
 

  

Abstract--This paper reports on the use of non-symbolic 
fragmentation of data for securing communications. Non-
symbolic fragmentation, or NSF, relies on breaking up data into 
non-symbolic fragments, which are (usually irregularly-sized) 
chunks whose boundaries do not necessarily coincide with the 
boundaries of the symbols making up the data. For example, 
ASCII data is broken up into fragments which may include 8-bit 
fragments but also include many other sized fragments. 
Fragments are then separated with a form of path diversity. The 
secrecy of the transmission relies on the secrecy of one or more of 
a number of things: the ordering of the fragments, the sizes of the 
fragments, and the use of path diversity. Once NSF is in place, it 
can help secure many forms of communication, and is useful for 
exchanging sensitive information, and for commercial 
transactions. A sample implementation is described with an 
evaluation of the technology. 
 

INTRODUCTION 

Low customer confidence in the security and privacy of 
Web-based transactions is hindering the development of e-
commerce. Internet-based fraud is a high-profile crime that 
receives much attention from the media, and creates an 
atmosphere of distrust of the new technology. 

Non-symbolic fragmentation offers an additional way of 
securing transactions that can work either in conjunction with 
or independently of existing security mechanisms, including 
encryption. It has two primary characteristics – it firstly breaks 
up data into a set of partial files, with no recognisable 
characters in any place, and secondly that those partial files 
are transmitted in different ways, over different networks, at 
different times. The likelihood of a criminal being able to 
intercept all the information needed to retrieve a hidden 
message is much reduced, and they face the additional 
difficulty of reorganising the fragments into their correct 
positions to form the original message. 

Similar principles are already in use in commercial 
transactions with sites such as amazon.co.uk offering the 
option of transmitting part of a credit card number via 
telephone and part via the Internet. Non-symbolic 
fragmentation extends this principle, as well as implementing 
what is essentially a bit-level transposition cipher that destroys 
symbol integrity. Separate transmission of parts of the 
message mean that signal processing techniques cannot be  
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used to recreate the file. 
Used in conjunction with encryption, non-symbolic 

fragmentation provides additional industrial-strength security 
mechanisms that should enhance not just the security of 
commercial transactions, but the perception of the security of 
transactions. 

The next section describes the principles of non-symbolic 
fragmentation, and the implementation of a fragmentation 
process is in the following section. The next section describes 
the evaluations of the process and its security and the final 
section discusses related work. 

NON-SYMBOLIC FRAGMENTATION 
Non-symbolic fragmentation (NSF) is a means for 

processing data prior to transmission or storage in a way that 
a) makes it hard for any eavesdropper to intercept all parts of 
the transmission and b) even if in possession of all parts of the 
transmission, makes it very difficult to splice the parts 
together correctly to reconstitute the original. 

The fragmentation process is essentially the breaking up of 
a transmission into small fragments and then ensuring that 
fragments are disordered in some way. NSF creates fragments 
whose sizes are usually different to the base symbol size, and 
the subsequent separation of these fragments so that fragments 
which were adjacent in the original file are (usually) not 
adjacent in the fragment streams. 

Fragments are non-symbolic, i.e. the length of fragments is 
not usually the same as the length of the base symbol of the 
data. For example an email in 8-bit ASCII could be 
fragmented into bit strings between 1 and 14 bits in length, or 
a Unicode file could be fragmented into bit strings between 1 
and 30 bits. This work to date has relied on the purely sub-
symbolic fragments (e.g. for ASCII between 1 and 7 bit 
fragments) where no fragment contains an entire ASCII 
symbol.  

By varying the size of fragments according to a secret key 
shared by the sender and receiver, a cryptanalyst ought not 
know even where the boundaries of any individual fragment 
occur. Varying fragment sizes also means that known-
plaintext attacks are made greatly more difficult, while brute-
force attacks are greatly increased in complexity. 

In the implementation reported in this paper, we have 
dispersed fragments across a number of streams so that 
fragments adjacent in the plaintext are no longer (necessarily) 
adjacent in the fragmented data streams. The choice of which 
stream to allocate a given fragment was either cyclic, or 
governed by a shared secret key. 

