
Humans are unique among living primates in that they are
habitually bipedal. Other great apes walk bipedally on occasion
(Alexander, 1991) but more often practice pronograde (African
apes; Doran, 1996) or orthograde (orang-utan; Crompton et al.,
in press) forms of ‘quadrupedal’ locomotion). A switch from
facultative bipedalism to habitual bipedalism thus appears to
have occurred either very rapidly and during the last 6 million
years (the common ancestor of humans and chimpanzees
probably lived over 6 million years ago; Senut et al., 2001), or
as part of a much more gradual process over the last 23 million
years since the first appearance of the hominoids at the
beginning of the Miocene (Martin, 1990), with bipedalism
becoming progressively more favoured by natural selection.
Many theories have been postulated to explain the adaptive
pressures that led to the adoption of habitual bipedalism
such as tool-use, display, load carrying, foraging and
thermoregulation (for a review, see Fleagle, 1999), but to
evaluate any of these theories in an ecological context we need
to know as much as possible about the locomotor ecology of

early hominids. Theories of foraging and resource exploitation
in particular need to estimate the metabolic cost of locomotion
as an element of energy budgets, while to evaluate hypotheses
based on predator/prey interactions we also need to know the
likely top speed and daily ranging capabilities of the fossil
species. These values are not easy to obtain, even for modern
species, but are impossible to obtain directly for fossil forms.

Traditionally the locomotor behaviour of fossil hominids has
been reconstructed by detailed investigation of the morphology
of elements of the post-cranial skeleton (see, for example,
Rose, 1993). The dimensions of various anatomical features
are compared with those of living primates, and when a match
is found it is assumed that the locomotor capabilities of the
fossil would have been similar to those of the modern species.
Many of the fossils of interest, however, combine anatomical
features that are not found together in any single living species,
and alternative reconstructions of locomotor behaviour based
on different features are often contradictory.

It is therefore preferable to assess locomotor behaviour on
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To understand the evolution of bipedalism among the
hominoids in an ecological context we need to be able to
estimate the energetic cost of locomotion in fossil forms.
Ideally such an estimate would be based entirely on
morphology since, except for the rare instances where
footprints are preserved, this is the only primary source of
evidence available. In this paper we use evolutionary
robotics techniques (genetic algorithms, pattern
generators and mechanical modeling) to produce a
biomimetic simulation of bipedalism based on human
body dimensions. The mechanical simulation is a seven-
segment, two-dimensional model with motive force
provided by tension generators representing the major
muscle groups acting around the lower-limb joints.
Metabolic energy costs are calculated from the muscle
model, and bipedal gait is generated using a finite-state
pattern generator whose parameters are produced using a
genetic algorithm with locomotor economy (maximum

distance for a fixed energy cost) as the fitness criterion.
The model is validated by comparing the values it
generates with those for modern humans. The result
(maximum efficiency of 200 J m–1) is within 15% of the
experimentally derived value, which is very encouraging
and suggests that this is a useful analytic technique for
investigating the locomotor behaviour of fossil forms.
Initial work suggests that in the future this technique
could be used to estimate other locomotor parameters
such as top speed. In addition, the animations produced by
this technique are qualitatively very convincing, which
suggests that this may also be a useful technique for
visualizing bipedal locomotion.

Movies available on line.
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whole-body or body-system attributes. The most predictively
reliable measure in living primates is the intermembral index:
the ratio of forelimb to hindlimb length. The IMI tends to be
<1.0 in leapers, approximately 1.0 for quadrupeds, and >1.0 for
arm-swinging primates (Napier and Napier, 1985), while the low
value in humans appears to be associated with hand-carrying of
loads (Wang et al., 2003). This sort of analysis works well for
identifying animals that are highly specialised for a particular
sort of locomotion (e.g. leapers or brachiators) but does not
permit such reliable evaluation of frequency of a particular form
of locomotion within the total repertoire of animals that are
locomotor generalists (Oxnard et al., 1989).

