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Abstract

A large numberof heuristicalgorithmshave beendevelopedover the years
which have beenaimedat solving examinationtimetablingproblems .However,
mary of thesealgorithmshave beendevelopedspecificallyto solve onepartic-
ular probleminstanceor a small subsebf instanceselatedto a given real-life
problem. Our aim is to develop a moregeneralsystemwhich, whengiven any
examtimetablingproblem,will produceresultswhich arecomparatie to those
of a speciallydesignecheuristicfor that problem. We areinvestigatinga Case
basedreasoningd CBR) techniqueto selectfrom a setof algorithmswhich have
beenappliedsuccessfullyto similar probleminstancesn the past. Theassump-
tion in CBRis thatsimilar problemshave similar solutions.For our systemthe
assumptions thatanalgorithmusedto find a good solutionto oneproblemwiill
alsoproduceagood resultfor a“similar” problem.Thekey to thesuccessf the
systemwill be our definition of similarity betweertwo examtimetablingprob-
lems. The studywill be carriedout by runninga seriesof testsusinga simple
SimulatedAnnealingAlgorithm on a rangeof problemswith differing levels of
“similarity” andexaminingthe datasetsin detail. In this paperaninitial inves-
tigation of the key factorswhich will beinvolved in this measures presented
with adiscussiorof how thedefinitionof good impactsonthis.

Keywords:  Timetabling,HeuristicSearch

1. Introduction

The automatedimetablingproblemhasbeenstudiedin a variety of forms
for thelast40yearswith alargenumberof algorithmsandapplicationshaving
beendevelopedwhich areaimedat solving specificinstancef the problem.
Probablythe mostwell known typesof everydaytimetablesarebus & train
timetables. Thesedetail when and whereeachresource(bus or train in this
case)shouldbe allocatedandtheir planningmusttake a wide numberof con-
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straintsinto accountegardingdriverworking hours startingandendingpoints
for vehiclesand mary other constraintswhich arerelevant to the individual
timetable. Thesetypesof timetablegive a goodoverview of the key elements
of a generictimetablingproblem- namelythata setof eventsmustbe sched-
uledto certaintimeswhilst obgying a numberof rules,known asconstraints.

Timetablingis mainly concernedvith the assignmenof eventsto timeslots
subjectto constraints.Thereis not necessarilyary allocationof resourcedo
the eventstimetabled.In reality however, it is almostalwaysrequiredto know
that thereare sufiicient resourcesvailable for the given event to take place
at its specifiedtime aswell aswhich resourcesreallocated.More formally,
Wren[15], says:

“Timetabling is the allocation,subjectto constraintspf given resourcego ob-
jectsbeingplacedin spacdime, in suchaway asto satisfyasnearlyaspossible
asetof desirableobjectives”

TheUniversitytimetablingproblemcanbedividedinto two areasthesebe-
ing course(or lecture)timetablingandexaminationtimetabling. In this paper
we will consideronly the exam timetablingproblemwhich will be described
in moredetailin Section2.

Somerecentresearchi6] hasfocusedon hyperheuristicmethodsappliedto
timetablingproblemswith the aim beingto develop a moregeneralapproach
thanproducingproblem-specifiheuristics. Thesehyperheuristicswork on a
level of abstractiorabore thatof standarcheuristics to selectthe bestfrom a
selectionof lowerlevel heuristicalgorithms. The focusof this paperwill be
onacasebasedeasoningystenfor examtimetablingproblemswvhichworks
at the level of a hyperheuristic. Case-basedeasoning(CBR) hasbeenap-
plied directly to University coursetimetablingproblems[2], [3] successfully
andthe next logical stepis to considerusing CBR at a higher level of ab-
stractionto selectfrom a setof previously usedheuristicsto solve ary given
timetablingproblem.A moredetaileddescriptionof casebasedeasoningand
its usewithin our projectasa heuristicselectowill begivenin Section3.

The focus of this paperis on investigatingthe datasetsin more detail to
discover someof thekey elementghatwill definehow well analgorithmper
formswhenappliedto the problem.For this purposewewill beusingasimple
SimulatedAnnealingalgorithmto produceresultson a numberof variantsof
the givendatasets.A brief descriptionof this algorithmwill begivenin Sec-
tion 4. Our analysisof the datasetsusedandour plansfor furtheranalysisare
reportedn Section5.

2. Examination Timetabling

The examinationtimetablingproblemis a well known NP-hardoptimiza-
tion problemfacedby all universitiesand otherteachinginstitutions. There
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area large numberof variationson the themeof exam timetablingwith dif-
ferentinstitutionshaving differentrequirementsnd constraintsee[1]). In
somecasestherewill bealimited numberof roomsinto which examsmustbe
placedwhilst in othersthis may not be anissue. Similarly, someinstitutions
will have large amountf inter-departmentaiodularcoursesvhereasthers
will offer morestrictly department-basembursesneaningewer conflictswith
examsfrom otherdepartments.

