
current CBR system examines the source cases and target case that are produced arti-
ficially with specific characteristics as their problem part. These include problems 
with different size, different timeslots, different rooms, etc. Some heuristics will work 
well on some problems and less well on others. This means that the system has many 
types of problems that are studied and collected. Appendix A presents a description of 
the problem specifications. For every source case and target case, 5 heuristics (de-
scribed in Appendix B) are used to solve the problem beforehand. By checking the 
penalties of the timetables produced, these heuristics are stored with each case in an 
ascending order as its solution part. 

The retrieval is a similarity-driven process that searches through the case base to 
find the most similar source cases. The similarity measure employs a nearest-neighbor 
method that calculates a weighted sum of the similarities between each pair of indi-
vidual features between cases. Formula (1) presents the similarity measure between 
the source case Cs and the target case Ct in the system: 
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The notation is described as follows: 
j is the number of features in the case representation 
wi is the weight of the ith feature reflecting the relevance on the prediction 
fsi, fti are the values of the ith feature in source case Cs and target case Ct respectively 
The possible values of the features describing timetabling problems are all integers 
(see Appendix C). So the higher the value of S(Cs, Ct), the more similar the two cases 
are. 

The performance of the system is tested on different sets of target cases. The train-
ing on the system is targeted at a reasonably high accuracy on all of the (quick) re-
trievals for the target cases. Within each retrieval, the best two heuristics of the re-
trieved case are compared with the best heuristic of the target case. If the best heuristic 
of the target case maps onto any of the best two heuristics of the retrieved case, the 
retrieval is concluded as successful. Actually, in the training processes, we found that 
sometimes the penalties of the timetables produced by different heuristics are close or 
equal to each other. We choose the best 2 heuristics to be stored with each source case 
so that we have the best heuristic stored and still retain some randomness. 

 
Training on the Case Representation. An initial case base is built up which contains 
a set of different source cases with artificially selected specific constraints and re-
quirements from Appendix A. An initial list of features is first randomly selected to 
represent cases. Each of the features is initially assigned with the same normalized 
weights. There are 11 features (details of the which are given in Appendix C) in the 
initial case representation. 

Our knowledge discovery on the case representation to train the features and their 
weights in the system adopts the iterative methodology presented in [36]. In every 
iteration, we: 

a) Analyze the retrieval failures. 
b) Propose new features to address retrieval failures. 
c) Select a discriminating set of features for the new case representation. 
d) Evaluate the competence of this representation. 

In our CBR system, the training for case representation is a recursive failure-driven 
process carried out to refine the initial features and their weights. A schematic dia-
gram of the knowledge discovery on case representation is given in Fig. 1. The knowl-
edge discovery process in the system includes the following steps: 

Adjusting feature weights. The best two heuristics of the retrieved case are com-
pared with the best one of the target case to see if the retrieval is successful (the best 
heuristic of the target case mapped onto one of the best two of the retrieved case). 
Adjustments on feature weights are iterative error-driven processes: the weights of the 
features that result in the failures of the retrieval are penalized (decreased) and those 



that can contribute successful retrievals are rewarded (increased) to discriminate the 
source cases that should be retrieved from the others that should not be retrieved. 

Removing irrelevant features. After certain rounds of iterative adjustments, the 
weights of some of the features may be small enough to be removed from the feature 
list. This means that these features are either irrelevant or less important and thus are 
not needed in the case representation. Retaining the irrelevant features may confuse 
the retrieval process, as the similarities between cases may be too close to each other, 
thus reducing the number of the successful retrievals and decreasing the system per-
formance. 