More recently various forms of biomechanical analysis have
been used to investigate locomotion where direct approaches
are impossible, for example the top speed of dinosaurs
(Alexander, 1989), the leaping capabilities of lorises (Sellers,
1996), and the likely gait of the Miocene hominoid Proconsul
hesoloni (Li et al., 2002). Some of these approaches have
concentrated on the underlying mechanics of bipedalism
(Alexander, 1992a; Minetti and Alexander, 1997), whereas
others have attempted to simulate the gait of extinct species
based on body proportions (Crompton et al., 1998; Kramer,
1999). These latter models have used kinematics derived from
motion-capture to drive the model’s movements. Other models
have used central control systems to drive the simulation
(Yamazaki et al., 1996; Ogihara and Yamazaki, 2001), which
has the advantage of allowing the model much greater freedom
in the movements generated, and this is the approach adopted
in this paper.

One major difficulty of all modelling approaches is the
conversion of the mechanical work calculated from these
models to metabolic energy consumption, which is the
ecologically more important parameter. Fortunately Minetti
and Alexander (1997) derived a formula from empirical data
of Ma and Zahalak (1991) that allows this conversion.

Biological processes are often used as inspiration for
developing computation techniques, and evolution is no
exception. It has been observed that evolutionary processes
have led to highly optimised solutions to complex problems,
and since the 1950s evolutionary theory has been used by
computer scientists as a source of inspiration for optimisation
and machine learning algorithms. Evolutionary strategies
(Rechenberg, 1965) are the most developed of these early
techniques. They encode the problem under consideration as a
sequence of real numbers and then randomly mutate these
numbers. Each time a mutation is created it is compared with
the previous solution and, if it performs better according to
some metric, it replaces the original solution, otherwise it is
discarded. Using a Gaussian mutation (adding a random value
selected from a Gaussian probability distribution with a mean
of zero) it is possible to generate any sequence, although the
new sequences are more likely to be similar to the previous
sequence than otherwise. This approach takes advantage of the
fact that sequences close to the ‘best’ solution are likely to be
similar to that solution.

Genetic algorithms were invented by John Holland in

the 1960s (Holland, 1975). The genetic algorithm uses a
population of solutions. Members of this population (called
chromosomes) are allowed to contribute to the next generation
by ‘crossover’, whereby two chromosomes exchange
subsequences to create two new chromosomes. The selection
of parent chromosomes is done randomly but is influenced by
their fitness, which is calculated in some way by a fitness
function. The genetic algorithm sensu strictuuses a fixed
length sequence of bits (zeros or ones) as its chromosome.
However, the genetic algorithm has had such a large impact on
the field of evolutionary computation that concepts such as
populations and crossover have been incorporated into other
techniques and the term is now used to cover almost any
population-based evolutionary search technique (for a more
thorough introduction to genetic algorithms, see Davis, 1991).
As our work uses a sequence of real numbers and our primary
method for creating the next generation is Gaussian mutation,
our technique should probably be considered an ‘evolutionary
strategy’ approach, but we will adopt the more commonly used
term, genetic algorithm (GA). These techniques have been
widely used for difficult computational search problems and
have become popular in the field of evolutionary robotics,
where they are used to find the parameters that specify the
control systems that drive the robots (Nolfi and Floreano,
2000). It is important to note that we are not modelling the
evolutionary process itself. Rather, we are modelling the
biomechanics of a pre-existing evolutionary sequence and
using a search technique inspired by evolutionary theory to
generate the control system needed to drive our biomechanical
models.