The fragment streams themselves are then transmitted 
individually, preferably with some form of network or path 
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diversity. This involves sending fragment streams over 
different paths in a network or over different networks, 
making it harder to intercept the entire fragment set. Path 
diversity is also known as spread spectrum (see for example 
[1] or [4]1).  

It is still possible that all streams could be intercepted, for 
example when the eavesdropper is able to intercept all 
transmissions going into or out of a firewall host. One possible 
solution is the aliasing of receiving and sending hosts. Each 
sending and receiving host has a number of different IP 
addresses (possibly dynamically allocated) and each stream 
would be sent using a different name for that host. This makes 
it more difficult for an eavesdropper to recognise what 
transmissions are parts of the same message, as the sending 
and receiving host machines appear to be different for each 
fragment stream [3].  

Rerouting from trusted intermediate machines can further 
disguise the destination and origin hosts. For example, one 
stream is sent to an intermediate host which subsequently 
forwards it to the destination, and another stream is sent 
directly to the destination. At the sending end, the streams are 
apparently addressed to completely different hosts, and at the 
receiving end, they similarly appear to come from two 
different hosts. It is still not impossible for an eavesdropper to 
recognise which streams are from the same message, but it 
adds to the complexity of doing this. 

There can also be a temporal discrepancy in transmission of 
the streams, so that one arrives immediately and another is 
delayed for many days. 

But even in the worse case when an eavesdropper 
knowingly and successfully intercepts all fragment streams, a 
good NSF implementation will leave them with the problem or 
reconstructing the message from the fragment streams. The 
eavesdropper has (at least) two major problems: 

- they will not know which of the intercepted fragments are 
contiguous in the original data (i.e. how to correctly arrange 
the fragments); 

- they will find that boundaries of individual fragments will 
be difficult to detect (i.e. how to identify individual 
fragments). 

The use of non-symbolic fragmentation means that no 
whole symbol should be identifiable from the fragments, 
which means that standard frequency analysis attacks and 
other heuristic attacks which rely on content understanding are 
much less likely to be successful. Of course, it is possible to 
perform a spectral analysis based on bit patterns rather than 
whole letters, but in general, any attack which relies on 
detecting characteristics in the data will be weakened by non-
symbolic fragmentation whose purpose is to destroy any 
whole characters present in a data file. 

Whole symbols are probably (but not necessarily) present in 
any fragment whose size is greater than the smallest base unit 
of data used by the communications network or any 
participating applications, however a cryptanalyst will 
 

1 Alternatively, see the online citation index at researchindex.com, 
searching on “spread spectrum” which results in over 2000 entries on this 
topic. 

encounter difficulty in detecting at what point in the fragment 
the whole symbol occurs (if it does at all). 

The most likely forms of attack are going to be: 
- intercepting one or some of the streams, but not all 

streams 
- intercepting all streams 
The evaluation takes these possible attacks into account. 

IMPLEMENTATION 

A. NSF process 
The following is one example of an NSF process. There are 

many variations possible and these are currently being 
implemented and tested too. 

This version of the NSF process is a transposition cipher 
whose contents are distributed into a number of distinct 
fragment streams as described in the first section. While each 
individual stream preserves the priority of fragments, there 
will be missing fragments from every stream and any 
eavesdropper who successfully intercepts the entire set of 
streams will be faced with the task of splicing together the 
streams correctly. This is dependent upon knowing the secret 
key of the fragment sizing algorithm and the secret key of the 
stream allocation algorithm. In this implementation, both 
algorithms are pseudorandom number generators. However, in 
general, the secrecy afforded by the trialled path assignment 
mechanisms is far from ideal, and a much better level of 
security will arise from disordering the fragments within each 
stream. The only advantage of the mechanisms tested is that it 
is possible to apply them to stream data. 

The NSF process creates variably-sized fragments, between 
1 and 7 bits. Fragment sizes are chosen by a pseudorandom 
number generator (PRNG) whose seed is the first shared 
secret. Each fragment is subsequently assigned to one of n 
fragment streams, with the assignment to streams also being 
governed by a PRNG whose seed is the second secret key.  

Each fragment stream is then transmitted using network or 
path diversity techniques to secure its contents. The fragment 
sizes are secret, as are the assignment to fragments to streams.  