In the mostbasictimetablingproblem,every examtimetablingproblemhas
asetE = {ey,...,e,} of xamsandasetP = {pi,...,p,} of periodsinto
whichall n examsmustbescheduledA numberof otherside-constrainteust
alsobeeitherfully or partially satisfiedo form thetimetable.Hard constraints
arethosewhich mustbe satisfiedn orderfor the timetableto befeasible. The
mostimportantof theseare:

= ary pair of exams,e;, ej, with studentsn commoncannotboth be as-
signedto the sameperiodp.

= theremustbe sufiicientresourcesvailablein eachperiod,p, for all the
examstimetabled.

Soft constraints arethosewhoseviolation shouldbe minimisedin orderto
producethe besttimetable.Unlike hardconstraintgshesearenot essentialbut
softconstrainsatishctionprovidesameasuref how goodatimetableis. Soft
constraintsrary greatlybetweerinstitutions. Someof the mostcommonones
are[1], [6]:

= Time assignment - An exam may needto be scheduledn a specificpe-
riod

= Time constraints between events - Oneexam may needto be scheduled
before/aftermnother

= Spreading events over time - Studentshouldnot have examsin consec-
utive periodsor two examswithin x periodsof eachother

= Resource assignment - An exammustbe schedulednto a specificroom

Examtimetablingproblemscaneasilybemodeledasgraphcolouringprob-
lems[10] with the nodesrepresentinghe examsandthe edgesrepresenting
clashedetweerexams.Theseedgesnayhave weightsto shav the numberof
studentsnvolved in eachclash. Many graphcolouringalgorithmshave been
implementecandadaptedo provide goodquality solutionsto theseproblems
aswell asavarietyof heuristicandlocal searchalgorithmsaimedatimproving
aninitial solutionby exploring a smallsubsebf all possiblemoves,known as
aneighbourhoodat eachiteration. Many of the examtimetablingalgorithms
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which have beendevelopedare very problem-specifiand cannotbe usedto
find high quality solutionsto a wide rangeof probleminstances.In general
though,no onealgorithmwill give bestresultsfor all examtimetablingprob-
lemstowhichit is applied.Somealgorithmswill performwell ononesubsebf
problemswhilst fairing fairly poorly whendifferentconstraintsareintroduced.

Our aim is to develop a systemwhich can selectthe bestfrom a rangeof
heuristicswhen given a new problem so that good resultscan be obtained
acrossawide spectrunof probleminstancesA casebasedapproactrequires
alarge amountof knowledgeof pastperformanceof algorithmson particular
problemsin orderto make anintelligent selectionof which algorithmshould
performbeston the new problem.Eachexamtimetablingproblemhasaland-
scape which is definedon its horizontal plane by the setof all feasibleso-
lutions' with the vertical aspectdefinedat eachof the points representinga
solutionby the objective functionfor the problem- this givesthe measureof
how good the solutionis basedon certaincriteria. How successfubl given
algorithmis at finding a good solution (a good local minima, or ideally the
global minima) thereforedependson how well it traversesthis landscapeo
escapdrom local minima and navigate towardsbetteroneswhilst providing
a good coverageof the searchspace. If we canshawv thata given algorithm
traversestwo differentproblemlandscapegquallywell, we canconsiderthe
two landscape$o be similar andthe key elementavhich definethe shapeof
thesdandscapeto form goodmeasuresf similarity.

3. Case Based Reasoning (CBR)

Casebasedeasonings motivatedby a processisedby humanspftensub-
consciouslywhenmaking everydaydecisions.CBR is a processof learning
from previous experiencesstoringthatknowledgein a usefulmannerandre-
trieving it to reusewhena similar situationpresentstself later Kolodner[12]
givesanin-depthexplanationof CBR,its applicationsaandthekey ideasbehind
it, of which a brief summaryis presentedhere.

A Caseis a ‘contextualisedpieceof knowvledgewhich representsn expe-
rience. Eachcasecontainsknowvledgeaboutone previous experiencerepre-
sentedandindexedin suchaway thatit canberetrieved easilywhenasimilar
situationis encountered.The casesare all indexed within a casebase,with
eachcaseaddinga separat@ieceof knowledgeto the system.

