
Substituting outline fonts for bitmap fonts in archived PDF

files †

STEVE G. PROBETS AND DAVID F. BRAILSFORD
School of Computer Science
University of Nottingham

Jubilee Campus
Nottingham, NG8 1BB

UK

22 May 2001

Abstract

As collections of archived digital documents continue to grow the maintenance of an
archive, and the quality of reproduction from the archived format, become important
long-term considerations. In particular, Adobe’s PDF is now an important ‘final form’
standard for archiving and distributing electronic versions of technical documents. It is
important that all embedded images in the PDF, and any fonts used for text rendering,
should at the very minimum be easily readable on screen. Unfortunately, because PDF
is based on PostScript technology, it allows the embedding of bitmap fonts in Adobe
Type 3 format as well as higher-quality outline fonts in TrueType or Adobe Type 1
formats. Bitmap fonts do not generally perform well when they are scaled and rendered
on low-resolution devices such as workstation screens.

The work described here investigates how a plug-in to Adobe Acrobat enables bitmap
fonts to be substituted by corresponding outline fonts using a checksum matching tech-
nique against a canonical set of bitmap fonts, as originally distributed. The target docu-
ments for our initial investigations are those PDF files produced by (La)TEXsystems when
set up in a default (bitmap font) configuration. For all bitmap fonts where recognition
exceeds a certain confidence threshold replacement fonts in Adobe Type 1 (outline) for-
mat can be substituted with consequent improvements in file size, screen display quality
and rendering speed. The accuracy of font recognition is discussed together with the
prospects of extending these methods to bitmap-font PDF files from sources other than
(La)TEX.

†This is the final draft of a paper which was accepted for publication in Software —Practice and Expe-
rience and which appeared in issue 33(9), 2003 pp. 885 – 899

1

1 INTRODUCTION

Over the past 10 years Adobe’s PDF has become extremely popular as an archiving format,
largely because of its PostScript-based architecture which allows complex material to be
rendered at very high quality on page and on screen. A second important consideration is
that PDF can give an accurate rendering of exactly what was published in hard-copy format
with all layout, including page breaks, line breaks and so on, kept intact. PDF files are
viewed in the Acrobat viewer software and can either have all the required fonts embedded
in the file or can rely on finding the fonts in the system environment where the Acrobat
viewer is running. The option of embedding all fonts, to maximise portability of the PDF,
is becoming increasingly popular.

When a PDF file is the only archived form of a document it is important that it be of
high quality. Unfortunately there are many examples of PDF documents available on the
Web where the quality of fonts and diagrams is so bad that the screen display is almost
indecipherable.

If a corpus of PDF documents is to be properly maintained then, in an ideal world,
any upgrading of the PDF should be achieved by completely reprocessing the enhanced and
amended source material. To this end, the publisher should also archive all the source files
together with all the processing software needed to transform the source to the PDF. This is
a very severe requirement and one that few organisations would be prepared to undertake.
Note that, in extreme cases, it would be necessary to retain the precise release of Acrobat
Distiller (to create the PDF) and all the system fonts that were used. More importantly,
it would be vital to keep the exactly correct release of the text processing software, since
important algorithms such as hyphenation and diagram placement can vary greatly from
release to release.

In practice many publishers of scientific material now archive PDF files together with
some XML metadata about each article. If the publisher’s workflow starts with full-text
SGML or XML then this may well be archived also, but what will almost always be missing
are the source files for the ‘typesetting middleware’ that lies between the abstract XML doc-
ument and the final PDF form. Indeed, many of the preservation schemes for maintaining
digital resources, especially ones based on the Open Archival Information System (OAIS)
model [1], are only just beginning to address the problems of maintaining the necessary
hardware and software resources to enable accurate replication of archived material over a
period of time.

For all these reasons maintenance and upgrade of an electronic document archive will
often have to be on the final-form PDF only. If there are poor quality diagrams or screen
shots within a PDF then, quite apart from the technical problems of inserting better quality
material, the diagrams will generally be so specific to each article that the author’s positive
collaboration would be needed to secure new versions. On the other hand, if the typesetting
system used to create the PDF files has made use of bitmap fonts then, in principle, better

2

quality fonts could be substituted provided the fonts in use can be unequivocally recognised.
A random sample of bitmap-font PDF documents, drawn from public sources on the

Web, showed that a high proportion of them arose from use of the popular TEX or LATEX
software by authors who were either unaware of the fact that better quality outline fonts were
available, or who lacked the skill to configure their systems to use them. The large amount
of material available, and the fact that suitable replacement fonts could be identified, caused
us to try out the feasibility of PDF font replacement on this (La)TEX-originated material.

2 TEXand LATEX

The TEX typesetting software [2], and the later ‘structured’ development of it called LATEX
[3] occupy an important niche in the creation of electronic documents with a high technical
or mathematical content. These two software systems have a loyal following within the
academic community and in the STM (Scientific, Technical and Medical) segment of journal
and book publishing. In what follows we trace the processing of TEX and LATEX to PostScript
via a common program called dvips and thence to Adobe’s PDF format. When discussing
possible source texts for dvips we use the logo (La)TEX to mean ‘TEX or LATEX ’.

Knuth’s original TEX not only made technical typesetting software freely available but
it also provided a free set of bitmap fonts at various resolutions. These fonts implemented
a typeface design called Computer Modern (CM), loosely based on Victorian ‘Schoolbook’
designs. The Computer Modern fonts, in bitmap or outline forms, are an important part
of the look and feel of most (La)TEX-created material. The CM fonts were designed with
a program called METAFONT [4]—another remarkable item of Knuth-created software —
which uses an outline representation of characters internally but whose output will generally
be a bitmap font for a particular resolution and a particular pointsize. The standard output
format from METAFONT is called gf (generic font) but device drivers at the far end of the
(La)TEX chain (and dvips in particular) now generally use a compressed bitmap format
called pk, which is created from the gf format via a utility called gftopk.