The first secret key makes it possible for the receiver and 
sender to generate the same lengths of all of the fragments. 
The second secret key enables both parties to reclaim each 
fragment from the correct fragment stream. 

We have implemented the NSF algorithm with two PRNGs 
so far. The first PRNG was Knuth’s and the second was the 
standard PRNG available with the C++ library of functions, 
and found a small but measurable difference between the two. 
This may or may not have been due to the slightly different 
path allocation – the first fragmenter used the PRNG to 
determine which path to allocate, the second merely cycled 
through the available paths. Since neither of these PRNGs is 
particularly robust for cryptographic purposes, we are 
currently experimenting with the Yarrow PRNG [2]. 

B. Use within communications 
The implementation is being tested as a default setting for 

all communications via TCP/IP between participating 



 

machines running Linux RedHat 7.1 or Windows 2000. All 
communications programs, ftp, telnet, email, Web software, 
operate as normal, the fragmentation process being transparent 
to both software and users. The NSF process runs at a lower 
level than the application layer so existing communications 
software operates in this secure fragmented mode without any 
alteration. 

The advantage of this is that all communications are passed 
through the fragmentation process, regardless of their purpose. 
Both participating hosts need to run the fragmentation 
software but no other changes should be necessary. 

Keys governing the PRNGs for fragment sizing and path 
allocation can be exchanged either using handshake protocols 
similar to SSL or else a key-exchange protocol like Diffie-
Hellman. 

Higher-level implementations are possible, for example a 
Web server could supply an embedded fragmenter as a Java 
applet in an otherwise unsecured XML page. The fragmented 
communications could be established in a similar way as is 
done with existing SSL-based communications, with 
handshake protocols to establish pseudorandom number 
generator seeds (equivalent to session keys). Of course it 
would also be possible for SSL-based communications to 
directly incorporate fragmentation as an additional security 
measure.  

EVALUATION 
We performed a number of different evaluations, based on  
whether some streams but not all had been intercepted – is it 

possible to use either signal processing techniques or heuristic 
approaches to reconstruct the original data? 

Whether all streams had been intercepted – how easy would 
it be for an eavesdropper to correctly splice the streams 
together to reconstruct the true file. 

All of the evaluations here are of uncompressed and non-
encrypted data. This is to give an accurate picture of what 
effect the fragmentation process has. 

It is of course possible to encrypt the data either before or 
after fragmentation as the encryption and fragmentation 
operations are functionally orthogonal (i.e. they don’t interfere 
with each other). Similarly compression can disguise the 
original signal further.  

C. Some but not all streams intercepted 
1) Signal processing 

The primary evaluation performed here was to consider 
whether signal processing processes could reconstitute a full 
file from the intercepted partial file. 

Shannon’s sampling theorem states that given a shortest 
wavelength in the original signal, we need to sample at least 
twice per smallest period in order to be able to reconstruct the 
signal fully. 

In a digital signal, the shortest possible wavelength is 2 bits 
(for every bit different to its neighbour, hence oscillating). 
Any signal comprising in part this shortest wavelength needs 2 
samples per wavelength, i.e. 2 samples per 2 bits, which is 
essentially the whole signal sampled. 

However not all signals (i.e. files) are partly constructed of 
2-bit or other very short waves. For signals with no such very 
short wavelengths, it would be possible that half or less of the 
original bits would suffice to recreate the original signal. That 
is, if the fragments are transmitted in two equal-sized streams, 
it may be possible to reconstruct the original signal. 

This should not work in the NSF process for two reasons: 
1) lack of data (in most cases) – each transmission can be 

analysed to determine its shortest wavelength. This in turn 
determines a minimum number of paths required over which 
the signal should be broken up. For example, for 2 or 3-bit 
shortest wavelengths, 2 paths is enough. 

However other constraints make it desirable to allow an 
uneven allocation of fragments to paths, so that some paths 
could be much larger than others. For example, an employee 
working from a hotel room while travelling may send most 
data through a fast Internet link but some data through a 
slower mobile phone link. Again, an analysis of the shortest 
wavelength of transmissions can determine what maximum 
proportion of a transmission can be sent securely through any 
single link. 