The motivation underlying casebasedreasonings that similar problems
have similar solutions. Whena new problemis encounteredits key descrip-
tors will be noted and matchedagainstthoseof problemsin the casebase
usingsomemeasureof similarity. The mostsimilar case(swill be retrieved

10nly thosesolutionswith no hardconstraintsiolated



Smilarity Measures For Exam Timetabling Problems 5

to bere-usedor the new problem.In somecasesthe exactsamesolutioncan
bere-usedput moreoftentherewill be differencedbetweernthe new problem
andthe retrieved problemwhich mustbe reconciled. In thesesituations,the
retrieved solutionmustbe adapteeforeit canbeusedto solve thenew prob-
lem. An importantaspecbf ary successfuCBR systemis thefeedbackwhich
thesystenrecevesregardinghow goodtheretrieved solutionwasfor the new
problem.If the solutionwasgood,thenthe new problemmay beaddedto the
systemf it containsary new informationwhich maybeusefulin thefuture. If
the solutionwasbad,however, the indexing for theretrieved caseneedgo be
reconsideredothatthiscasewvouldnolongerberegardedassimilar to thenew
case.Feedbaclaboutfailureis justasimportantasfeedbackaboutsuccessor
the systemto function to the higheststandard.Learningfrom pastmistales
andmakingsurenotto repeathemprovidesvery valuableknowledge.

For example,CBR is usedvery successfullyin the medicalfield for diag-
nosingillnesses.Key descriptorsof patients symptomsand otherimportant
informationis storedasa casein the casebase. Whena new patientarrives
with similar symptomsthe casewill beretrievedandthe differencedetween
thetwo mustbereconciledfor instanceadifferencein bloodpressurer heart
beat) thentheold casemaybeadaptedo find a diagnosidor the new patient.

CBR for Scheduling

CBR hasbeendiscussedand applieddirectly to schedulingproblemsby
Burke etal. [2], [3] (coursetimetabling),MiyashitaandSycara[14] (job shop
schedulinglandMacCarthy[13] (generalschedulinglamongstbthers. Burke
etal. usecasesrom the casebaseto help constructa solutionto a new prob-
lem by using graphisomorphismof attribute graphs. The main issuesthey
consideredre:

= how to representomple timetablingproblems
= how to organisethe casebase

= how to measuresimilarity betweentwo problemsto retrieve the most
usefulcase

= how to adapttheretrieved solutionfor the nen problem.

Thesearediscussedn moredetailin [2] and[6].

Our CBR system for Exam Timetabling

Oneof the next major areasfor CBR is to work on the level of a hyper
heuristic. This would select,from a rangeof previously usedheuristics,the
best oneto solve a new problemgivento the system.The key issuefor such
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a systemis how we definethe best algorithmto be usedfor the new problem.
Applying the generaktheorybehindCBR, we assumehatan algorithmwhich
performswell on one problemwill alsoperformwell on a similar problem.
Thereforehemainareaof consideratioris how two problemscanbemeasured
assimilar in suchaway thatthis reasoningholds.

Eachcasen our casebasewill consistof a problemdefinitiontogethemwith
an algorithm usedto successfullysolve the problem. A standardformat for
definingexamtimetablingproblemshasbeendevelopedfor usein the system
to enablematchingof ary two problemsto measureheir similarity. Oncea
new problemis presentedo the systemthe matchingprocesswill retrieve the
mostsimilar problemfrom the casebasealongwith the mostsuccessfullgo-
rithm(s) usedto solve thatproblem.Basedon how similartheretrieved cases
to thenew one,theretrievedalgorithmmaybeadaptedy tuningits parameters
in someway or by usinga hybrid of morethanoneretrieved algorithm.

The developmentof sucha systemprovidesa large numberof researclar
eas. Of these the biggestis the definition of similarity which is the onewe
considerhere. In this paperwe considerthe key elementsin the definition
of an examtimetablingproblemandwork towardsa definition for similarity
basedon which featuresseemto have the biggesteffect on how successful
analgorithmis. Of coursefor our purposestwo similar timetablingproblems
would meanthatthe samealgorithmwould be suitablefor bothproblems.Two
problemswould be dissimilarif a particularalgorithm/heuristiovorked very
well on oneproblembut not ontheother Essentiallythis meanghattwo sim-
ilar problemsshouldhave a similar landscapes seenfrom the point of view
of the algorithm operatingon theselandscapes Given the natureof the do-
mainin questiontherearea potentiallyinfinite numberof simpleandmore
comple statisticalmeasuresvhich couldbe usedto comparewo givenexam
timetablingproblems.Many of thesewill actuallyhave very little impacton
thesucces®f agivenalgorithmon the problem,whereasotherscould be ma-
jor factorsin how well the algorithmnavigatesthe searctspaceto find agood
solution. Our aim hereis to studythe make up of the datasetsthemseles
to examinethe effectsof someof the morelikely problemdescriptorson the
solutionsproduceddy our SimulatedAnnealingAlgorithm.