The process of implementing a generic GA is shown in
Fig. 1. The first step is to decide how the problem under
investigation can be encoded onto a chromosome. In modeling
situations the problem can usually be resolved into a number
of floating point values that can be stored as a fixed-length list.
In other circumstances this list may need to be of variable
length, or a branching tree-like data structure may be more
appropriate. The second step is to generate a starting
population from a collection of chromosomes. This can be the
same individual duplicated a number of times, a number of
randomly generated individuals, or a population from a
previous attempt. In the third step the individual chromosomes
in the population are evaluated to see how well they are able
to solve the problem. Once again the designer has to decide
how the solution can be evaluated, and in general this is done
by generating a numerical score for the individual. The higher
the score, the better the solution, and the fitter the genome. In
step four, individuals are chosen to reproduce. Their chance of
reproduction is governed by their fitness score so that higher
fitness individuals are likely to produce more offspring. In step
five, reproduction occurs, and is achieved by taking copies of
the parental chromosomes and altering them so that they are
not identical to their parents. This alteration is often due to a
combination of random changes applied to the values in the
chromosome (mutation) and merging values from two parent
chromosomes (crossover). The result of steps four and five
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is a new population where, hopefully, the values in the
chromosomes that led to good fitness results have been
preserved and the values that led to poor results have been
lost. In addition there is also a chance that mutation has
produced better values than in the parent generation and that
crossover has led to the aggregation of high-fitness values.
This new population is now returned to step three, and steps
three, four and five are repeated a large number of times.
Eventually the result is considered good enough, either by
evaluating against some goal criteria or simply by limiting the
number of generations, the process is terminated and the best
individual chromosome is decoded to provide the solution to
the problem.

Materials and methods
Multi-body dynamic analysis is a technique where the body

is treated as a set of rigid segments acted upon by various
forces and constrained by the joints between the segments. The
movement of the segments can then be calculated by solving
the equations of motion – the so-called forward solution (for a
review, see Winter, 1990). Setting up these equations by hand
is an error-prone process but there are a number of computer
packages that can be used (for a list of a variety of packages,
see the International Society of Biomechanics web site at
http://www.isbweb.org). These packages vary in the facilities
they offer, their ease of use, their flexibility and their prices.
We chose Dynamechs (McMillan, 1994; McMillan et al.,
1995; http://dynamechs.sourceforge.net), which is an open
source C++ library that allows extensive customization, so that
we could develop a simulator that would work well with our
in-house genetic algorithm optimization package.

We produced a mechanical simulation of human walking. As
always, there is a trade-off between biofidelity and computational
cost, so a fairly simple 7-segment model consisting of 3 segment
legs and a torso was used (Fig. 2). As a first approximation,

human bipedalism can be considered as an essentially two-
dimensional movement, most work being done in the parasagittal
plane (see, for example, Winter, 1990), so the model was
constrained to move in the vertical plane by defining the lower
limb joints as parallel hinge joints. The bone outlines and muscle
attachment points were based on data from Delp et al. (1990)
made available on the ISB website (http://www.isbweb.org), and
segment inertial properties were obtained from Zatiorski and
Seluyanov (1983) (see Tables 1 and 2).

Muscles were modeled as multipoint tension elements
and were implemented as custom-written extensions to
Dynamechs. The muscle line of action runs from its origin to
insertion through a number of intermediate points that guide
the muscle’s path. For example, in the case of the knee an
intermediate point is used to model the movement of the
patella. The positions of these points can be recalculated at
each step in the simulation to allow them to move, and the total
length and its rate of change are stored so they can be used for
force and energy calculations. The force on the end-points is
simply the tension in the muscle, directed towards the
neighboring intermediate points. The force on the intermediate
points is the vector sum of the upstream and downstream
tension force vectors (Fig. 3).

What is a genetic algorithm?

Fig. 1. Diagram illustrating the process of encoding and solving a
problem using a genetic algorithm.

Fig. 2. Diagram illustrating the 7-segment model used (Delp et al.,
1990). The segments are: 1, head, arms and torso (HAT), origin at
the centre of the hip joint; 2, 3 right and left upper leg, extending
from the centre of the hip joint to the centre of the knee joint; 4, 5
right and left lower leg, extending from the centre of the knee joint to
the centre of the tibio-talar joint; 6, 7 right and left foot, extending
from the tibio-talar joint to the head of the 1st metatarsal.