2) random sampling – the random nature of the “sampling”, 
i.e. the path allocation and fragment sizing, means that 
Shannon’s sampling theory does not apply. The sampling 
theorem assumes that samples are taken at regular (i.e. 
predictable) intervals, and hence the set of sine waves that 
comprise the signal can be reconstructed via interpolation. 
However, if the intervals of the samples changes, the positions 
of the samples on the time axis are not known and it is 
impossible to interpolate to reconstruct the set of sine waves. 

This latter observation demonstrates the critical nature of 
the pseudorandom fragment sizing and path allocation. Any 
partial file intercepted will consist of randomly-sized 
fragments from random parts of the original file. While 
individual fragments may contain small amounts of coherent 
samples, this is not enough to reconstruct the entire file. 

 
2) Heuristic attacks 

We have considered but not yet evaluated the case where 
heuristic attack may assist in the reconstruction of part of the 
signal. This is maximised if there is a relatively even spread of 
missing fragments within a partial file. It relies on some 
knowledge about the file type (which is easy enough to 
determine, see the next section). For example, if a file is an 
email, the predominant symbols will be the 80 or so keyboard 
characters.  

Fragments will begin and/or end partway through a symbol. 
If the normal range of symbols is known or can be guessed, 
the remainder of fragment ends can be extended to include 
guessed values for the symbols containing the fragment end. 

Additionally knowing the file type can help reconstruct at 
least some parts of the file, especially if the file contains 
regularly-spaced markers (as does MPEG) or fixed-format 
headers (as do emails). With enough information, especially 
about positions of fragments, it would be possible to 
reconstruct the signal by signal processing means.  



 

D. All streams intercepted 
In this latter case, we assume that all the partial messages 

have been intercepted and that the only remaining problem is 
to put them back together so as to create the original message.  

As described in the previous section, the sampling theory 
does not work because of the random sampling. However 
there are other characteristics that may be exploited to 
reconstruct the transmission, especially if all parts of the 
transmission are intercepted. 

We experimented with the spectral analyses of fragmented 
files. The experiments described here were intended to 
measure what characteristics remained in the data. 

It should be emphasised that a major part of the protection 
afforded by the non-symbolic diversity cipher was intended 
originally to come from the diffusion of the paths, so that no 
eavesdropper can intercept all parts, and from the random 
sampling which prevents interpolation. 

However the fragmentation process itself introduces 
benefits that have comparable effects to those of strong secret-
key ciphers. NSF introduces a substantial measure of 
“randomness” so that even if all parts of the transmission were 
intercepted, characteristics in the data were suppressed and 
illicit recovery hindered. 

While we were not intending to make NSF processes more 
“random” than secret-key ciphers, they do manifest this 
randomising effect and it will be one goal in future work to 
discover the maximum randomising effect possible with this 
form of transposition.  

1) n-gram spectral analyses 
This process is the n-gram spectral analysis, or NSA, which 

simply counts the frequency of each possible bit string. It 
tables all possible n-grams within the data, for example when 
counting 3-grams, the first three bits were checked, then the 
2nd to 4th bits, then the 3rd to 5th bits and so on. It generates a 
table of relative frequencies of bit strings, including zero 
counts. The closer an n-gram spectral analysis appears to a 
constant function where the constant is the data’s mean, the 
closer the data is to random. In random data, every bit string 
would be equally likely and would occur around the same 
number of times. 

NSA is similar in principle to counting characters and 
character n-grams as is done with frequency analysis of stream 
ciphers. However it differs in that it operates on the bit level, a 
modification which was necessary because of the non-
symbolic fragmentation. 

2) Results  

a) Different fragmentation and path allocation policies 
The first thing we noted is that the two different fragmented 

files for each file (generated by different PRNGs) seemed to 
be virtually identical. This initially suggests that the choice of 
PRNG used to determine fragment sizes does not make much 
of a difference, but we intend to reserve judgement until we 
have performed the same tests over fragmentation with 
different PRNGs, in particular, an industrial-strength one such 
as Yarrow. 