The resultsobtainedshouldhelp us to betterunderstandhe natureof the
problemdatasetsandtheirkey elementsvhilst eliminatingthosefactorswhich
have little or no effect on the succes®f the algorithm. The original ideafor
this researctwasto make relatively small changego our existing datasetsto
obsere how thesechangedhe quality of solutionsproduced.This leadon to
a numberof otherinterestingresearchguestionsvhich arediscussedateron
in this paper



Smilarity Measures For Exam Timetabling Problems 7

4, Testing Algorithm

Ultimately ouraimis to have alarge numberof differenttypesof algorithms
in our systemwhich have beenappliedto a numberof differentproblemsof
varying difficulty. Each(problem,algorithm)pair which producesa goodre-
sult will be storedas a casewith someproblemspossiblybeing duplicated
if morethanone algorithm provides high quality results. Initially, however,
we planto startbuilding up a casebasefrom the simplestalgorithmsandde-
velop themandintroducemore comple algorithmsin future researchwork.
With ourinitial algorithmswe arerunninga seriesof testsonreallife datasets
from awide variety of institutionsto provide a betterideaof how the problem
definition affectsthe algorithms behaiour andleadstowardsa definition of
similarity.

Our definition of similarity, S, betweentwo cases(, andC,, hasthe fol-
lowing form:

S(ConCy) = o> bl fi — fui)

=1
where:

= ¢() andh;() arefunctionswhich will betunedasmorecasesareadded
to thecasebase

= n isthenumberof featuresn the similarity measure

»  fx; and fy; arethevaluesof theith featureof cases”,, andC), respec-
tively

The main purposeof the testswe are carryingout firstly with our simple
algorithmsandlaterwith morecomplex algorithmsis to eliminatethefeatures
in the problemdefinition which have no effect on the behaiour of the algo-
rithm andto seehow stablecertainalgorithmsareregardingotherfeatures for
instancehow large a changean a particularfeatureis neededo have a signifi-
cantaffect on the quality of solutionproducedby a particularalgorithmwhen
comparedo anotheralgorithm.

Giventhe complex natureof the problemlandscapeswolvedit is unlikely
thatour testswill produceary concrete guantitatve resultsregardingexactly
which partsof the problemdefinition have what effect on the algorithmper
formance put we aimto acquireasmuchqualitative informationaspossibleto
enableusto male valuejudgementsn which featurego includein our simi-
larity measureandwhattype of toleranceto allow for eachindividual feature
in orderfor two casedo be consideredsimilar basedon thatfeature. Thetol-
eranceor eachfeaturewill bedefinedandtunedasthe setof functionsh; for
eachfeaturei in the similarity functiongiven.



We usea largestdegreegraphcolouringheuristicwith backtrackingo pro-
vide aninitial feasiblesolutior? for ourinitial algorithmwhichwill thenonly
explorethesetof feasiblesolutions.Thesimpleneighbourhoodisedis defined
by all solutionsin which oneexamis movedto a new time slot. The objec-
tive functionto be optimisedfor our problemsis discussedn Sectionss and6
whilst abrief descriptionof our SimulatedAnnealingalgorithmis givenin the
following subsection.

Simulated Annealing

Our SimulatedAnnealingalgorithmselectsboth exam, e, andperiod, p, at
randomcheckingwhethemmoving exame to periodp is alegalmove®. If not,a
maximumof 9 moreperiodsaretestedo find afeasiblemove, otherwiseanew
examis randomlychoserandthe processepeatedThis moveis thenaccepted
or rejectedusing the standardprobabilisticacceptanceriteria of Simulated
Annealing(seee.g.[11]) with improving moves always acceptedand worse
moves acceptedvith decreasingprobability basedon the geometriccooling
schedule.The startingtemperatureand cooling scheduleareinitially chosen
arbitrarily andtunedbasednresults.

Resultsmaybeimproved by limiting examselectionto only thoseinvolved
in second-ordeconflicts,althoughthiswill alsoreducetherangeof thesearch
spacenvestigated.Hill Climbing couldalsobe incorporatedn someway to
ensurdhatlocal minimaarefoundbeforethesearchmovesawayto anew area,
(in a similar mannerto a memeticalgorithm). For the purposeof this papey
however, we useda very simpleimplementatiorwhich still producesesultsof
anacceptablejuality sinceour aim isn’'t to comparethe absoluteresultswith
thoseobtainedby otheralgorithmsat this stage.

5. Data Sets

Initially, all our testshave beencarriedout on Carters Benchmarkdata
sets[9] without ary soft constraints.The objective functionusedby Carteris
basedonly on the sumof proximity costsasdefinedbelow:

32
Ws :

= 57 86{1’5}

wherew; is theweightgivento clashingexamsscheduled periodsapart.