The problems with bitmap fonts went largely unnoticed in the days when high-quality
output was solely to devices such as laser-printers. Provided these printers had the bitmap
fonts on a local disk, or could download them over a fast printer link, all the user saw was
the perfectly acceptable output that resulted from using hand-tuned bitmaps matched to
the printer resolution. But difficulties began to emerge with a new generation of screen
previewers (e.g GhostScript and Acrobat) that were capable of using the CM printer fonts
directly, rather than relying on low-resolution screen-font clones. The first of these pro-
grams, GhostScript[5], is public-domain software for previewing PostScript output on a
variety of hardware platforms, while Adobe’s Acrobat viewers interpret Portable Document
Format (PDF) files where PDF is itself based on Level 2 PostScript. What GhostScript and
Acrobat have in common is that they can display typeset pages very realistically by directly

3

rendering, on screen, the selfsame bitmap or outline fonts (in either of the Adobe Type 1
or Type 3 formats) that will be used for output to a laser-printer. They are both capable
of magnifying a page and thereby allowing the user to zoom in on fine detail. Under these
circumstances bitmap fonts dissolve into ‘staircases’ and ‘jaggies’; the advantages of the
outline format in terms of rendering speed and elegant scalability become all too apparent.

3 Type 1 vs. Type 3 Adobe PostScript fonts

PostScript has long been the most popular choice of graphic output format for (La)TEX
documents and its fonts are collections of procedures which describe character shapes. The
procedures are grouped together in a font dictionary data structure which can be accessed
by the PostScript interpreter. The simpler of the two font formats is Type 3 which simply
requires the font designer to provide a font dictionary entry called BuildChar which the
interpreter can call every time it needs to build a character. The PostScript ‘Blue Book’
[6] gives further details of Type 3 fonts which can be created in outline or bitmap formats.
Although the former use a vectorised description of characters they have no built-in ‘hinting’
mechanism to intelligently control the pixel dropout which occurs, due to rounding, when
characters are rendered on low-resolution devices. On the other hand, Type 3 bitmap
fonts make use of PostScript’s image bitmap format, and the imagemask operator, to build
characters based on bitmaps. Type 3 fonts can be based on a character cell of arbitrary
size and the units into which the cell is subdivided can be chosen by the font designer.

By contrast, Type 1 font programs have an implicit BuildChar procedure; fonts of this
sort must be outlines rather than bitmaps and they must be based on a 1 point character
cell employing units of 1/1000 point. The subset of PostScript that is used by the Type
1 buildchar is carefully optimised, within the interpreter, for good performance. Type 1
fonts are also capable of carrying hinting information. In the early days of PostScript,
Type 1 format was used solely by professional type designers; the details of the format
were confidential and the character outlines were encrypted. But since 1990 the format
specification has been publicly available [7].

When attempting to substitute Type 1 fonts for Type 3 fonts, within a PDF file, it
is important not only that the characteristics of the fonts should be similar (e.g. stem
weights, serifs, x-height) but also that the character widths of the Type 1 substitutes be
as near identical as possible to those in the original Type 3. If this latter condition does
not hold then the substituted text could show characters partly over-printing one another
and previously justified text now appearing to be typeset ‘ragged right’. Fortunately, in the
case of fonts used in (La)TEX systems, outline versions of the CM fonts are available from
three sources. A set is available from Blue Sky Research (initially distributed via Y&Y
Inc. [8]) These are commercially-produced fonts of very good quality and considerable care
has been taken with the hinting—a very desirable state of affairs given the thin stems and

4

other delicate features that are a characteristic of the CM designs. About 10 years ago a
consortium of publishers paid a fee to Blue Sky Research so that these fonts could be made
freely available to all. Increasingly, therefore, they are included, as a matter of course, with
modern TEX packages such as teTeX. A second set, which has recently been put in the
public domain, was designed by Basil K. Malyshev (BaKoMa). They can be found on the
Comprehensive TEX Archive Network (CTAN)[9]. BaKoMa fonts were created by automatic
conversion of METAFONT outlines. The font hinting was also generated automatically (in
contrast to the Blue Sky set where the hinting was done by hand) but the BaKoMa fonts
are, nevertheless, very serviceable. The most comprehensive CM font set in the Type 1
format is now the Super-CM font set of V. Volvovich released in 2001.

The crux of this paper, given the popularity of Adobe’s PDF as an archiving format, is
how one ‘rescues’ (La)TEX-produced PDF files, with embedded bitmap fonts, and replaces
them with an equivalent PDF, using outline fonts, by backtracking to various stages of the
processing cycle. The next sections review how outline fonts can be inserted into PostScript
output either by dvips itself or by post-processing the PostScript that dvips produces. We
then go on to describe our plug-in for Adobe Acrobat which processes (La)TEX-produced
PDF files to replace bitmap CM fonts with outlines. This is often the only way to proceed
in circumstances where a PDF file is available, but the (La)TEX source, the dvi code and
the PostScript have not been archived.

4 Device independence and the dvips program

TEX was designed from the outset for accurate positioning of its character boxes, on any
output device, to an accuracy of around a millionth of an inch. For this reason the files
of intermediate code output by classic releases of (La)TEXare essentially device independent
[10] and this in turn explains the dvi file extension that they use. As ever, the rationale
for using an intermediate format such as dvi, is that it eases the problem of adding a new
output device, or driving new visualisation software. All that is needed is to write a driver
to convert the dvi code to the desired new format.