Table 1. Joint parameters used in the model*

X Y Extension Flexion 
Joint (m) (m) (degrees) (degrees)

Hip 0 0 10 90
Knee 0.396 0 0 90
Ankle 0.826 0 30 60 

*The model was taken from (Delp et al., 1990).
Note values of extension and flexion are relative to the human

anatomical position.
X and Y are the world coordinates of the joint centres.
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The force vectors F1 to Fn generated by a muscle with tension
T at the points with position vectors P1 to P2 are given by:

F1=T(P2–P1)/|P2–P1| ,
Fn= T(Pn–1–Pn)/|Pn–1–Pn| , (1)
Fi = [T(Pi–1–Pi)/|Pi–1–Pi|] + [T(Pi+1 –Pi)/|Pi+1 –Pi|] ,

where (P2–P1) represents the vector from P1 to P2, |P2–P1|
represents the magnitude of this vector, and i is the contact
point number.

The controller produces a fractional muscle activation from
0 to 1. We converted this to tension using the theoretical model
of Minetti and Alexander (1997), which is based on empirical
data from Ma and Zahalak (1991). The model formulae are
written in terms of torques and joint angular velocities, but it
can be shown by rearrangement that it is the relative moment
(current torque/maximum torque) that is dependent on the
relative angular velocity (current angular velocity/maximum
angular velocity); the power also depends on the relative
angular velocity. This means that these angular terms can be
replaced by their equivalent linear terms, relative tensions and
relative rates of shortening. Therefore for a muscle with a
maximum tension of T0 (in N), maximum rate of shortening of
vmax (in m s–1), current rate of shortening of v (in m s–1), and
activation of α, the force is given by:

k is defined below.
The model also allows the metabolic power of each muscle,

P (in W), to be calculated (using the same symbols as in
Equation 2):

P=αT0νmaxΦ(ν/νmax) , (3)
where

The value of k used by Minetti and Alexander is 0.17. vmax

and T0 varied from muscle group to muscle group. We used a

value of vmax equal to 6 times the resting length of the muscle,
as recommended by Winter (1990), and T0 was calculated from
the physiological cross-sectional areas (PCAs) given in
Pierrynowski (1995), multiplied by the intrinsic muscular
strength value of 20 000 N m–2 given in Winter (1990). The
muscles were aggregated as a set of flexors and extensors
around the three joints in each limb and the values used for total
PCA and mean resting length are given in Table 3. Since the
model calculates the metabolic power of each muscle we can
sum these to find the total metabolic power of the simulation
without requiring any internal or external work calculations.

To produce the walking pattern we used a finite state
machine with five states. Each state contained seven floating
point values between –1 and +1: the first value was the duration
of the state in seconds (the absolute value was used); the
subsequent six values represented the activation level of the
muscle groups (the value was assigned to the flexors if positive
and to the extensors if negative). The first two states were used
to initialize the walking pattern since the model started from
an upright, stationary position. The first state could be equated
to lifting the leading foot off the ground by extending the hip
and flexing the knee, and the second state would equate to the
hip being further extended with the knee extending to place the
lead foot on the ground anterior to the torso. The subsequent
three states were then cycled with the values applied to the left-
hand side swapped with those on the right-hand side after each
cycle. These states would equate to the foot being pushed
against the ground by flexing the ankle to toe-off; the forward
swing with the hip extending and the knee flexing; and the

(4)
.

0.054 + 0.506(ν/νmax) + 2.46(ν/νmax)2

1−1.13 (ν/νmax) + 12.8(ν/νmax)2−1.64 (ν/νmax)3

Φ(ν/νmax) =

(2)
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Table 2. Mass distribution properties used in model* 

Mass Ixx Iyy Izz CM X offset CM Yoffset 
Segment Local origin (kg) (kg m2) (kg m2) (kg m2) (m) (m)

Torso Hip joint 39.00 0.34 6.00 5.84 –0.328 0
Thigh Hip joint 10.36 0.041 0.54 0.54 0.180 0
Calf Knee joint 3.16 0.06 0.13 0.13 0.174 0
Foot Ankle joint 1.00 0.018 0.001 0.018 0 0.116

*The model was taken from (Zatiorski and Seluyanov, 1983).
Ixx, Iyy and Izzare the principle moments of inertia of the segment about the local origin. CM X and CM Y are the local coordinates of the

segment’s centre of mass.