Initially the most obvious problemfeatureshave beenidentified and are
presentedn Tablesl and2, althoughmary of thesearelikely to have only a
small effect on the performanceof algorithms. As well asthoseshawvn, there

2with all hardconstraintssatisfied
3A move which retainsthefeasibility of the overall timetable
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Tablel. Featuredor CarterDataSets

Data No. of No. of No. of Conflict Matrix No. of

Set exams students enrolments Density periods
CAR-S-91 682 16925 56877 0.13 35
CAR-F-92 543 18419 55522 0.14 32
EAR-F-83 181 1125 8109 0.27 24
HEC-S-92 81 2823 10632 0.20 18
KFU-S-93 486 5349 25113 0.06 20
LSE-F-91 381 2726 10918 0.06 18
STA-F-83 139 611 5751 0.14 13
TRE-S-92 261 4360 14901 0.18 23
UTA-S-92 622 21267 58979 0.13 35
UTE-S-92 184 2750 11793 0.08 10
YOR-F-83 190 941 6034 0.29 21

are a large numberof statisticalmeasuresvhich canbe appliedto the data
setsin orderto determinethe distributions of examsandenrolmentsamongst
students.Table 2 shavs that thereis a wide variationin the averagenumber
of enrolmentsper studentbetweenthe different datasetsand the maximum

numberof examsthat ary studentis taking. A statisticalanalysisof these
enrolmentsshouldgive anideaasto how well spreadhey areaway from the

averageandwhetherthereareary significantanomalieswithin ary of thedata
sets. Suchanalysisshould provide further basisfor our study of similarity

measures.

In this paper however, we look in more detail at the studentenrolments
themselesandexaminethe effect they have on the structureof the problem.
We alsoconsidethow big animpactthe objective functionhason thesemea-
suresof similarity.

6. Analysisof Data Sets - Results & Conclusions

Our initial plansfor startingour analysisof the datasetscentredaround
makingsomesmallcontrolledchangeso theexisting datasetsandrunningthe
samealgorithmon the original setandthe new setandexaminingthe effects
thesesmallchange$ave ontherunningof thealgorithm.Fromthis we hoped
to drav someconclusionsasto whetherthe changein questionhada major
effect on the algorithmandif so,how big a changefrom the original dataset
wasneededo obsere this changein algorithmperformance.ln orderto do
this though, we would needto examinethe impact of thesechangeson all
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Table2. Featuredor CarterDataSets

enrolments enrolments Largestno.

Data perstudent Examsper perexam of clashes

Set average  max(num) period average  max for 1 exam
Carleton91 3.36 9(1) 195 83.40 1385 472
Carleton92 3.01 7(29) 17.0 102.25 1566 381
EarlHaig83 7.21 10(9) 7.5 44.80 232 134
EdHEC92 3.77 7(1) 45 131.26 634 62
KingFahd93 4.70 8(11) 24.3 51.67 1280 247
LSE91 4.01 8(3) 21.2 28.66 382 134
St.Andrevs83 9.41 11(209) 10.7 41.37 237 61
Trent92 3.42 6 (20) 11.4 57.09 407 145
TorontoA&S92 2.77 7(23) 17.8 94.82 1314 303
TorontoE92 4.29 6 (20) 18.4 64.09 482 58
YorkMills83 6.41 14 (1) 9.0 31.76 175 117

thevariousproblemdescriptors- for instancewhateffect would remaoving 10
studentdrom a givendatasethave on enrolmentsandthe conflict matrix*?

Removing redundancy from Data Sets

Theinputfiles for the CarterDatasetsconsistof setsof (student, exam)
pairsrepresentingpne enrolmentfor a given student. Furtherenrolmentsor
the samestudentarerecordedn the samefashionon following lines. It was
obsenredthatin mary of the datasetstherewerea significantnumberof stu-
dentswho hadonly one enrolment. Thesestudentsjt was decidedhave no
impactonthedifficulty of the examtimetablingproblemor its landscapaince
they areinvolved in no clashesandthereforethey do not have ary effect on
theendresult—they cansit theironeexamequallyeasilywheneerit is sched-
uledsincecapacityconstraintsarenot consideredOur first new datasetswere
then producedby remaoving all thosestudentswith a single enrolmentfrom
the problemandrunningthe SimulatedAnnealingalgorithmon this reduced
studentset. Table3 shavs someof the key statisticsof thesedatasetsfor 3 of
the Carterproblemsandthe resultsconfirm that removing thesestudentshas
no impacton the final result® ascalculatedby dividing the total penaltyfor

