

Abstract--This paper reports on the use of non-symbolic
fragmentation of data for securing communications. Non-
symbolic fragmentation, or NSF, relies on breaking up data into
non-symbolic fragments, which are (usually irregularly-sized)
chunks whose boundaries do not necessarily coincide with the
boundaries of the symbols making up the data. For example,
ASCII data is broken up into fragments which may include 8-bit
fragments but also include many other sized fragments.
Fragments are then separated with a form of path diversity. The
secrecy of the transmission relies on the secrecy of one or more of
a number of things: the ordering of the fragments, the sizes of the
fragments, and the use of path diversity. Once NSF is in place, it
can help secure many forms of communication, and is useful for
exchanging sensitive information, and for commercial
transactions. A sample implementation is described with an
evaluation of the technology.

INTRODUCTION

Low customer confidence in the security and privacy of
Web-based transactions is hindering the development of e-
commerce. Internet-based fraud is a high-profile crime that
receives much attention from the media, and creates an
atmosphere of distrust of the new technology.

Non-symbolic fragmentation offers an additional way of
securing transactions that can work either in conjunction with
or independently of existing security mechanisms, including
encryption. It has two primary characteristics – it firstly breaks
up data into a set of partial files, with no recognisable
characters in any place, and secondly that those partial files
are transmitted in different ways, over different networks, at
different times. The likelihood of a criminal being able to
intercept all the information needed to retrieve a hidden
message is much reduced, and they face the additional
difficulty of reorganising the fragments into their correct
positions to form the original message.

Similar principles are already in use in commercial
transactions with sites such as amazon.co.uk offering the
option of transmitting part of a credit card number via
telephone and part via the Internet. Non-symbolic
fragmentation extends this principle, as well as implementing
what is essentially a bit-level transposition cipher that destroys
symbol integrity. Separate transmission of parts of the
message mean that signal processing techniques cannot be

H. Ashman is with the School of Computer Science and Information
Technology, University of Nottingham, U.K. (e-mail: hla@cs.nott.ac.uk).

H. Coupe is with the School of Computer Science and Information
Technology, University of Nottingham, U.K. (e-mail: hdc@cs.nott.ac.uk).

M. Neville-Smith is with Amino Communications Ltd, Cambridge, U.K.
(e-mail: mnsmith@aminocom.com)

P. Smith is with Amino Communications Ltd, Cambridge, U.K. (e-mail:
psmith@aminocom.com)

M. Gilbert is with Amino Communications Ltd, Cambridge, U.K. (e-mail:
mgilbert@aminocom.com)

used to recreate the file.
Used in conjunction with encryption, non-symbolic

fragmentation provides additional industrial-strength security
mechanisms that should enhance not just the security of
commercial transactions, but the perception of the security of
transactions.

The next section describes the principles of non-symbolic
fragmentation, and the implementation of a fragmentation
process is in the following section. The next section describes
the evaluations of the process and its security and the final
section discusses related work.

NON-SYMBOLIC FRAGMENTATION
Non-symbolic fragmentation (NSF) is a means for

processing data prior to transmission or storage in a way that
a) makes it hard for any eavesdropper to intercept all parts of
the transmission and b) even if in possession of all parts of the
transmission, makes it very difficult to splice the parts
together correctly to reconstitute the original.

The fragmentation process is essentially the breaking up of
a transmission into small fragments and then ensuring that
fragments are disordered in some way. NSF creates fragments
whose sizes are usually different to the base symbol size, and
the subsequent separation of these fragments so that fragments
which were adjacent in the original file are (usually) not
adjacent in the fragment streams.

Fragments are non-symbolic, i.e. the length of fragments is
not usually the same as the length of the base symbol of the
data. For example an email in 8-bit ASCII could be
fragmented into bit strings between 1 and 14 bits in length, or
a Unicode file could be fragmented into bit strings between 1
and 30 bits. This work to date has relied on the purely sub-
symbolic fragments (e.g. for ASCII between 1 and 7 bit
fragments) where no fragment contains an entire ASCII
symbol.

By varying the size of fragments according to a secret key
shared by the sender and receiver, a cryptanalyst ought not
know even where the boundaries of any individual fragment
occur. Varying fragment sizes also means that known-
plaintext attacks are made greatly more difficult, while brute-
force attacks are greatly increased in complexity.