Introducing new features. When the adjustment of feature weights does not result 
in a successful retrieval for a target case, new relevant features are added. New fea-
tures are proposed by studying if they can distinguish the correct source case from the 
others, if they can give a prediction of success, or if they can express the specific 
characteristics in a particular case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 Schematic Diagram of Knowledge Discovery on Featrues and Their Weights 

 
Due to the complexity of the problem, at the beginning we do not know what features 
are relevant to the similarity-driven retrieval and which should be used to represent 
cases. Also we do not know their weights as we do not know how important they are 
to properly calculate the similarity that influences the heuristic selection. By using the 
recursive knowledge discovery process presented above, irrelevant and less important 
features are removed from the initial feature list. The feature vector that gives the 
highest accuracy on retrievals for all of the target cases will be employed as the basis 
for the second stage of knowledge discovery. The trained case representation (with 6 
features left) after the first stage of training is presented in Appendix D. 
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Training on the Case Base. Case selection is a particularly important issue in build-
ing up a case base. Sometimes, keeping irrelevant source cases can decrease the sys-
tem performance and increase the space and time requirements of the system. The 
objective of the second stage training is to select a collection of relevant cases without 
redundancy for the case base. 

Firstly we build up two initial case bases with source cases of 9 different sizes with 
10, 15, … to 50 courses in them: 

a) “OneSet” – For each size, 5 source cases are produced, each has one of the 5 
heuristics listed in Appendix A as its best heuristic. We name this case base 
“OneSet” as it contains one set of the 5 heuristics for cases with different sizes 
(thus in “OneSet” there are 9 * 5 = 45 source cases). 

b) “TwoSet” – For each size, 10 source cases are produced, each two have one of 
the 5 heuristics listed in Appendix A as their best heuristic. It is named 
“TwoSet” and in total there are 9 * 5 * 2 = 90 source cases in “TwoSet”. 

The target cases are produced with the size of 10, 20, 30, … to 100 courses, for each 
size with 10 instances. Thus there are 10 * 10 = 100 target cases to be tested on the 
two initial case bases. The best heuristics for each of them is obtained beforehand to 
evaluate the retrieval. 

A database is built up containing these two case bases and the target case set. The 
training process on these two initial case bases is carried out recursively using the 
“Leave-One-Out” strategy: Each time a source case is removed from the case base we 
test to see if the number of successful retrievals on the case base for all of the target 
cases is increased. If removing a source case decreases the number of successful re-
trievals, it will be restored back to the case base as it may contribute to successful 
retrievals for certain types of cases. Otherwise, if the number of successful retrievals 
increases or does not change, it will be removed from the case base as a redundant 
case. The process stops when the highest number of retrievals is obtained on all the 
target cases. 

Finally after the second stage of training, there are 14 and 15 source cases left in 
the original two case bases, respectively. To test the system performance, an experi-
ment is carried out on both the initial and trained case bases for another set of target 
cases that are, of course, not the same as those of the training set. The accuracies of 
the system performance on these case bases are shown in Table 1. 
 

 

Table 1 Accuracies of System Performance on Initial and Trained Case Bases 

Case Base Retrieval Accuracy 

“OneSet” (45 cases) 42% 

“TwoSet” (90 cases) 60% 

Trained Case Base from “OneSet” (15 cases) 70% 

Trained Case Base from “TwoSet” (14 cases) 71% 



 
We can observe that the initial “TwoSet” provides better performance than that of 

“OneSet”. By storing more source cases, the system is equipped with more knowledge 
and thus is capable of providing better performance during the retrieval. We can also 
see that the second training process removes quite a lot of source cases that are redun-
dant or that are harmful to the performance of the CBR system. With a smaller number 
of more relevant source cases retained in the case bases, the system performance is 
improved to provide higher accuracies of predictions of suitable heuristics. To obtain 
better system performance, a higher number of relevant source cases need to be se-
lected in the case base. 
 

3 Conclusion and Future Work 

This paper presents the first step of our work in developing a hyper-heuristic method 
using CBR for heuristic selection on course timetabling problems. Knowledge discov-
ery techniques employ relatively simple methods and just a few training processes are 
carried out. The results are good and indicate the possible advantages of employing 
knowledge discovery techniques in the course timetabling domain. We believe better 
results may be obtained after further training processes are carried out which employ a 
range of knowledge discovery techniques. 