4The matrix of examsdenotingwhich examshave studentsn commonandthereforeclashwith eachother
5Thesmallvariationin resultsin table3 is dueto the randomelemenbf the SimulatedAnnealingprocess
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Table 3. Resultsusing SimulatedAnnealingon 3 CarterData Setswith all singleenrolment
studentsemoved

Data Students Total Average Standard Result
Set enrolment enrolment Deviation
Carleton91 16925 56877 3.36 1.57 6.84
Carleton91minus 13516 53468 3.96 1.15 6.82
Trent92 4360 14901 3.42 1.41 11.32
Trent92minus 3693 14234 3.85 1.15 11.40
EdHEC92 2823 10632 3.77 1.44 15.33
EdHEC92minus 2502 10311 4.12 1.11 15.50

the timetableby the numberof student®. The reduceddatasetsare denoted
by adding'_minus’to the original datasetin thetable.

Themainpointsto notefrom theresultsin Table3 arethat,whilst removing
arelatively large numberof studentgrom the problem( 20%in the caseof the
Carleton91dataset) thereis no effect at all on the final timetableproduced.
However, it doeshave afairly noticeablesffect on mary of the othermeasures
whichwe putforwardasbeingpossiblefactorsin a similarity measure- mary
of which would be statisticalmeasuredasedon the numberof studentsor
enrolmentandratiosinvolving thesawo factors.Fromthepointof view of the
algorithmoperatingon the problems the Carleton91datasetandits reduced
Carleton91minus dataset are identical and shouldthereforebe regardedas
similar (or indeedidentical)from a Casebasedreasoningheuristic selector’
perspectie. Thisresultshavs usthatafairly detailedanalysisof the datasets
andwhatthe studentdn thesedatasetsactuallyaddto the overall problemis
necessarypeforewe startto considerary measure®sf similarity betweerntwo
datasets.

On the faceof it, usingthe measureshavn in Table 3, the reduceddata
setsare not very similar to their equivalent completesetsat all, whencom-
paringthe studentsenrolmentsaverageenrolmentandthe standardieviation
of the enrolmentsyet aswe have shavn, the reducedsetsshouldbe consid-
eredidentical to their completesetsfrom the point of view of selectingan
algorithmto solve the problems. Therefore,if thesefactorsare still to be
consideredvheninvestigatingmeasure®f similarity, we needto make sure
that we have reducedour datasetsto their minimum definition by removing
ary redundang beforecomparingthemfor similarity. For example,if Car

5Theresultsfor the reducedsetsarecalculatedby dividing by the numberof studentsn the equivalentfull
setto demonstrat¢hatthey canberemovedfrom the datasetwithout changingthe problem
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leton91.minusformedpartof acasé within our casebaseandthe Carleton91
datasetwereinput to the systemto find a match,it would be pre-processed
beforethe matchingprocesdo remove the singleenrolmentstudentsthenthe
Carleton91minus casewould be retrieved as an exact matchandits corre-
spondingalgorithmusedto solve the Carleton91set.

This resultprompteda variety of further researchquestionswvhich needed
to be examinedfurther Amongstthesewere the questionsof how a ‘good’
timetableis definedandwhetherthereis ary moreredundang which canbe
removedfrom the datasetsbeforethe matchingprocess.

A measurdor reportingresultsfor the Carterdatasetsis Average penalty
per student which is calculatedby taking the overall penaltyfor the whole
timetable,definedby the objective function, and dividing by the numberof
studentsn the dataset. However, in absolutetermsthis numbermeansvery
little since,asshavn above, the numberof studentsn a datasetis notavery
good measureof similarity. It canbe amguedthat since 3409 studentsn the
Carleton91datasetare only taking 1 exam and thereforeadd no penaltyto
the overall timetable thatthesestudentsshouldnt beincludedin the Average
penalty per student measureln anextremecaseadatasetcouldcontain50%
of studentswvho take only 1 exam- in this case dividing the total penaltyfor
the timetableby all the studentsvould give a resulttwice asgoodasif you
ignorehalf of the studentsvho addnothingto the “difficulty” of the problem
- yet thetimetableitself would be identicalin both cases.In itself thisisn't a
major concernsincethe resultsproducedor thesedatasetsareonly usedfor
comparisompurposesgainsteachothersoaslong aseveryoneusesthe same
measurealgorithmscanbe comparedo seewhich is better Theseobsenra-
tionsdid, howeverleadusin thedirectionof our furtherresearchnto theissue
of moreredundang in the datasets.