The dvi-to-PostScript translator most commonly used is dvips developed by Tomas
Rokicki [11]. The mappings between font names used inside (La)TEX and the external file
names that contain the fonts is controlled by the file psfonts.map. By using this mapping
file, programs such as dvips can locate fonts, for the CM family, that are either PostScript
outlines or pk bitmaps created from METAFONT . In the case that the target files are
bitmaps in the pk format, dvips can convert them, on the fly, into PostScript Type 3
bitmap format. On the other hand if the files pointed to by psfonts.map have either a
.pfa or .pfb extension then these are taken to indicate PostScript fonts that are already
in Type 1 (outline) format.

The character positions within a (La)TEX font are allocated according to a scheme which

5

started with Knuth’s original 7-bit encoding and which has now evolved into a standard
known as ‘T2A’ within the (La)TEXcommunity (more detail on encodings and many other
(La)TEX-related font matters can be found in [12]). These encodings are designed to utilise
to the maximum all the potentially available character positions in a single-byte positional
encoding. However, these mappings do not correspond to any of the standard font encodings
(e.g. Windows, Adobe Standard, ISO Latin1 etc.) found in system fonts on Windows or
UNIX machines. For this reason we cannot generally rely on picking up correct (La)TEX
fonts from the operating system environment, when printing takes place — for safety’s sake
they are usually embedded into the PostScript output stream, by dvips, to ensure that the
correct output appears.

When locating and embedding a font dvips performs some transformations which we
need to understand if any post-processing is to take place to substitute bitmap fonts with
outlines. If a font, at a particular pointsize, is not available via psfonts.map then dvips will
attempt to activate METAFONT, followed by gftopk, to create a new bitmap font specifically
tailored for the desired point size and resolution. If the call to METAFONT should fail for any
reason then a combination of (apparently) bizarre resolution options for CM bitmap fonts,
coupled with various tricks performed by dvips, is often sufficient to keep output looking
reasonable. These matters are explained further in section 6 but one example suffices for
the moment: if a document is being created in 10 point type at 300 dpi and a specific 12
point version of that same font is not available, then a scaling change from 10 point to 12
point can be achieved, very neatly, by changing to an equivalent 10 point font created at
360 dpi (because 360 = 300×12/10). If a requested pointsize change falls outside the range
of what can be accommodated, via the other pointsizes and resolutions already available in
the bitmap fonts, dvips will then actually generate a PostScript scalefont command to scale
an existing bitmap font. Given that such a direct scaling of bitmap fonts leads to inelegant
results such a strategy has to be a last resort and, again, is used only if METAFONT is
unavailable.

In contrast to the complexities of scaling bitmap fonts, things are much simpler if outline
fonts are in use. Here, the scaling to any required pointsize is achieved by embedding a copy
of the Type 1 font into the output PostScript and, once again, generating the appropriate
call of the PostScript scalefont operator. Since Type 1 outlines have hints, which control
the fine details of rendering the font, an elegant scaling can be achieved over a large range
of point sizes.

5 Reprocessing legacy material

Figure 1 shows the steps by which (La)TEX source can be transformed into PDF. A fairly
recent development, shown in the lower half of the figure, has been the release of the pdftex
software which outputs PDF directly and uses Type 1 outline fonts. Although this route is

6

(LA)TEX
source code

latex

command
dvi

dvips

(bitmap fonts)

PostScript
(bitmap fonts)

distill PDF
(bitmap fonts)

PDF
(outline fonts)

PostScript
(outline fonts)

distill

FixFont
program

Bdvips
(outline fonts)

A FontRep
plugin

C

pdflatex

(Type 1 fonts)

Figure 1: Processing (La)TEX to PDF

gaining in popularity, and has the advantage that its default font set is of high quality, it
requires that all inserted diagrams be prepared as PDF files with an origin of coordinates at
(0,0); it therefore lacks the flexibility of the traditional dvips route (see upper part of Figure
1) with its ability to incorporate arbitrary encapsulated PostScript. An informal analysis
of (La)TEX-produced PDF files available on line, and those submitted to conferences, shows
that the majority of (La)TEX users still process their output via dvips and PostScript. This,
in turn, means that a large amount of PostScript and PDF is created with embedded CM
bitmap fonts, largely because many users are unaware that a simple -Pcmz command line
flag to dvips would cause outline fonts to be embedded instead.

Figure 1 shows how the PostScript output from dvips is transformed via a program such
as Adobe Distiller or ps2pdf, into a PDF file. The solid lines joining the boxes indicate the
conventional routes to PDF, using either bitmap or outline fonts. The dashed lines show
the points at which intervention can take place in order to re-process archived files with
embedded bitmap fonts into better-performing and generally smaller files, using outline
fonts. In the figure the points marked A, B and C show where outline fonts can be inserted,
or substituted, into the processing stream.

For newly-created material there is no doubt that the best solution is to have outline
fonts available at the earliest point in the processing cycle i.e. at point A, when dvips

7

is creating the PostScript. The needed fonts are obtained as either .pfa or .pfb files via
psfonts.map. As we have seen, the necessary fonts will then be embedded in the PostScript,
and will be retained via the Distiller program in the final PDF.