In the implementation reported in this paper, we have
dispersed fragments across a number of streams so that
fragments adjacent in the plaintext are no longer (necessarily)
adjacent in the fragmented data streams. The choice of which
stream to allocate a given fragment was either cyclic, or
governed by a shared secret key.

The fragment streams themselves are then transmitted
individually, preferably with some form of network or path

ICITA2002 ISBN: 1-86467-114-9

Non-symbolic fragmentation
H. Ashman, H. Coupe, P. Smith, M. Neville-Smith and M. Gilbert,

diversity. This involves sending fragment streams over
different paths in a network or over different networks,
making it harder to intercept the entire fragment set. Path
diversity is also known as spread spectrum (see for example
[1] or [4]1).

It is still possible that all streams could be intercepted, for
example when the eavesdropper is able to intercept all
transmissions going into or out of a firewall host. One possible
solution is the aliasing of receiving and sending hosts. Each
sending and receiving host has a number of different IP
addresses (possibly dynamically allocated) and each stream
would be sent using a different name for that host. This makes
it more difficult for an eavesdropper to recognise what
transmissions are parts of the same message, as the sending
and receiving host machines appear to be different for each
fragment stream [3].

Rerouting from trusted intermediate machines can further
disguise the destination and origin hosts. For example, one
stream is sent to an intermediate host which subsequently
forwards it to the destination, and another stream is sent
directly to the destination. At the sending end, the streams are
apparently addressed to completely different hosts, and at the
receiving end, they similarly appear to come from two
different hosts. It is still not impossible for an eavesdropper to
recognise which streams are from the same message, but it
adds to the complexity of doing this.

There can also be a temporal discrepancy in transmission of
the streams, so that one arrives immediately and another is
delayed for many days.

But even in the worse case when an eavesdropper
knowingly and successfully intercepts all fragment streams, a
good NSF implementation will leave them with the problem or
reconstructing the message from the fragment streams. The
eavesdropper has (at least) two major problems:

- they will not know which of the intercepted fragments are
contiguous in the original data (i.e. how to correctly arrange
the fragments);

- they will find that boundaries of individual fragments will
be difficult to detect (i.e. how to identify individual
fragments).

The use of non-symbolic fragmentation means that no
whole symbol should be identifiable from the fragments,
which means that standard frequency analysis attacks and
other heuristic attacks which rely on content understanding are
much less likely to be successful. Of course, it is possible to
perform a spectral analysis based on bit patterns rather than
whole letters, but in general, any attack which relies on
detecting characteristics in the data will be weakened by non-
symbolic fragmentation whose purpose is to destroy any
whole characters present in a data file.

Whole symbols are probably (but not necessarily) present in
any fragment whose size is greater than the smallest base unit
of data used by the communications network or any
participating applications, however a cryptanalyst will

1 Alternatively, see the online citation index at researchindex.com,
searching on “spread spectrum” which results in over 2000 entries on this
topic.

encounter difficulty in detecting at what point in the fragment
the whole symbol occurs (if it does at all).

The most likely forms of attack are going to be:
- intercepting one or some of the streams, but not all

streams
- intercepting all streams
The evaluation takes these possible attacks into account.

IMPLEMENTATION

A. NSF process
The following is one example of an NSF process. There are

many variations possible and these are currently being
implemented and tested too.

This version of the NSF process is a transposition cipher
whose contents are distributed into a number of distinct
fragment streams as described in the first section. While each
individual stream preserves the priority of fragments, there
will be missing fragments from every stream and any
eavesdropper who successfully intercepts the entire set of
streams will be faced with the task of splicing together the
streams correctly. This is dependent upon knowing the secret
key of the fragment sizing algorithm and the secret key of the
stream allocation algorithm. In this implementation, both
algorithms are pseudorandom number generators. However, in
general, the secrecy afforded by the trialled path assignment
mechanisms is far from ideal, and a much better level of
security will arise from disordering the fragments within each
stream. The only advantage of the mechanisms tested is that it
is possible to apply them to stream data.

The NSF process creates variably-sized fragments, between
1 and 7 bits. Fragment sizes are chosen by a pseudorandom
number generator (PRNG) whose seed is the first shared
secret. Each fragment is subsequently assigned to one of n
fragment streams, with the assignment to streams also being
governed by a PRNG whose seed is the second secret key.

Each fragment stream is then transmitted using network or
path diversity techniques to secure its contents. The fragment
sizes are secret, as are the assignment to fragments to streams.