Examining subsets of the Data Sets

Having removed all the single enrolmentstudentsfrom the datasetsand
witnessedheimpactthis hadon the resultsandpotentialsimilarity measures,
we decidedo seeif therewasary moreredundang within the problemdefini-
tion for thesesets.The next obviousareato investigatevastheissueof repeat
studentsj.e. 2 or more studentswith the exact sameenrolments.Theseare
very commonin real-life problemsgiventhatstudentsnthe samecoursetend
to have mary or all examsin common. In additionto exact repeatstudents,
therearealsostudentasvhoseenrolmentgorm a subsebf 1 or moreotherstu-
dents. With the studentenrolmentfile sortedin descendingrderof number
of enrolmentswe could now readin studentsone at a time and remove ary

"Thebestalgorithmfoundto solve this problemforming the otherpartof the case
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Table4. Percentageandnumbersof studentsn the BaseSet,SingletonSetandWeightsSet
for CarterDataSets

Data Total Base Singleton Weights
Set Students Set Set Set

Carleton91 16925 8194(48%) 3409(20%) 5322(31%)
Carleton92 18419 6195(34%) 3969(22%) 8255(45%)
EarlHaig83 1125 754(67%) 1(0%) 370(33%)
EJHEC92 2823 444(16%) 321(11%) 2058(73%)
KingFahd93 5349 1367(26%) 276(5%) 3706(69%)
LSE91 2726 1253(46%) 99 (4%) 1374(50%)
St.Andrevs83 611 150(25%) 0 (0%) 461 (75%)
Trent92 4360 1924(44%) 667 (15%) 1769(41%)
TorontoA&S92 21267 7946(37%) 6181(29%) 7140(34%)
TorontoE92 2750 392(14%) 79 (3%) 2279(83%)
YorkMills83 941 670(71%) 1(0%) 270(29%)

duplicatestudentsrom the dataset. Thesewould alsoinclude ary students
whoseclasheshadalreadybeenrecordedby earlierstudents.For example,if
astudentwith enrolments:, b andc is followed by 3 studentswith enrolments
(a,b), (a,c) and (b, c) respectrely, the last 3 studentscanall be discarded
from the datasetsincetheir clashesvererecordedoy thefirst student.

In removing theseduplicate studentsijt wasnotedthattheirabsencevould
have an impacton the final penaltyfor the timetable,unlike the removal of
the single enrolmentstudents. The reasonfor this being that the objective
function usedweightsall clashesby the numberof studentsinvolved in the
clashso that clasheswith a large numberof studentsare a higher priority to
spreadwell apartthanthosewith only a few students. Therefore,duplicate
studentsdo addto the overall penaltyof the timetable. Despitethis, it was
still consideredvorthwhileto remove themto examinetheremainingset. The
justificationfor this being that while duplicatestudentsdo contritute to the
problemdefinition, they only do sorelative to the objective function usedto
definea goodtimetable. In termsof the hard constraintshey dont alterthe
problemandwe areinterestedo examinethe effect of the objective function
on measuringhe similarity of problems. The resultsobtainedare shavn in
Table4.

The Sngleton Set is the setof single enrolmentstudentsemored initially,
the weightssetis the setof duplicatestudentqas definedabore) whilst the
Base St is the setof studentgemainingafterall studentsn boththe Singleton
setandtheWeightssetareremoved. The BaseSetis a(smaller)setof students
which definetheconflictmatrix sinceall studentgsemovedto theothertwo sets
did notaddary extra knowledgeto the conflict matrix. Hence this setdefines
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the set of feasiblesolutionsto the larger problemwhilst the Weightssetis
so hamedbecausdhe studentsn that setsimply addweightsto the already
existing clashes.

Onemajor point to notefrom the 3 setsis thatwhilst the Singletonsetcan
betaken on its own, the Basesetandthe Weightssetarelesseasyto split in
a meaningfulway sincethe Basesetdoesstill include a numberof weights
on variousedges. This is dueto the fact that only studentsvhoseentire set
of clasheshad alreadybeennotedwere removed to the weightsset, leaving
thosewho have only someof their clashesalreadynotedto beincludedin the
Basesetastheirremainingclashesaddnew informationto theset. If ary single
studenis removedfrom theBaseset,thedefinitionof thefeasibleproblemwill
changebecaus@neor moreclashewill belost. Remaing studentdrom the
weightsset,whilst keepingtherestfor the problemwouldretainthe samebasic
problemdefinition,but will changeheweightingsandthereforeghebiasof the
clashesvhenthe SimulatedAnnealingalgorithmoperate®n the problem.

Using the objective function given by Carter[9] to provide resultsfor the
problemsthereforeijt is difficult to usetheinformationdiscoreredby splitting
the datasetsup in this way dueto the abose mentionedweightsincludedin
the Baseset. However, we decidedthat this splitting up of the datasetsinto
subsetdooked promisingas a potentiallyimportantfactorin comparingdif-
ferentdatasetssincethe percentagef studentsforming the basesetvaries
greatly betweendatasets- for instance the fact that only 14% of the 2750
studentsn the TorontoE92atasetarerequiredto definethe problemin terms
of feasibility comparedo 71%of the 941 YorkMills83 studentss asignificant
difference.