P1
F1

P2

P3

P4

F2

F3

F4

Fig. 3. Diagram illustrating
the generic muscle model
used. F, force vector; P,
position vector. See text for
explanation.
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forward swing with the knee and hip both extending on to heel-
strike. Thus the walking pattern was controlled by a list of 35
values, which was used directly as the genome for the genetic
algorithm. The encoding is shown diagrammatically in Fig. 4.

Our intention was that the genetic algorithm process would
optimise the muscle activation values used in the chromosome.
In particular we hoped to investigate metabolic energy, so we
wanted the fitness score to favour the most efficient set of
muscle activation values. The fitness score for the genome was
calculated by running the Dynamechs simulation until either the

model fell over or until a fixed amount of metabolic energy was
used. The score was the distance that the torso had moved
forward before the model terminated. In any given experiment
a population of genomes was optimized using a steady state
genetic algorithm, where the population for the next generation
consisted of a combination of the best unique parents and the
best offspring. Individuals were chosen to reproduce using a

Table 3. Physiological cross-sectional areas and resting
length values used in the model

PCA Resting length 
Muscle group (m2) (m)

Hip extensors 0.014 0.26
Hip flexors 0.007 0.24
Knee extensors 0.024 0.23
Knee flexors 0.012 0.23
Ankle extensors 0.005 0.29
Ankle flexors 0.026 0.41

PCA, physiological cross-sectional area.

1 Duration 2 Right hip 3 Right knee 4 Right ankle 5 Left hip 6 Left knee 7 Left ankle

8 Duration 9 Right hip 10 Right knee 11 Right ankle 12 Left hip 13 Left knee 14 Left ankle

15 Duration 16 Right hip 17 Right knee 18 Right ankle 19 Left hip 20 Left knee 21 Left ankle

22 Duration 23 Right hip 24 Right knee 25 Right ankle 26 Left hip 27 Left knee 28 Left ankle

29 Duration 30 Right hip 31 Right knee 32 Right ankle 33 Left hip 34 Left knee 35 Left ankle

15 Duration

26 Right hip 27 Right knee 28 Right ankle23 Left hip 24 Left knee 25 Left ankle22 Duration

29 Duration 33 Right hip 34 Right knee 35 Right ankle30 Left hip 31 Left knee 32 Left ankle

19 Right hip 20 Right knee 21 Right ankle16 Left hip 17 Left knee 18 Left ankle

Reversing Left and Right

Repeat

Fig. 4. Diagram illustrating the encoding used for the genome. Each value in the list of 35 values was a floating point number between –1 and +1.

Fig. 5. Graph showing the fitness of the best genome when starting
with a randomly generated population of 100 individuals and a
metabolic energy cutoff of 5000 J.
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roulette-wheel selection process, where the chance of being
selected was proportional to an individual’s fitness score.
Single-point crossover was used and mutation was effected by
adding a Gaussian-distributed random value at random
locations along the genome. Considerable experimentation was
required to choose the various parameters and in the end a

population size of 50 or 100 was used with half of the
population being retained between generations. The chance of
mutation was 0.05 per allele and the crossover chance was 0.01.
The standard deviation (S.D.) of the Gaussian noise value was
0.1 with a mean of zero. The use of a relatively low rate of
crossover agrees with the findings of evolutionary roboticists
who have used similar techniques to generate gait controllers
(Nolfi and Floreano, 2000). Experimentation also showed that
the rate of improvement after 1000 generations tended to be
relatively small, and since this generally represented a week of
computer time it was used as a stop point.