The first secret key makes it possible for the receiver and
sender to generate the same lengths of all of the fragments.
The second secret key enables both parties to reclaim each
fragment from the correct fragment stream.

We have implemented the NSF algorithm with two PRNGs
so far. The first PRNG was Knuth’s and the second was the
standard PRNG available with the C++ library of functions,
and found a small but measurable difference between the two.
This may or may not have been due to the slightly different
path allocation – the first fragmenter used the PRNG to
determine which path to allocate, the second merely cycled
through the available paths. Since neither of these PRNGs is
particularly robust for cryptographic purposes, we are
currently experimenting with the Yarrow PRNG [2].

B. Use within communications
The implementation is being tested as a default setting for

all communications via TCP/IP between participating

machines running Linux RedHat 7.1 or Windows 2000. All
communications programs, ftp, telnet, email, Web software,
operate as normal, the fragmentation process being transparent
to both software and users. The NSF process runs at a lower
level than the application layer so existing communications
software operates in this secure fragmented mode without any
alteration.

The advantage of this is that all communications are passed
through the fragmentation process, regardless of their purpose.
Both participating hosts need to run the fragmentation
software but no other changes should be necessary.

Keys governing the PRNGs for fragment sizing and path
allocation can be exchanged either using handshake protocols
similar to SSL or else a key-exchange protocol like Diffie-
Hellman.

Higher-level implementations are possible, for example a
Web server could supply an embedded fragmenter as a Java
applet in an otherwise unsecured XML page. The fragmented
communications could be established in a similar way as is
done with existing SSL-based communications, with
handshake protocols to establish pseudorandom number
generator seeds (equivalent to session keys). Of course it
would also be possible for SSL-based communications to
directly incorporate fragmentation as an additional security
measure.

EVALUATION
We performed a number of different evaluations, based on
whether some streams but not all had been intercepted – is it

possible to use either signal processing techniques or heuristic
approaches to reconstruct the original data?

Whether all streams had been intercepted – how easy would
it be for an eavesdropper to correctly splice the streams
together to reconstruct the true file.

All of the evaluations here are of uncompressed and non-
encrypted data. This is to give an accurate picture of what
effect the fragmentation process has.

It is of course possible to encrypt the data either before or
after fragmentation as the encryption and fragmentation
operations are functionally orthogonal (i.e. they don’t interfere
with each other). Similarly compression can disguise the
original signal further.

C. Some but not all streams intercepted
1) Signal processing

The primary evaluation performed here was to consider
whether signal processing processes could reconstitute a full
file from the intercepted partial file.

Shannon’s sampling theorem states that given a shortest
wavelength in the original signal, we need to sample at least
twice per smallest period in order to be able to reconstruct the
signal fully.

In a digital signal, the shortest possible wavelength is 2 bits
(for every bit different to its neighbour, hence oscillating).
Any signal comprising in part this shortest wavelength needs 2
samples per wavelength, i.e. 2 samples per 2 bits, which is
essentially the whole signal sampled.

However not all signals (i.e. files) are partly constructed of
2-bit or other very short waves. For signals with no such very
short wavelengths, it would be possible that half or less of the
original bits would suffice to recreate the original signal. That
is, if the fragments are transmitted in two equal-sized streams,
it may be possible to reconstruct the original signal.

This should not work in the NSF process for two reasons:
1) lack of data (in most cases) – each transmission can be

analysed to determine its shortest wavelength. This in turn
determines a minimum number of paths required over which
the signal should be broken up. For example, for 2 or 3-bit
shortest wavelengths, 2 paths is enough.

However other constraints make it desirable to allow an
uneven allocation of fragments to paths, so that some paths
could be much larger than others. For example, an employee
working from a hotel room while travelling may send most
data through a fast Internet link but some data through a
slower mobile phone link. Again, an analysis of the shortest
wavelength of transmissions can determine what maximum
proportion of a transmission can be sent securely through any
single link.

2) random sampling – the random nature of the “sampling”,
i.e. the path allocation and fragment sizing, means that
Shannon’s sampling theory does not apply. The sampling
theorem assumes that samples are taken at regular (i.e.
predictable) intervals, and hence the set of sine waves that
comprise the signal can be reconstructed via interpolation.
However, if the intervals of the samples changes, the positions
of the samples on the time axis are not known and it is
impossible to interpolate to reconstruct the set of sine waves.