On the other hand, for archived (La)TEX documents, any or all of the (La)TEX source
code, dvi file, PostScript or PDF may be available and the fonts in the latter two of these
formats could well be CM bitmaps. If the original (La)TEX source is available it seems
sensible, at first sight, to re-process the material from that source and to introduce outline
fonts at point A. Indeed, it is the best way to proceed provided one accepts that the re-
processing may not be entirely straightforward. If the source code is several years old, and
if it is important to recreate the exact page layout and line breaks of material currently
archived as PDF (say), then one has to recreate as exactly as possible the entire original
processing environment i.e. there is a need to archive the exact release of (La)TEX and
its styles, the exact version of dvips and the exact fonts that were used. If this is not
done then old source code has to be processed with more recent releases of the processing
software and this leads, all too easily, to frustrating problems where the processing software
crashes because the source text is using ‘legacy’ features no longer supported; or a new
hyphenation-and-justification routine causes line breaks and page breaks to change in the
output; or mysterious gaps appear due to exotic characters being chosen from fonts that
are no longer available. Putting these problems right can take an astonishing amount of
effort.

For all these reasons, and in circumstances where the (La)TEX source text is not available,
the next best alternative —point B in Figure 1— can be considered, provided that the
dvips-produced PostScript for the document has been safely archived. The next section
describes an existing program that analyses PostScript files of exactly this sort. Although
our ultimate goal is to enable font substitution in PDF files the next two sections show that
replacing bitmap fonts with outline fonts, in any PostScript-based file format, is far from
straightforward; scaling factors need to be calculated for the replacement font which depend
on the original resolution of the bitmap fonts and on the innately different character cell
sizes of Type 1 and Type 3 character glyphs.

6 EMERGE’s FixFont

The FixFont package, originally released by the Emerge corporation [13], consists of a
UNIX shell script and a C program. It attempts to modify dvips-produced PostScript by
substituting Type 1 outline fonts for any embedded CM Type 3 bitmap fonts. It can be used
to greatly enhance the quality of (La)TEX-generated legacy PostScript that contains Type 3
bitmap fonts. Figure 2 is a small example, using the same Computer Modern Roman fonts
in bitmap and outline formats, which shows very clearly the superior quality of an outline
font.

8

Type � Bitmap
Type 1 Outline
Figure 2: Comparison of bitmap and outline Computer Modern fonts

FixFont achieves a font substitution by first analysing the PostScript to locate and
recognise the Type 3 CM fonts. These are then substituted with Type 1 fonts before
rewriting a new PostScript file. Because of the need for careful analysis of the original
PostScript, FixFont is designed to work only with PostScript produced by Tomas Rokicki’s
dvips program, in its configuration as constituted around 1995 (release 5.495).

In addition to the bitmap font-scaling strategies attempted by dvips, its generated
PostScript has another major drawback when attempting font substitution: the release
5.495 dvips software does not name the Type 3 fonts it embeds with their usual TEX name
but instead it generates its own name for the fonts such as Fa, Fb etc. When the font is
embedded the bits making up each character within the font are included as a hexadecimal
string in PostScript image format. Because of this font name problem, it is necessary to
try to recognise what the font actually is, before substitution can occur. This is done by
analysing the actual bitmaps of the characters within the font. Once it has been determined
that Fa is, for example, Computer Modern Roman at 10 points (CMR10) and that Fb is
Computer Modern Math Italic at 10 points (cmmi10) then sustitution can be performed
safely.

However life isn’t quite that simple. Most (La)TEX installations contain different versions
of each bitmap font for various resolutions. Standard resolutions in early (La)TEX releases
were 300, 329, 360, 432, 518, 622, 746, 896, 1075, 1290 and 1548 dpi. More recently these
have been supplemented with a new set at 600, 657, 720, 864, 1037, 1244, 1493, 1792, 2150,
2580 and 3096 dpi. So not only does the Computer Modern typeface have a different bitmap
font for many different point sizes (6, 8, 9, 10, 12, etc.), it also has a different pk font for
each different resolution at every point size. This can lead to (La)TEX installations having
hundreds of these fonts, with names like CMR10.300, CMR10.329, CMR10.360, CMR12.300
etc. In creating the PostScript, dvips might pick any one of these fonts, as described in
section 5, to minimise the scaling required.

9

6.1 The FixFont software

FixFont was developed in 1996 or thereabouts and although released via Emerge, there is
a distinct impression that it has its roots in work started at Adobe Systems Inc. somewhat
earlier. FixFont compares the CM bitmap Type 3 fonts in a PostScript file with the char-
acteristics of the standard METAFONT CM bitmap fonts contained in a database. It works
in two stages. The first stage is to generate a database of checksums for all the characters
in all possible Computer Modern fonts, once they have been converted to Adobe Type 3
format. This stage only needs to be performed once. Once the software has knowledge of
these checksums, the second stage of the process can occur. In this stage the characteristics
of bitmap fonts within legacy PostScript files can be compared with the database, in an
attempt to recognise the fonts included in the file. If recognition is successful then font
replacement can occur.

The second stage takes the PostScript file where font substitution is required, and anal-
yses all the bitmap Type 3 fonts within it. The same algorithm that was used to generate
the database is used to generate checksums for all the characters in all the embedded fonts.
For example the checksums for fonts Fa, Fb, Fc etc. are calculated. These checksums can
then be compared to the database generated in step one, and if all the checksums match,
then it can be assumed that font Fa is actually CMR10.300 etc. The details of the algorithm
for generating the checksums do not matter too much, so long as the algorithm is fast and
leads to a distinct checksum for every character in the database. This same algorithm is
then used to analyse the bitmap fonts within the PostScript file. For interest, FixFont gen-
erates its checksum by cycling through the bitmap character data in 4-byte segments, and
keeps a running total of the summed values of each 32 bit segment as the final checksum.