Results
The first experiment used a population of 100, a randomly

generated starting population, and a metabolic energy limit of
5000 J. The best fitness obtained in 1000 generations repeated
over 10 trials, was a distance of 4.5 m, as shown in Fig. 5.
However, inspection of the animations produced showed that
stable walking had not been achieved, although it is quite
possible that it would have been if more generations had been
allowed (Fig. 6). The difficulty seems to be that the search
space is very sparse – most randomly generated genomes have

W. I. Sellers, L. A. Dennis and R. H. Crompton

Fig. 7. Graph showing the fitness of the best genome when starting
with a screened population of 100 individuals and a metabolic
energy cutoff of 5000 J.

Fig. 8. Overlay image of the animation generated by the best genome when starting with a screened random population (see movie2.mov). The
images are 0.2 s apart.
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Fig. 6. Overlay image of the animation generated by the best genome when starting with a randomly generated population (see movie1.mov).
The images are 0.2 s apart.
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a very low fitness and random mutation is unlikely to be able
to transform the genome sufficiently to move it into a higher
fitness region of the search space in a reasonable time.

To overcome this we ran a screening program where
3 000 000 randomly generated genomes were assessed for
fitness and the top 100 were chosen as the starting population.
Screening alone produced a maximum fitness of 3.4 m. This
population was then evolved exactly as before. The best fitness
obtained is 7.6 m in this case and the results of all trials are
shown in Fig. 7.

In this case stable walking was obtained although the gait
was novel: it was digitigrade with the knee kept fully extended
and the ankle joints alternately flexed and extended to allow
the forward swinging limb to clear the ground. This can be
seen in the overlay image (Fig. 8).

The screened population did produce stable walking but it
was clear from the animations that it was not taking advantage
of the startup phase, so was constrained to produce a walking
pattern that was able to cope with both startup and continuous
locomotion. In an attempt to overcome this, we hand-crafted a
genome that took advantage of the startup phase and was able
to produce a single step before falling over. This involved
manually setting the values in the genome and watching the

animation produced. Thus for phase 1, the left hip extensor and
the left knee flexor were activated and the duration set so the
model raised its left leg off the ground. For phase 2, the left
knee extensor was activated and the duration set so that by the
end of phase 2 the left heel had just touched the ground. For
phase 3, the right ankle was strongly flexed to push the right
leg off the ground and the duration set so that the right ankle
had just reached full extension by the end of the phase. For
phase 4, the right hip extensor and right knee flexor were
activated to further raise the right leg and swing it forward with
the duration set so that the foot had reached the midpoint of
the forward swing by the end of the phase. For phase 5, the
right knee extensor was activated to further swing forward the
right leg and the duration set so that by the end of this phase
the right heel had just touched the ground with the knee fully
extended. Finding these values by hand was a very slow and
laborious process of trial and error. The starting population was
then created by incrementally mutating this genome. The
original hand-crafted genome had a low fitness but we hoped
it would direct the search to a profitable area of the search
space (a process known as ‘shaping’). This approach proved to
be the most successful by far and to reduce the running time
the metabolic energy cutoff was changed to 3000 J and the
population reduced to 50 individuals; and even so, the best
fitness produced was 14.7 m. The results for all ten trials are
shown in Fig. 9.

The animation produced with this genome is also impressive
(see Fig. 10). The kinematics approximate compass gait, an
extreme form of ‘stiff’ walking (Cavagna et al., 1977;
Alexander and Jayes, 1978). The compass gait is in part due
to the model’s two-dimensionality: in human walking the
pelvis is tilted sideways during the support part of the gait cycle
(this action is emphasised during speed walking) to reduce the
maximum vertical movement of the centre of gravity. This
obviously cannot occur in our simulation. In normal human
comfortable walking there are also transitory knee flexions at
heelstrike, midstance and toe-off, which have similar effects.
Together these contribute to a certain amount of ‘springiness’
in the support limb that smooths walking and reduces the peak
vertical ground reaction forces. (This normal gait should not
be confused with compliant walking, where knee flexions are

Fig. 9. Graph showing the fitness of the best genome when starting
with a population of 50 individuals, derived from a hand-crafted
genome and a metabolic energy cutoff of 3000 J.