This latter observation demonstrates the critical nature of
the pseudorandom fragment sizing and path allocation. Any
partial file intercepted will consist of randomly-sized
fragments from random parts of the original file. While
individual fragments may contain small amounts of coherent
samples, this is not enough to reconstruct the entire file.

2) Heuristic attacks

We have considered but not yet evaluated the case where
heuristic attack may assist in the reconstruction of part of the
signal. This is maximised if there is a relatively even spread of
missing fragments within a partial file. It relies on some
knowledge about the file type (which is easy enough to
determine, see the next section). For example, if a file is an
email, the predominant symbols will be the 80 or so keyboard
characters.

Fragments will begin and/or end partway through a symbol.
If the normal range of symbols is known or can be guessed,
the remainder of fragment ends can be extended to include
guessed values for the symbols containing the fragment end.

Additionally knowing the file type can help reconstruct at
least some parts of the file, especially if the file contains
regularly-spaced markers (as does MPEG) or fixed-format
headers (as do emails). With enough information, especially
about positions of fragments, it would be possible to
reconstruct the signal by signal processing means.

D. All streams intercepted
In this latter case, we assume that all the partial messages

have been intercepted and that the only remaining problem is
to put them back together so as to create the original message.

As described in the previous section, the sampling theory
does not work because of the random sampling. However
there are other characteristics that may be exploited to
reconstruct the transmission, especially if all parts of the
transmission are intercepted.

We experimented with the spectral analyses of fragmented
files. The experiments described here were intended to
measure what characteristics remained in the data.

It should be emphasised that a major part of the protection
afforded by the non-symbolic diversity cipher was intended
originally to come from the diffusion of the paths, so that no
eavesdropper can intercept all parts, and from the random
sampling which prevents interpolation.

However the fragmentation process itself introduces
benefits that have comparable effects to those of strong secret-
key ciphers. NSF introduces a substantial measure of
“randomness” so that even if all parts of the transmission were
intercepted, characteristics in the data were suppressed and
illicit recovery hindered.

While we were not intending to make NSF processes more
“random” than secret-key ciphers, they do manifest this
randomising effect and it will be one goal in future work to
discover the maximum randomising effect possible with this
form of transposition.

1) n-gram spectral analyses
This process is the n-gram spectral analysis, or NSA, which

simply counts the frequency of each possible bit string. It
tables all possible n-grams within the data, for example when
counting 3-grams, the first three bits were checked, then the
2nd to 4th bits, then the 3rd to 5th bits and so on. It generates a
table of relative frequencies of bit strings, including zero
counts. The closer an n-gram spectral analysis appears to a
constant function where the constant is the data’s mean, the
closer the data is to random. In random data, every bit string
would be equally likely and would occur around the same
number of times.

NSA is similar in principle to counting characters and
character n-grams as is done with frequency analysis of stream
ciphers. However it differs in that it operates on the bit level, a
modification which was necessary because of the non-
symbolic fragmentation.

2) Results

a) Different fragmentation and path allocation policies
The first thing we noted is that the two different fragmented

files for each file (generated by different PRNGs) seemed to
be virtually identical. This initially suggests that the choice of
PRNG used to determine fragment sizes does not make much
of a difference, but we intend to reserve judgement until we
have performed the same tests over fragmentation with
different PRNGs, in particular, an industrial-strength one such
as Yarrow.

One counterintuitive result was that the two different

fragmentation algorithms did not show a difference due to
their path allocation. The second variant did not use a PRNG
to assign fragments to a stream but instead cycled through the
available paths. Hence the PRNG variant would have a one in
three chance that any two fragments adjacent in the plaintext
would also be adjacent in the fragmented file. We expected
that this would imply a smaller randomising effect in the first
variant but the results did not bear this out. The difference in
relative standard deviation between the two was nominal,
usually less than a few percent and in some cases the cyclic
variant showed the larger relative standard deviation.

This suggests that it should be reasonably safe to use a
PRNG to determine fragment assignment to files despite the
one-in-n chance of adjacency for allocation to n paths, and that
it would not make it any easier to reconstruct intercepted data
into the original. On the other hand, cycling through the
available paths more effectively balances the load between
paths as well as not requiring a secret key to seed the PRNG,
but gives the attacker an easier job in reconstructing the
original file from fragments.

b) Randomising effect
We also found that the fragmentation had a “flattening”

effect on the n-gram spectra. While we had expected some
distortion of the bit strings due to the sub-symbolic
fragmentation breaking up whole symbols, but a quite strong
randomising effect emerged as a beneficial side effect.