There are many more complex and elaborate techniques that can be investigated 
and integrated into the CBR system to improve its performance. For example, for the 
case representation we currently employs a simple technique that is manually carried 
out to choose the features and adjust their weights. This can be seen as a feature selec-
tion task, which is the problem of selecting a set of features to be used as the data 
format in the system to achieve high accuracy of prediction. Feature selection is an 
important issue in machine learning [37] for which a variety of traditional techniques 
exist. Some recent work employing AI methods such as evolutionary algorithms [38] 
to optimize the feature selection also provide a wider range of possible research direc-
tions. For complex timetabling problems, these more efficient algorithms can be em-
ployed to carry out the searching on features more effectively when dealing with lar-
ger data sets. Our future work will study and compare these different techniques to 
optimize the case representation to improve the system performance on a wider range 
of larger timetabling problems. New features are being studied and introduced into the 
system. For example, some refined features such as the number of rooms with a range 
of capacities, the number of courses with more than a certain number of constraints, 
etc can be introduced to give a more specific description of problems. Other issues 
relating to knowledge discovery in the CBR system may include how to deal with the 
incomplete data in case bases and how to involve domain knowledge in the system. 
User interaction in knowledge discovery is also important on tasks like judgment and 
decision-making, in which humans usually perform better than a machine. 

The current system uses 5 simple heuristics to implement the analysis and testing 
on the case-based heuristic selection. Future work will study more heuristics in the 



system. Also the testing cases are artificially produced to give a systematic analysis on 
as many types of problem as possible. After the initial study of using CBR as a heuris-
tic selector we have increased our understanding of the area. Real-world benchmark 
timetabling data (such as that presented in [39]) will be collected and stored in the 
case base for solving real-world problems. Adaptation may also need to be conducted 
to utilize domain knowledge on some of the heuristics retrieved for the new problem. 
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Appendix A: Course Timetabling Problems Specification 

Hard constraints: 
1. Two courses cannot be scheduled into the same timeslot 
2. A course should be carried out n times a week 
3. Each course has a specific room requirement with type and capacity 
4. There is a specified number of periods for each course timetabling problem 

Soft constraints: 
1. One course should be scheduled before or after another 
2. Inclusive/exclusive - a course should/should not be scheduled into a fixed 

timeslot 
3. Consecutive - a course should/should not be scheduled into a timeslot con-

secutive to that of another 

Appendix B: Heuristics Used in the System 

1. LD – Largest degree first. 
All the courses not yet scheduled are inserted into an “unscheduled list” in descend-
ing order according to the number of conflicts the course has with the other courses. 
This heuristic tries to schedule the most difficult courses first. 

2. LDT – Largest degree first with tournament selection. 
This heuristic is presented in [40]. It is similar to LD except that a course employing 
tournament selection is selected from a subset of the “unscheduled list”. Here, a 
probability value of 30% is used to get a subset from the list. This heuristic tries to 
schedule the most difficult courses first but also give some randomness. 

3. HC – Hill climbing. 
An initial timetable is constructed randomly then is improved by hill climbing. 

4. CD – Color degree. 
Courses in the “unscheduled list” are ordered by the number of conflicts they have 
with those courses that are already scheduled in the timetable. Usually those courses 
with a large number of such conflicts are harder to schedule than courses with a 
smaller number of conflicts. 

5. SD – Saturation degree. 



Courses in the “unscheduled list” are ordered by the number of periods left in the 
timetable for them to be scheduled validly. This heuristic gives higher priority to 
courses with fewer periods available. 

Appendix C: Initial Features and Their Weights for Cases 

f0: number of hard constraints / number of events 
f1: number of soft constraints / number of events 
f2: number of constraints / number of events 
f3: number of periods / number of events 
f4: number of rooms / number of events 
f5: number of not consecutive courses / number of constraints 
f6: number of consecutive courses / number of constraints 
f7: number of hard constraints / number of constraints 
f8: number of soft constraints / number of constraints 
f9: number of hard constraints / number of periods 
f10: number of soft constraints / number of periods 
normalized weight wi = factori * 1 / sum of weights of all the features 
initial factori = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 

Appendix D: Trained Features and Their Weights 

f0: number of exclusive courses / number of events 
f1: number of inclusive courses / number of events 
f2: number of constraints / number of events 
f3: number of rooms / number of events 
f4: number of hard constraints / number of periods 
f5: number of not consecutive courses / number of constraints 
normalized weight wi = factori * 1 / sum of weights of all the features 
factori = {45, 10, 10, 15, 30, 6} 