Fig. 10. Overlay image of the animation generated by the best genome when starting with a population derived from a hand-crafted genome
(see movie3.mov). The images are 0.2 s apart.
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sufficient and long-lasting enough to bring the oscillations of
kinetic and potential energies of the body centre of mass into
phase, eliminating energy exchange and thus increasing energy
costs.)

To further investigate the simulated gait we plotted the
characteristics of the gait once it reached a steady cyclic phase
(approximately 2 s into the simulation). These data are shown
in Figs 11, 12 and 13. Fig. 11 shows the forward displacement
of the torso over time. The forward velocity of the torso is very
nearly constant at 0.72 m s–1. Fig. 12 shows the metabolic
energy costs over time. There is a small amount of fluctuation,
depending on the phase of the gait cycle, but the mean power
is 140 W. Fig. 13 shows the metabolic energy cost against
forward distance traveled, and the mean value for the specific
energy costs is 200 J m–1.

Discussion
The primary aim of the model was to estimate the optimum

energetic cost of human bipedal locomotion almost entirely
from the proportions of the skeleton. The best figure calculated
was 200 J m–1. Fig. 14 shows the experimentally derived
metabolic cost of human locomotion and the best value
obtained is 230 J m–1 (Alexander, 1992b). Thus the model’s
prediction is correct to within 15% of empirical values, which
is extremely encouraging and suggests that this approach could

reliably be used to investigate costs in other bipeds. However,
the details of the gait produced suggest that the model needs
improvement before it could be used for wider investigations
of locomotor performance. The speed at which the most
efficient bipedalism was obtained in the model was 0.72 m s–1,
which is appreciably lower than the 1.3 m s–1 obtained
experimentally. We would suggest two reasons for this
discrepancy. Firstly there are no spring elements in our model.
Spring elements would tend to accelerate limbs back towards
their resting positions, which would tend to increase the
pendular frequency of the limbs, in turn leading to a faster
optimal gait. Secondly our model has only a very short start-
up phase, so the eventual walking pattern has to be stable at
low speeds that will limit the speed the model can sustain later
in the simulation. Indeed, our preliminary investigations into
using this technique for top-speed analysis support this
suggestion since, although we can evolve a running gait, the
current top speed is 2.2 m s–1. Also, since the genetic algorithm
is a stochastic process we may simply have not run enough
repeats to find a better solution. Our best solution was still
improving when we terminated the program and, given enough
time, we would have found a better answer. Inspection of the
fitness curves suggests that our evolutionary algorithm tends
to generate periods of fitness stasis interspersed with short
periods of rapid fitness improvement, corresponding to the
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Fig. 11. Graph showing the forward displacement of the torso with
respect to time.

Fig. 12. Graph showing the total metabolic energy cost of the
muscles with respect to time.

Fig. 13. Graph showing the total metabolic cost of the muscles with
respect to the forward distance traveled.

Fig. 14. Experimentally derived data on the metabolic energy cost of
human locomotion. Based on data from Alexander (1992b).
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model jumping from a local maxima to an ultimately fitter
region of the search space.

From an evolutionary perspective, it would also be desirable
to substitute into the model not only alternative body
proportions, but also alternative sets of segment mass
distributions and muscle parameters. Some muscle parameters
(such as maximum tension and length/tension relationships)
can only be derived by types of experimentation that cannot
ethically be performed on non-human primates, and hence we
have no choice but to use values for humans (and phylogenetic
considerations, of course, suggest that human values are the
most likely to be appropriate for extinct hominids). But others,
such as physiological cross-sectional areas and lever arms, can
be derived from cadavers, as can segment inertial properties.
We have now gathered the latter data for all the living apes,
and future research will therefore examine the consequences
of different muscle geometries, and can be expected to identify
which adaptive features of living apes would be most likely to
favour the acquisition of habitual bipedality. Other studies
using a similar approach can and will examine the performance
effectiveness of given morphologies in activities such as
climbing, and together these studies will help identify the range
of behaviours that extinct species were best adapted to
perform.