In the plaintext files there had been a wide variation in the
counts for individual n-grams, but the fragmented data
featured a much smaller variation of counts. Since truly
random data would have an NSA approaching a constant
graph centred around the data’s mean, this tendency of NSF
files toward the horizontal demonstrates that they are less
“featured” than plaintext files, i.e. that fragmentation
introduces a measure of “randomness”.

The mean value for files was essentially the same before
and after fragmentation, as would be expected for a
transposition-style cipher (since the number of 0s and 1s
remains the same). However the relative standard deviation of
post-fragmentation files was reduced by wildly varying
amounts up to 75% of the pre-fragmentation standard
deviation.

We noted that the reduction in relative standard deviation
was increased for the larger n-grams, so that the randomising
effect was most apparent for large n-grams, although it was
not trivial for smaller n-grams (e.g. 5-grams still saw a
reduction of RSDs to no more than 92% of the non-
fragmented RSD).

Despite the “randomising” effect, features in the plaintext
spectra are not obliterated totally, but are reduced. This means
that the most frequently-occurring n-grams often remain the
most frequently-occurring in proportion to other n-grams.

Also we noted that the two different fragmentation
algorithms gave generally very similar peaks and troughs in
the count, but a few troughs were deeper and some peaks
higher, suggesting that the fragmentation algorithms manifest
some superficially different results.

In general, while some peaks and troughs disappeared from
the fragmented data, the overall general shape is roughly the
same but with the detail being suppressed.

The preservation of peaks and troughs is most visible for
small values of n. This is to be expected since the smaller n-
grams are more likely to coincide with whole fragments from
the original data. For example, a 5-gram spectrum will find
every fragment of size 5 or above that is preserved from the
original data (i.e. where fragment boundaries have not broken
the contiguity of the data from the original), which will be
slightly less than half of all such fragments. In contrast, a
noticeable drop in the relative standard deviation occurs as n-
grams become larger, sometimes by as much as 80% of the
original standard deviation.

It is possible that this preservation of a file’s n-gram profile
at lower values of n could assist in determining the type of
file, if not the actual file’s contents. However, a way to alter
the profile of the data would be to splice it with another type
of data so that the resulting n-gram spectrum would be
corrupted – this is called chaffing [5]. Another alternative we
are currently trialling is to flip bits on selected fragments.

E. Discussion
This evaluation has concentrated on showing the technical

strength of the technology, rather than showing an application
of the technology in a specific Web situation. The reason for
this is that the technology has a broad range of possible uses
which are not limited to any one Web application but which
can benefit a whole range of applications. The positioning of
the current implementation at the communications layer rather
than at the application level demonstrates this.

However, some real-world implementations of the
technology require it to operate at the application level.
Setting up fragmentation processes at lower levels secures all
transmissions, whether needed or not, and requires some
investment into installation, maintenance and operation of the
software.

The alternative of embedding fragmentation software into
mobile code such as Java applets in XML pages. This would
be much easier to implement, as it could be controlled by the
server, could even be enabled with little or no browser
modification (depending on how well and how fast it ought to
work). This option also has the benefit of being highly visible
to the user2.

In summary, this approach to securing transmissions can be
seen as an alternative or an additional security measure for
transactions of varying levels of secrecy.

RELATED WORK
The main aspect of this work is the use of non-symbolic

fragmentation to break up the original data. This must then be
used with network diversity, fragment disordering or some
other means of removing the adjacency of fragments such as
chaffing.

2 Unless the user turns off the warning messages informing them, which is
a good HCI decision but a terrible security decision as it never differentiates
between secured and unsecured transmissions.

Network diversity, as discussed in the second section, is in
common use for many purposes, including security of
transmissions and will not be further discussed here.

Fragment disordering is essentially the same as
transposition of fragments, making this implementation of
NSF one sort of transposition cipher, another very common
encryption mechanism.

However, the use of non-symbolic fragmentation brings a
new aspect to these existing mechanisms, and forms the basis
of the work.