One counterintuitive result was that the two different 

fragmentation algorithms did not show a difference due to 
their path allocation. The second variant did not use a PRNG 
to assign fragments to a stream but instead cycled through the 
available paths. Hence the PRNG variant would have a one in 
three chance that any two fragments adjacent in the plaintext 
would also be adjacent in the fragmented file. We expected 
that this would imply a smaller randomising effect in the first 
variant but the results did not bear this out. The difference in 
relative standard deviation between the two was nominal, 
usually less than a few percent and in some cases the cyclic 
variant showed the larger relative standard deviation.  

This suggests that it should be reasonably safe to use a 
PRNG to determine fragment assignment to files despite the 
one-in-n chance of adjacency for allocation to n paths, and that 
it would not make it any easier to reconstruct intercepted data 
into the original. On the other hand, cycling through the 
available paths more effectively balances the load between 
paths as well as not requiring a secret key to seed the PRNG, 
but gives the attacker an easier job in reconstructing the 
original file from fragments. 

b) Randomising effect 
We also found that the fragmentation had a “flattening” 

effect on the n-gram spectra. While we had expected some 
distortion of the bit strings due to the sub-symbolic 
fragmentation breaking up whole symbols, but a quite strong 
randomising effect emerged as a beneficial side effect. 

In the plaintext files there had been a wide variation in the 
counts for individual n-grams, but the fragmented data 
featured a much smaller variation of counts. Since truly 
random data would have an NSA approaching a constant 
graph centred around the data’s mean, this tendency of NSF 
files toward the horizontal demonstrates that they are less 
“featured” than plaintext files, i.e. that fragmentation 
introduces a measure of “randomness”. 

The mean value for files was essentially the same before 
and after fragmentation, as would be expected for a 
transposition-style cipher (since the number of 0s and 1s 
remains the same). However the relative standard deviation of 
post-fragmentation files was reduced by wildly varying 
amounts up to 75% of the pre-fragmentation standard 
deviation. 

We noted that the reduction in relative standard deviation 
was increased for the larger n-grams, so that the randomising 
effect was most apparent for large n-grams, although it was 
not trivial for smaller n-grams (e.g. 5-grams still saw a 
reduction of RSDs to no more than 92% of the non-
fragmented RSD). 

Despite the “randomising” effect, features in the plaintext 
spectra are not obliterated totally, but are reduced. This means 
that the most frequently-occurring n-grams often remain the 
most frequently-occurring in proportion to other n-grams. 

Also we noted that the two different fragmentation 
algorithms gave generally very similar peaks and troughs in 
the count, but a few troughs were deeper and some peaks 
higher, suggesting that the fragmentation algorithms manifest 
some superficially different results. 



 

In general, while some peaks and troughs disappeared from 
the fragmented data, the overall general shape is roughly the 
same but with the detail being suppressed. 

The preservation of peaks and troughs is most visible for 
small values of n. This is to be expected since the smaller n-
grams are more likely to coincide with whole fragments from 
the original data. For example, a 5-gram spectrum will find 
every fragment of size 5 or above that is preserved from the 
original data (i.e. where fragment boundaries have not broken 
the contiguity of the data from the original), which will be 
slightly less than half of all such fragments. In contrast, a 
noticeable drop in the relative standard deviation occurs as n-
grams become larger, sometimes by as much as 80% of the 
original standard deviation. 

It is possible that this preservation of a file’s n-gram profile 
at lower values of n could assist in determining the type of 
file, if not the actual file’s contents. However, a way to alter 
the profile of the data would be to splice it with another type 
of data so that the resulting n-gram spectrum would be 
corrupted – this is called chaffing [5]. Another alternative we 
are currently trialling is to flip bits on selected fragments.  

E. Discussion 
This evaluation has concentrated on showing the technical 

strength of the technology, rather than showing an application 
of the technology in a specific Web situation. The reason for 
this is that the technology has a broad range of possible uses 
which are not limited to any one Web application but which 
can benefit a whole range of applications. The positioning of 
the current implementation at the communications layer rather 
than at the application level demonstrates this. 

However, some real-world implementations of the 
technology require it to operate at the application level. 
Setting up fragmentation processes at lower levels secures all 
transmissions, whether needed or not, and requires some 
investment into installation, maintenance and operation of the 
software.  

The alternative of embedding fragmentation software into 
mobile code such as Java applets in XML pages. This would 
be much easier to implement, as it could be controlled by the 
server, could even be enabled with little or no browser 
modification (depending on how well and how fast it ought to 
work). This option also has the benefit of being highly visible 
to the user2.  