The first of the two FixFont programs is called makedb; it is a Unix shell script and it is
responsible for creating the font database. It works by creating a LATEX file for every font
on the system. Thus, for example, a file named CMR10.300.tex is created which contains
ASCII characters 0 to 127 for the CMR10.300 font. Similar files are created for all other
fonts in the (La)TEX installation. Each file is then processed by LATEX and dvips to generate
a ‘font-sampler’ PostScript file which contains a hexadecimal string representation of the
bitmaps for the first 128 characters in the font. The resulting PostScript file is analysed
by makedb and used to generate a checksum for all the character glyphs. Although the
fonts in the intermediate PostScript will be called Fa (or similar), the makedb script will
have created the original LATEX file and named it CMR10.300.tex. Therefore the resulting
PostScript file will be named CMR10.300.ps. The makedb script can now relate the glyph
checksums to the original METAFONT file name in order to build up a list of checksums for
CMR10.300. Similar information is collected for all fonts on the system and stored in a simple
data file. Although FixFont refers to this as a ‘database’ it lacks the internal structure of a
conventional database; the term datafile would be a more accurate description.

Once the database has been created, the second FixFont utility can be used to perform

10

the substitution. This second utility is a C program called substitute which modifies an
existing PostScript file by replacing the embedded Computer Modern Type 3 fonts with
their Type 1 equivalents. The PostScript file is analysed by substitute and, using the
same algorithm as makedb, it creates a checksum for all the bitmap Type 3 characters
within it. These are then compared against the database on a font-by-font basis, and, if
there is a match, the Type 3 font is removed from the PostScript file and replaced by its
corresponding Type 1 font. If the Type 1 fonts are already present on the system running
substitute, then the bitmap fonts are replaced by embedded Type 1 fonts. If the Type 1
fonts are not present on the system, then the bitmapped fonts are replaced by references to
the Type 1 fonts (which must then be available at the time the new PostScript file is printed,
displayed or distilled). If an exact match is not attainable across all the characters in any
particular font then the substitute program can be configured to perform fuzzy matching.
Configuration options include performing substitutions only when a given percentage of
glyphs appears to match a given font, or only when a given number of glyphs match the
database. A pre-made database is distributed with FixFont.

6.2 FixFont’s output

The PostScript file generated by substitute, containing Type 1 outline fonts, must, aside
from an obvious improvement in font quality, render the page identically to the original
bitmap-font PostScript file. To achieve this, a simple Type 3 for Type 1 font substitution
is insufficient; it is also necessary to make additional alterations to the output PostScript.
Suppose, for example, that the initial (La)TEX file had used CMR10 at 10pt. The CMR10.300
font would have been embedded into the PostScript. However, this font has been designed
to display at a point size of 10 on a 300 dpi device, without the need for scaling. PostScript,
on the other hand, uses a coordinate system with 72 dots per inch, so to make the font
display at the correct size a scale factor of 72/300 is applied to the glyphs by dvips in the
original Type 3 PostScript file. If we now replace the Type 3 font with a Type 1 font we
must scale the new font to make it appear at the same size. Firstly, it must be scaled by
300/72 (i.e. 4.16) to counteract the factor of 72/300 originally applied to the Type 3 font.
Secondly, it needs to be scaled up by a factor of 10 to account for the fact that Type 1
fonts are designed to display glyphs at point size 1, whereas the Type 3 font CMR10.300 is
designed to display characters at point size 10. The first of these scaling factors is applied
via a PostScript Font Matrix and the second via the scalefont operator. As an example, if
the Type 3 font CMR10.300 is replaced by the Type 1 font cmr10 the following lines would
need to be included in the new PostScript:

/DvipsFontMatrix [4.16 0 0 -4.16 0 0] def
/Fa { /cmr10 findfont 10.00 scalefont DvipsFontMatrix makefont setfont } def

11

In common with many other typesetting systems (La)TEX works on a coordinate system
with origin at the top left-hand corner and where y is positive as one goes down the page.
PostScript, on the other hand, uses classic Cartesian coordinates with (0, 0) at the bottom
left-hand corner and where y is positive upwards. It is perfectly possible, in PostScript, to
set up a transformation for it to use a typesetting coordinate system, but the only problem
is that the characters themselves will then render upside down if, internally to the character
cell, they are using the conventional Cartesian system. Things can be put to rights very
easily by applying a Font Matrix to the bitmap font, which reverses the y direction; this
explains why the fourth value in the above font matrix is −4.16 rather than 4.16.

Occasionally a point size will be requested that is not in the commonly-occurring range
from about 6 pt to 20 pt. Under these circumstances many (La)TEXsystems will try to
activate METAFONTto create a new bitmap font ‘on the fly’. If this fails for any reason
then dvips has to decide which of the available CM point sizes, and at which resolution,
would scale most elegantly to give the desired output. The PostScript code for the correct
scaling must then be generated. For example, if the file requires CMR output at point size
37, one way to do this would be to specify CMR10 at 37pt. In this case let us suppose,
hypothetically, that dvips chooses to use the CMR10.432 font and scales it by a factor of
2.57. If this were the case then when FixFont replaces CMR10.432 by the Type 1 font cmr10,
the latter needs to be scaled by (300 × 10)/72 × (432/300) × 2.57.

Although FixFont manages the rewriting of PostScript very adroitly, its total dependence
on a release of dvips which is now 7 years old illustrates the general difficulty of having to
archive appropriate intermediate processing software if one wishes to regenerate a PDF from
any of the intermediate processing stages shown in Figure 1. More recent releases of dvips
have adopted a strategy of embedding a PostScript comment ahead of every embedded Type
3 font to help post-processors to recognise which font is in use. Unfortunately, rewriting
FixFont to pick up this comment would not be sufficient to bring it up to date, because
dvips has also totally changed the PostScript syntax it uses to embed Type 3 fonts and
thus FixFont’s parser can no longer analyse the embedded font data.