Breaking data into packages of a given size is normal with
digital transmissions, for example, TCP/IP data is broken into
“packets”. Breaking data into normal TCP/IP packets is what
is done in [6], packets being transmitted as usual over a
TCP/IP network, but using a form of network diversity
combined with renaming of packets based on a secret-keyed
algorithm for its security.

One similar cipher to NSF breaks up data into blocks which
are “complete or fractional TV lines”, the contents of blocks
reversed and individual blocks sent out at randomly-delayed
intervals. However, there appears to be no deliberate variation
in block size nor any secret method governing how the block
size is chosen, as is the case with NSF, with the security of the
algorithm here being dependent upon the introduction of
random delay [7].

A similar delay-based tactic is used in [8] where messages
are broken into “elements” with an element being a section of
a signal as determined by time, the elements are those parts of
the message in between time interval markers. For example, a
message could be broken into one-second elements. Every
second element is delayed by an amount of time determined
by the time of the interval (e.g. a multiple of one second)
while remaining elements are transmitted with no delay.
Elements are of fixed size, determined by time, and there is a
disordering of elements which is governed by a shared secret.
However there is no variation of element size and no
suggestion that the element size is governed by a need to
disguise base symbols in the underlying data.

One technology breaks up data into what might be called
sub-symbolic fragments [9]. However these are not
intentionally sub-symbolic, nor fragments, because the data is
broken strictly into individual bits. Additionally there is a
specific means for allocating bits to paths for separate
transmission in a network diversity fashion, with the bits being
allocated through a cycling of paths through the available
options. NSF does not preclude this option although we prefer
the variable path allocation as is makes illicit recovery of the
message more difficult.

This latter algorithm is also likely to be relatively easy to
decipher with incomplete information (and in particular with
complete information should all paths be intercepted). The
strict bitwise sizing of “fragments” means that it would be
feasible to partially or wholly reconstruct the original signal
from one or some of any intercepted transmissions, merely by
using standard signal processing techniques as described
above. This is one of the reasons NSF uses variable fragment
sizing.

The most apparently similar work is from Adobe [10] which
combines fragmentation with chaffing. Data is fragmented and
each fragment put into an output unit of arbitrary size which is
strictly larger than the input fragment, then filling up the rest
of the output unit with junk or alternative materials. One
option is even to take “chaff” from the tail end of the data to
be transmitted. All output units are channelled into a single
path for transmission. Essentially this is padding data at
arbitrary intervals with arbitrary amounts of chaff. The
fragments are not disordered at all, nor is any network
diversity used, the adjacency of fragments being removed by
the chaff.

Addition of chaff incurs a sizeable transmission overhead as
it will be necessary to add a large enough proportion of it to
disguise the true nature of the data being transmitted,
especially since the true data is present in its entirety and in
the correct order within the transmission. As discussed under
the n-gram spectral analyses, it is possible to detect some
characteristics of the data after fragmentation, and while
chaffing may reduce this, depending on the proportion of
chaff, taking materials from the tail end of the file will not.

REFERENCES
[1] All.net, 2000. CID Security Database,

http://www.all.net/CID/Defense/Defense69.html (on path diversity) and
http://www.all.net/CID/Defense/Defense68.html (on spread spectrum)

[2] Counterpane Internet Security, 2001, Yarrow: A secure pseudorandom
number generator, http://www.counterpane.com/yarrow.html

[3] Ashman, H. and Gilbert, M., And now for something completely
different: looking ahead to new encryption and secrecy protocols.
Proceedings of Communications Design Conference, October 2001.

[4] M. Kowatsch. B.O. Eichinger and F.J. Seifert, 1985, Message protection
by spread spectrum modulation in a packet voice radio link, Proceedings
of Eurocrypt ’85, pp 273-277.

[5] Rivest, R., 1998, Chaffing and Winnowing: Confidentiality without
Encryption, theory.lcs.mit.edu/~rivest/chaffing.txt

[6] Shiroshita, T. and Yokosukashi, K., 1996, Communication method and
system with packet scrambling, European patent 0779727A2.

[7] Bar-Zohar, M., 1986, Video Scrambler System, United States Patent
Number 4575754.

[8] Guanella, G., 1976, Method and device for the coded transmission of
messages, United States Patent 3970790.

[9] Kiichiro, I., 1987, Packet transfer method, Japanese Patent number
62195949.

[10] Amerige, S. 2000, Secure data encoder and decoder, International
Patent number WO 00/01111.