In summary, this approach to securing transmissions can be 
seen as an alternative or an additional security measure for 
transactions of varying levels of secrecy. 

RELATED WORK 
The main aspect of this work is the use of non-symbolic 

fragmentation to break up the original data. This must then be 
used with network diversity, fragment disordering or some 
other means of removing the adjacency of fragments such as 
chaffing. 
 

2 Unless the user turns off the warning messages informing them, which is 
a good HCI decision but a terrible security decision as it never differentiates 
between secured and unsecured transmissions. 

Network diversity, as discussed in the second section, is in 
common use for many purposes, including security of 
transmissions and will not be further discussed here. 

Fragment disordering is essentially the same as 
transposition of fragments, making this implementation of 
NSF one sort of transposition cipher, another very common 
encryption mechanism. 

However, the use of non-symbolic fragmentation brings a 
new aspect to these existing mechanisms, and forms the basis 
of the work. 

Breaking data into packages of a given size is normal with 
digital transmissions, for example, TCP/IP data is broken  into 
“packets”. Breaking data into normal TCP/IP packets is what 
is done in [6], packets being transmitted as usual over a 
TCP/IP network, but using a form of network diversity 
combined with renaming of packets based on a secret-keyed 
algorithm for its security. 

One similar cipher to NSF breaks up data into blocks which 
are “complete or fractional TV lines”, the contents of blocks 
reversed and individual blocks sent out at randomly-delayed 
intervals. However, there appears to be no deliberate variation 
in block size nor any secret method governing how the block 
size is chosen, as is the case with NSF, with the security of the 
algorithm here being dependent upon the introduction of 
random delay [7]. 

A similar delay-based tactic is used in  [8] where messages 
are broken into “elements” with an element being a section of 
a signal as determined by time, the elements are those parts of 
the message in between time interval markers. For example, a 
message could be broken into one-second elements. Every 
second element is delayed by an amount of time determined 
by the time of the interval (e.g. a multiple of one second) 
while remaining elements are transmitted with no delay. 
Elements are of fixed size, determined by time, and there is a 
disordering of elements which is governed by a shared secret. 
However there is no variation of element size and no 
suggestion that the element size is governed by a need to 
disguise base symbols in the underlying data. 

One technology breaks up data into what might be called 
sub-symbolic fragments [9]. However these are not 
intentionally sub-symbolic, nor fragments, because the data is 
broken strictly into individual bits. Additionally there is a 
specific means for allocating bits to paths for separate 
transmission in a network diversity fashion, with the bits being 
allocated through a cycling of paths through the available 
options. NSF does not preclude this option although we prefer 
the variable path allocation as is makes illicit recovery of the 
message more difficult. 

This latter algorithm is also likely to be relatively easy to 
decipher with incomplete information (and in particular with 
complete information should all paths be intercepted). The 
strict bitwise sizing of “fragments” means that it would be 
feasible to partially or wholly reconstruct the original signal 
from one or some of any intercepted transmissions, merely by 
using standard signal processing techniques as described 
above. This is one of the reasons NSF uses variable fragment 
sizing. 



 

The most apparently similar work is from Adobe [10] which 
combines fragmentation with chaffing. Data is fragmented and 
each fragment put into an output unit of arbitrary size which is 
strictly larger than the input fragment, then filling up the rest 
of the output unit with junk or alternative materials. One 
option is even to take “chaff” from the tail end of the data to 
be transmitted. All output units are channelled into a single 
path for transmission. Essentially this is padding data at 
arbitrary intervals with arbitrary amounts of chaff. The 
fragments are not disordered at all, nor is any network 
diversity used, the adjacency of fragments being removed by 
the chaff. 

Addition of chaff incurs a sizeable transmission overhead as 
it will be necessary to add a large enough proportion of it to 
disguise the true nature of the data being transmitted, 
especially since the true data is present in its entirety and in 
the correct order within the transmission. As discussed under 
the n-gram spectral analyses, it is possible to detect some 
characteristics of the data after fragmentation, and while 
chaffing may reduce this, depending on the proportion of 
chaff, taking materials from the tail end of the file will not. 
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