As aresultof thiswe decidedo re-considethedefinitionof agood timetable
asproposedy Carters objective function. Fromthe point of view of astudent
taking the exams,their criteriafor how importantparticularclashesare could
includea variety of individual reason$asedon how difficult they find certain
examschedule$o be,but noneof thesecanbetakeninto accounin theoverall
timetablesincethey areindividual preferencesHowever, the numberof other
studentsnvolved in a particularclashis completelyunimportantto ary indi-
vidual student.Whetherthey arethe only studentdoing two particularexams
or whetherthereare 100 otherstudentsalsotaking thosetwo examsdoesnot
matterto themandthereforeweighting clasheshy the numberof studentdn-
volvedin the clashgiveswhat could be consideredan unbalancediasin the
timetable® Examswith mary studentsn commonmay often be easierones

8Thisis ahighly debatabléssueandoursis justoneperspectie on how to considemwhata"good" timetable
is. Weighting clashesby the numberof studentsnvolved is widely acceptedasa methodfor measuring
"good"andin noway aretheauthorsrying to suggesthatthis methodis notvalid. Ouraim hereis simply

to considerotherpotentialmethodsf defininga "good" timetableandexaminetheirimpacton measuring
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from the point of view of the studenthaving to revise for andsit the exam.
Corversely examswith relatively few studentsmay be more specialisecand
difficult from astudents perspectie - studentsvould needmoreintensve revi-
sionfor suchexamsif they arescheduleatlosetogether Weightingtheformer
far morethanthe latter would resultin the ‘easier’ examsbeing spreadwell
apartfor lower overall penaltywhilst the ‘harder’ examsfor the studentamay
berelatively closetogethersincetheir total penaltyin thetimetableis small.

Using this justification we decidedthat removing all studentweightings
from the objective function and weighting clashespurely by the numberof
periodsapartin thetimetablewould producewvhatcouldbeconsidered “f air”
timetablefrom the students point of view andwould vastly simplify the prob-
lem from the point of view of the datasets,meaningthatwe couldtotally dis-
cardall the Weightssetsand concentratgurely on the BaseSetsof students
which definethe conflict matrix®.

Experimentzarriedoutonthewholedatasetandonjustthebasesetof each
datasetusingsuchan objective functionwith no studentweightingsshaved,
asexpectedthattheresultsproducedthetotal penaltyfor thetimetableasde-
fined by the new objective function) wereidenticalfor the full setof students
andfor thebaseset. Theconclusionto bedravn from thisis thatthe definition
of agood timetablecanhave a hugeimpactontherelevant statisticsof agiven
dataset.Usingour new definitionof good,the 2750studentTorontoE92prob-
lemisidenticalto the392studenfTorontoE92BaseSetproblemandtherefore,
shouldbe matchedassuchby our similarity measure.

Conclusions and Further Wor k

To summariseghe main conclusionsfound in our work so far, in orderto
useary of the statisticalmeasureproducedor a given datasetasa measure
of similarity within our CBR systemwe mustfirst strip awvay ary redundang
from the databasedon the particular objective function usedand use only
the minimum setof studentswvhich adequatelydefinethe problemto match
againstdatasetsexisting in the database Our experimentshave shavn that,
dependingpnhow youdefineagood timetable thesamedatasetcanbesplitup
andstrippeddown into very differentlooking datasets but which areactually
identicalfor the purpose®f runninganalgorithmto find the bestresults.

Our future work will continuewith this analysisandintroducea number
of new statisticalmeasure®f the datasets,examiningtheir distributionsand
seeinghow theremoval of setsof studentr examsfrom the datasetchanges
the problem. As hasbeenshavn in this papey remaoving studentsat random,

similarity - ourjustificationbeingthatpurelyfrom a student perspectie, the numberof studentsnvolved
in ary givenclashis not arelevantfactorfor the schedulingof exams
9Theweightingsincludedin the BaseSetwould alsoberemaovedimplicitly by the new objectize function
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even alarge numbey from the original datasetmay have no impactat all on
the problem,whereasremaving just 1 or 2 studentsfrom the BaseSet can
completelychangethe problemdefinition and difficulty. We will also carry
out testsof the samekind using our other algorithmsas well as examining
the effect on one optimisationfunction of optimisingresultsusinga different
function. - i.e. we will outputtheresultsfrom two functionswhilst optimising
thesolutionusingonly oneof themandobsenre how theresultsfrom the other
functionalter
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