It is very obvious that upgrading FixFont would be a never-ending process which still
could not overcome the fact that it will always be reliant on features that appear only
in dvips-produced PostScript. In no sense is it a generalised PostScript analyser and the
sheer variability of the PostScript likely to be produced by any other text processing software
employing bitmap fonts would make such a generalised analyser extremely difficult to write.
A more fruitful way forward seemed to lie in writing a plugin to perform font replacement
within a final-form PDF file.

12

7 Font replacement in Acrobat

Previous sections have highlighted the difficulties of trying to regenerate archived material
from source text or intermediate code files: in the specific domain of (La)TEX-generated
PDF material with embedded bitmap fonts, it will only occasionally be the case that the
original (La)TEX source, dvi and PostScript files are also available.

Our motivation in writing an Acrobat plug-in, which we call FontRep, to perform a
similar job to FixFont, was prompted by the prospect of eventually developing a general
method for replacing bitmap fonts within PDF files. But there are other clear advantages
to be gained from creating such a plugin. PDF is based on Level 2 PostScript and the way
PDF is used in output from Acrobat Distiller relies on a set of procedure definitions and
dictionary entries that correspond closely to those used by Adobe Illustrator. Thus, the
conversion of PostScript to PDF, by Distiller, effectively ‘normalises’ the PostScript. By
analysing this more standardised output format it should be possible to perform the font
replacement operation, initially, on a wider variety of (La)TEX -generated documents and
eventually to generalise the methods to cope with bitmap font replacement in PDF files
generated from sources other than (La)TEX.

7.1 The FontRep plug-in for Acrobat

The FontRep plug-in, for the full MS-Windows version of the Adobe Acrobat viewer (release
5.0) works in a similar manner to the FixFont application for PostScript described above.
The database must be generated in the same way as before, but font substitution occurs
on PDF files rather than PostScript files. As with FixFont, once the database has been
created the first step in the substitution process is to locate every Type 3 bitmap font in
the PDF document. As each font is encountered, the bitmaps for every character in the
font are extracted. If necessary, filter decoding and bit manipulation are applied to each
character to obtain a hexadecimal representation of the bitmaps. From here, generation of
a checksum, and comparison against the database, takes place very much as with FixFont.

It is worth noting that when PDF is generated by Acrobat Distiller it changes dvips’s
obscure font names such as Fa, Fb to the equally obscure T1, T2 etc. The result, therefore, of
comparing these embedded fonts to the canonical ones encapsulated within the database is
the knowledge that the bitmap font T1 equates to cmr10, say, or that T2 is cmbx12. Acrobat
API (Application Programming Interface) calls can then be used from within the plug-in
to search the system fonts on the host machine and, if a matching Type 1 font is present,
it can be embedded into the PDF and the corresponding bitmap font removed.

Unfortunately, as with FixFont, identifying and replacing fonts is only a part of the
problem. As before, the Type 1 font’s innate font dimensions and units cause PDF con-
tent streams to render at a very different size to that seen with the bitmap Type 3 font
being replaced. This was overcome in FixFont’s regenerated PostScript by including font

13

matrices to scale the Type 1 character widths. Sadly it is not so easy in PDF, which has
only a subset of PostScript’s capabilities and which, in particular, does not permit a font
matrix to be associated with a PDF Type 1 font object. There are two initially obvious
strategies for overcoming this problem: the first is to scale the glyphs within the font itself
before embedding; the second is to rewrite the content streams within the PDF, scaling the
characters as required. The former method has the advantage of leaving the PDF content
streams untouched and so it was attempted first, but it was foiled by the internal design
of Acrobat. Scaling the glyphs within a font, by using a font matrix prior to embedding,
means that the width of each glyph increases. Glyph widths in Type 1 fonts are specified
in units of 1/1000th pt, and so widths are in the region of 100 to 1000 units for commonly
occurring characters. Scaling these by a factor of 300 × 10/72 (for CMR10) or 300 × 12/72
(for CMR12) means that the widths of the glyphs are transformed to a region between 4000
and 40000 units for CMR10, and even higher for fonts designed at larger point sizes. Now
the PDF font format requires an array of character widths to be populated for all fonts, but
the internal type used by Acrobat is an array of signed 16 bit integers, meaning that the
maximum possible width for a glyph in Acrobat is 215 - 1 (32767). Trying to input character
widths greater than this causes overflow, leaving a residue that is an apparently negative
quantity. This, in turn, causes the PDF to render incorrectly, with the most noticeable
effect being that wide characters such as ‘M’ can shift a few centimetres to the left of where
they ought to be.

The second possibility, of doing the scaling via a rewriting of PDF content streams,
was attempted next. With the use of API calls a scaling matrix could be applied to text
runs within the PDF content stream. Unfortunately, some minor bugs in certain API calls
resulted in badly formatted content. The only solution to the problem was for the plug-in to
rewrite the content streams itself, without relying on the API calls. To do this the plug-in
had to decompose the PDF content stream into tokens, with each token consisting of a
single content object, operator or argument. The tokens could then be analysed, added to
or altered, for example a scaling factor could be applied, or existing matrices altered, before
the revised PDF content stream was output.

This latter approach has the added benefit that more control is available over the output.
It becomes easier to create an option whereby users are asked what action should be taken
in the case of uncertain glyph matches. For example, suppose 53 out of 54 glyphs in font T1
are recognised as being from the Type 3 bitmap font CMR10.300. In this case the Type 1
cmr10 is embedded and the user is asked whether the one remaining glyph should be left as
a Type 3, or mapped to a Type 1 glyph on the assumption that it is the standard character
at that font position in TEX encoding.