The model would also benefit from greater biofidelity. For
example, it could be fully three-dimensional; it could
incorporate sensory feedback to modulate the performance and
improve balance; the muscle groups could be subdivided into
smaller functional units including two-joint as well as single-
joint muscles; the finite-state control system could employ a
greater number of states in the control system to provide more
precise control; and spring elements could be incorporated into
the muscle model. This poses two problems. Firstly, the
simulation itself would then take longer to compute, which
would increase the duration of the fitness evaluation. Secondly,
a more complex model would require a larger genome to
specify the parameters, and this would very greatly increase the
size of the search space. The simulation problem is not
completely intractable, since an advantage of the genetic
algorithm approach is that it can be efficiently implemented to
take advantage of massively parallel computer systems. The
current implementation runs on a 4-processor computer and
would scale to run on the next generation of 1000-processor
clusters with very little overhead. This would reduce the current
experimental time of weeks to hours, so that considerable
increase in model complexity would be possible. The search
space problem is more difficult to solve since the size of the
space grows far too rapidly to be overcome by simply
increasing the computational power available. However, an
incremental evolutionary approach may be the answer, since we
can evolve a set of good parameters from the current model and
use these as the starting point for a series of more complex
models. In this way we should be able to restrict the search to
a region of the search space that is likely to be profitable.

One interesting outcome is the spontaneously derived
walking pattern shown in Fig. 8. The knee is kept fully

extended at all times and movement at the ankle joint is used
to allow the swinging leg to clear the ground. This walking
pattern is completely different from anything we might have
expected and, although not as efficient as normal walking, it
is mechanically stable and shows an alternative solution to the
fundamental mechanical problem. When evaluating the
locomotion of fossil forms we tend to limit ourselves to
patterns normally seen in extant animals, but given the limited
amount of direct evidence available from fossil footprints it is
important to consider alternative locomotor strategies. This
will be even more important when looking at older fossils
since their morphology can be very different from modern
animals.

Another important area for further work is investigating the
sensitivity of the model predictions to the fixed modeling
parameters. The dimensions of the skeleton can be accurately
measured, but there is appreciable variation between
individuals. Mass distribution parameters need to be estimated
and there is considerable variation in the values reported in
the literature for humans, although it has been suggested that
this variation may not be important (Yoko et al., 1998).
Muscle mechanical parameters vary from muscle to muscle
and from individual to individual. The current study used
generic values, but there is a need to use subject-specific
values to allow direct experimental validation – especially in
the case of ‘non-standard’ groups such as children and non-
human primates. This would also allow us to identify the
modeling parameters that have a disproportionate effect on the
outcome and should therefore experience the greatest
evolutionary pressure. We appreciate that soft tissue
parameters will always be difficult to predict for fossil forms
and would encourage the further development of techniques
to aid such predictions.

The animation generated by the model was qualitatively
impressive. Since it was based on a simulation, the ground and
foot interaction was convincing with minimal intersection and,
unlike motion-capture driven animation, the animation was not
limited to a few gait cycles that then need to be reused to
generate longer walking sequences. Our sequences could cover
over 50 m, and although the gait looks smooth there are small
differences between each step, which adds to the naturalness
of the effect. For use in animation we would need to
incorporate a fully articulated upper body to allow arm-
swinging, since this is visually important. This would also
increase biofidelity, since arm-swing in human walking seems
to assist free vertical moments under the foot in balancing
trunk torques (Li et al., 2001). An added bonus is that each run
of the simulation will produce a slightly different optimal gait
so that each character in an animation can easily have a realistic
gait that is unique for that character.
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