The release of Acrobat 5.0 appears to have fixed some of the problems with the API, but
the success of the tokenising approach has meant that this is still a very promising strategy.

14

7.2 Other font replacement strategies

The font replacement strategies described in the previous sub-section involve the creation
of reconfigured Type 1 fonts, for the entire CM family, in Adobe .pfa format. The recon-
figuration involves adjusting the font matrix within the font file to account for the various
scalings and axis inversions that have already been described. Once this has been done
the fonts are installed as system fonts and the Acrobat API for Windows has a method
which imports a system font and allows it to replace the corresponding Type 3 bitmap font
already present.

Although the strategy of rewriting the text streams has met with some success there are
still some niggling problems with character positioning and the rather worrying prospect
that the tokeniser has to be 100% accurate in recognising the intended point size of each
component in the text stream before a correct text matrix can be applied.

From almost every viewpoint a solution where simple font substitution can be performed,
with no rewriting of text streams, is greatly to be preferred. We have already discussed, in
section 3, that a Type 3 font is not constrained to having bitmap character glyphs; it could
equally be an unhinted set of outlines for drawing the character shapes. Thus, if the CM
Type 1 fonts could be regenerated as Type 3 outline fonts, either directly from METAFONT
or via reconfiguring a Type 1 CMR font in a tool such as Macromedia Fontographer, then
it might be possible to substitute a Type 3 bitmap font with an equivalent Type 3 outline.

Initial testing of this idea is under way and early results seem promising. Although
Type 3 fonts are not allowable as system fonts under Windows, it turns out that an API
call of CosObjCopy allows an object to be copied over from a given PDF file to replace an
object in another PDF. By creating a PDF consisting entirely of embedded PDF Type 3
CM outline fonts, we thereby create a resource from which the diffent fonts (complete with
the appropriate font scaling matrices) can be abstracted, for use as bitmap Type 3 font
replacements within the target PDF.

The appearance of the PDF once Type 3 outline fonts have been substituted for Type 3
bitmaps, is certainly improved. This is helped in large part by a new feature in the Acrobat
5 viewer software that allows line art to be smoothed. One has to remember, here, that the
drawing routines for character shapes in a Type 3 font charproc entry are not interpreted
in a specialised way, as they would be in a Type 1 font. They are simply treated as vector
drawing (i.e. line art) routines. However, this smoothing of the character shapes cannot call
on the hinting information of Type 1 fonts. Perhaps for this reason, and to avoid delicate
hairline strokes disappearing altogether, the smoothing errs on the side of ‘rounding up’
rather than ‘rounding down’. The overall effect of this is that text in outline Type 3 CMR
appears ‘bolder’ than its Type 1 equivalent.

Prior to a first release of FontRep we are evaluating the replacement accuracy and the
glyph quality offered by this alternative approach as opposed to the text stream rewriting
described in section 7.1. The FontRep home page [14] gives details of our progress.

15

8 Problems encountered

With the aid of the checksum and the replacement font databases any (La)TEX-generated
PDF with bitmap CM fonts can, in principle have the bitmap fonts replaced by outlines. The
CM glyphs, in common with the Schoolbook designs on which they are based, have rather
thin stems and some users of (La)TEX systems exploit the so-called modedefs capability of
METAFONT to create replacement glyphs with heavier stem weights. If this is done then the
checksum match against our database will fail for any glyph that has been altered in this
way. Another constraint is that the success of the checksum method in recognising bitmap
CM character glyphs relies on METAFONT having been invoked in a generic manner, for the
resolution and point size required, independent of any particular output device (i.e. with
‘null’ printer settings). So far, on a relatively small test sample of 20 or so (La)TEX-produced
PDF files, using CM bitmap fonts in the 300 and 600 dpi ranges, we have only encountered
two files where none of the fonts was recognised. A far more common occurrence is that
a large proportion of the glyphs within a given font can be matched but not all of them.
This could be due to something as subtle as rounding effects, when executing METAFONT
and dvips on different machine architectures, or the more gross mismatch occasioned by
characters being remapped to different positions within the embedded version of the bitmap
font as opposed to the ‘canonical’ ordering expected within the bitmap font database. We
have certainly seen cases where the quote mark characters and the ‘fi’ and ‘ffi’ ligatures
have been permuted around.

At the moment the version of FontRep which rewrites text streams leaves any unrecog-
nised glyph as an inserted bitmap character but an alternative strategy (as implemented in
FixFont) would be to substitute the entire replacement font if more than a pre-set propor-
tion of the Type 3 bitmap glyphs match the database checksums.

There is no doubt that, as FontRep develops further, more flexible font recognition
and glyph-matching procedures will be needed. Unusual combinations of point size and
resolution requests in the (La)TEX source document will cause METAFONT , if available, to
try and construct such a font ‘on the fly’ and it is clearly not feasible to expand our database
indefinitely to encompass this infinity of possibilities.

9 Wider applicability

The foregoing sections have shown that it is not sufficient simply to identify the typeface
implemented within a set of bitmap fonts and hope that some commercially available outline
version of the same typeface will be a suitable substitute. It is also necessary to analyse
the bitmap fonts carefully for their resolution, character encoding and glyph metrics to
ensure that the substituted outline font will be truly compatible. Any evidence on these
matters that is gleaned simply from the embedded fonts within a single PDF is likely to be

16

very sketchy —the source and the characteristics of any new bitmap font families must be
carefully identified.

Nowadays the leading operating systems such as Windows, MacOS X and Sun Solaris
have virtually no bitmap fonts; they distribute a wide range of outline fonts as part of
the standard environment. Any PDF files prepared with these latter fonts embedded will
generally render well on screen and cause few problems. However, the one remaining pop-
ular operating system that is a potential source of bitmap-font PDF files is Linux, largely
because a common factor in almost all distributions of Linux is the use of the GhostScript
environment as the common meeting point for printer-driver software.

In particular, GhostScript is capable of creating and previewing PostScript and PDF
files, but its default font environment consists of a collection of public-domain fonts from a
variety of sources. Although some of these fonts are Type 1 outlines, the great majority are
Type 3 ‘bitmap clones’ of popular typefaces such as Times and Helvetica. Recent releases
of GhostScript do implement a Type 1 rasteriser but the responsibility of purchasing Type
1 fonts and installing them in the system, to replace the Type 3 clones, rests entirely with
the user. The ps2pdf PDF output driver for GhostScript (for those who do not have Adobe
Distiller) is just one instance of a strategy that enables a wide variety of non-PostScript
printers to be driven from a PostScript-based canonical starting point, but in many cases
the PostScript pages are simply converted into page bitmaps for the target printer with the
problem that bitmap fonts used in GhostScript get carried over into the output.

Perhaps the largest specialist set of bitmap fonts commonly used with GhostScript are
precisely the (La)TEX bitmap fonts that are the focus of this paper. Since they are used in so
much material now available on-line they formed an obvious subset for a first investigation
into the PDF font replacement problem. But, as we have just seen, the other bitmap fonts
in the GhostScript collection may well be employed by any other text processing software
running under Linux, or even by (La)TEX itself if users want to use fonts other than the CM
family.

The methods described here are capable of being extended to other bitmap fonts dis-
tributed with GhostScript though increased care would have to be taken to ensure that the
encoding vector of any substituted font matches that of the bitmap original.

10 Conclusions

Because it is such a useful print-on-demand format many publishers have chosen PDF for
‘appearance based’ electronic archiving. The need for maintenance and updating of such
an archive is not confined simply to the quality of embedded fonts. The recent introduction
of a structure tree option within PDF, from release 1.4 onwards, affords the possibility
of intelligently re-flowing PDF for small-screen hand-held devices and for reading out the
contents of a PDF to visually impaired computer users. It seems inevitable that many

17

archived PDF files will need to have a structure tree added as the years go by.
But even with the everyday issue of fonts in an unstructured PDF file, the fact that an

Acrobat plug-in such as FontRep is needed at all, bears testimony to the great care that
needs to be taken with the quality of the PDF that is stored away. Many users of (La)TEX
systems, including the publishers themselves, are only just realising the scale of the bitmap
font problem as they move to making their archived (La)TEX -produced PDFs available as
e-books or other ‘electronic’ products. The best long-term solution is to use outline fonts
from the very outset and, therefore, for (La)TEX distributions to adopt the Blue Sky or
BaKoMa outline fonts as their standard rather than the METAFONT bitmaps. There are
encouraging signs that this is happening with recent LATEX systems such as OzTeX (for
Macintosh) and MikTeX (for Windows). It is somewhat unfortunate, therefore, that the
teTeX distribution for UNIX systems defaults to bitmap fonts and hides away the fact that
outline fonts can be embedded, very simply, by giving a -Pcmz flag to dvips.

Given the very large amount of bitmap-font material already archived by academic
and STM publishers, together with the amazing amount of bitmap-font PDF material still
submitted as ‘camera ready copy’ to conferences, it is likely that the FontRep plug-in will
be useful for several years to come.

11 Acknowledgements

Our thanks are due to Jeff Finger and Dick Sites, of Adobe Systems Inc., for their help with
font recognition algorithms and tokenising of PDF. Thanks are also due to an anonymous
referee for suggesting the approach of section 7.2 and to Peter Thomas for trying it out.

References

[1] “ ISO Archiving Standards ”. http://ssdoo.gsfc.nasa.gov/nost/isoas/.

[2] D. E. Knuth. The TEX book — volume A of Computers and Typesetting. Addison-
Wesley, Reading MA, 1986.

[3] Leslie Lamport. LATEX: A Document Preparation System (2nd edn). Addison-Wesley,
second edition, 1994.

[4] D. E. Knuth. The METAFONT book — volume C of Computers and Typesetting.
Addison-Wesley, Reading MA, 1986.

[5] “The Ghostscript home page ”. http://www.cs.wisc.edu/~ghost.

[6] Adobe Systems Inc. PostScript Language Tutorial and Cookbook. Addison-Wesley,
Reading, Massachusetts, 1985.

18

[7] Adobe Systems Inc. Adobe Type 1 Font Format. Addison-Wesley, Reading, Mas-
sachusetts, 1990.

[8] “The Blue Sky Type 1 CM fonts ”. Y&Y, 106 Indian Hill, Carlisle, MA01741
http://www.yandy.com/cm.htm.

[9] Basil Malyshev. “ The BaKoMa fonts ”. Available from CTAN archives as
CTAN:fonts/cm/type1/bakoma.

[10] D. E. Knuth. Device-independent file format. TUGboat, 3(2):14–19, 1982.

[11] Tomas Rokicki. DVIPS: A TEX Driver, January 1993.

[12] Michel Goossens, Sebastian Rahtz, and Frank Mittelbach. The LATEX Graphics Com-
panion. Addison-Wesley, 1997.

[13] “TEX and PDF: Solving Font problems ”. Mirrored at
http://ecco.bsee.swin.edu.au/text/texpdf/texpdf-ffont.html#FIXFONT.

[14] “The Fontrep home page ”. http://www.eprg.org/research/.

19

