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ABSTRACT 

Support vector machines (SVM) have considerable potential as classifiers of remotely sensed 

data. A constraint on their application in remote sensing has been their binary nature, 

requiring multi-class classifications to be based upon a large number of binary analyses. Here, 

an approach for multi-class classification of airborne sensor data by a single SVM analysis is 

evaluated against a series of classifiers that are widely used in remote sensing, with particular 

regard to the effect of training set size on classification accuracy. In addition to the SVM, the 

same data sets were classified using a discriminant analysis, decision tree and multilayer 

perceptron neural network. The accuracy statements of the classifications derived from the 

different classifiers were compared in a statistically rigorous fashion that accommodated for 

the related nature of the samples used in the analyses. For each classification technique, 

accuracy was positively related with the size of the training set. In general, the most accurate 

classifications were derived from the SVM approach, and with the largest training set the 

SVM classification was significantly (p<0.05) more accurate (93.75%) than that derived from 

the discriminant analysis (90.00%) and decision tree algorithms (90.31%). Although each 

classifier could yield a very accurate classification, >90% correct, the classifiers differed in 

the ability to correctly label individual cases and so may be suitable candidates for an 

ensemble based approach to classification. 
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I.  INTRODUCTION 

Land cover is a critical variable that links many parts of the human and physical 

environments. Accurate and up-to-date information on land cover is required for a plethora of 

applications, including land resource planning, studies of environmental change and 

biodiversity conservation. Realistically, the only feasible source of information on land cover 

over large areas and which allows data to be acquired in a regularly repeatable manner is 

remote sensing. Despite the great potential of remote sensing as source of information on land 

cover and the long history of research into the extraction of land cover information from 

remotely sensed imagery, many problems have been encountered and the accuracy of land 

cover maps derived from remotely sensed imagery has often been viewed as too low for 

operational users [1, 2]. Many factors may be responsible for the problems encountered. 

These include the nature of the classes (e.g. discrete or continuous), the properties of the 

remote sensor (e.g. its spatial and spectral resolutions), the nature of the land cover mosaic 

(e.g. degree of fragmentation) and the methods used to extract the land cover information 

from the imagery (e.g. classification methods). These various problems have driven research 

into a diverse range of issues focused on topics such as sensor design, class definition 

protocols and image analysis techniques. Here, attention is focused on some aspects 

associated with the latter issue. 

 

Many of the problems in mapping land cover noted in the literature relate to the methods used 

to extract the land cover information from the imagery. This has driven a considerable 

amount of research into classification methods and supervised classifications in particular. 

Early work based on basic classifiers such as the minimum distance to means algorithm 

prompted the adoption of more sophisticated statistical classifiers such as the maximum 
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likelihood classification. The problems associated with satisfying the assumptions that 

underlie such classifications has driven research into non-parametric alternatives including 

techniques such as evidential reasoning [3, 4] and more recently neural networks [5-7] and 

decision trees [8-10]. Although the accuracy with which land cover may be classified by these 

techniques has often been found to be higher than that derived from the conventional 

statistical classifiers [e.g. 11-14] there is still considerable scope for further increases in 

accuracy to be obtained and a strong desire to maximise the degree of land cover information 

extraction from remotely sensed data. Thus, research into new methods of classification has 

continued and support vector machines (SVM) have recently attracted the attention of the 

remote sensing community [15-17]. Key attractions of the SVM based approach to 

classification are that it seeks to fit an optimal hyperplane between classes and may require 

only a small training sample [15, 18, 19]. 

 

Although the potential of support vector machines is evident and early studies have 

demonstrated considerable success in using them to map land cover accurately there are 

problems in their usage. One of the main concerns is that SVMs were originally defined as 

binary classifiers and their use for multi-class classifications is more problematic, with 

strategies that reduce the multi-class problem to a set of binary problems typically adopted. 

Because multi-class problems are commonly encountered, researchers have sought to extend 

the basic binary SVM approach to form a multi-class classifier [20-24]. Recently, an 

approach for a ‗one-shot‘ multi-class SVM classification has been reported [25] that has great 

potential for application in remote sensing. This multi-class SVM is particularly attractive for 

classification since key parameters (C and γ, defined below) need only be defined once rather 

than for each binary analysis and, as fewer support vectors may be required, it may be 

possible to reduce the number of training samples required [25]. Here, we aim to evaluate this 
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multi-class SVM approach to land cover mapping relative to a suite of other popular 

classifiers. In particular this evaluation focuses on the accuracy with which a data set may be 

classified using differentially sized training sets. The paper is structured such that we first 

introduce the fundamentals of SVM classification in the next section. In section III the 

remotely sensed data sets and classification methods used are outlined. In section IV the 

means by which classification accuracy was assessed and, critically, compared in a 

statistically rigorous fashion is discussed before presenting the results in section V and 

concluding in section VI. 

 

 II.  SVMs 

SVMs are very attractive for the classification of remotely sensed data. This approach seeks 

to find the optimal separating hyperplane between classes by focusing on the training cases 

that lie at the edge of the class distributions, the support vectors, with the other training cases 

effectively discarded [18, 19, 26]. Thus not only is an optimal hyperplane fitted but also the 

approach may be expected to yield high accuracy with small training sets, which given the 

costs of training data acquisition in remote sensing could be a very advantageous feature. The 

basis of the SVM approach to classification is, therefore, the notion that only the training 

samples that lie on the class boundaries are necessary for discrimination.  

 

The basic nature of classification with a SVM can be illustrated most easily for the simple 

situation in which there are two linearly separable classes in q dimensional space. Using the 

training data represented by {xi, yi}, i=1,…..r,  yi {1,-1} in the q dimensional space,
 
 the goal 

is to develop a classifier that generalizes accurately. Many hyperplanes could be fitted to 

separate the classes but there is only one optimal separating hyperplane, which is expected to 

generalize well in comparison to other hyperplanes. This optimal hyperplane should run 
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between the two classes, with all cases of a class located to one side of the separating 

hyperplane which is itself located such that the distance to the closest training data points in 

both of the classes is as large as possible.  

 

A hyperplane can be defined by the equation w.x + b = 0, where x is a point lying on the 

hyperplane, w is normal to the hyperplane, b is the bias and 
w

b
 is the perpendicular distance 

from the hyperplane to the origin (Figure 1), with w  the Euclidean norm of w.  For the 

linearly separable case, a separating hyperplane can be defined for the two classes 

as: 1biw.x (for 1iy ) and 1biw.x (for 1iy ). The two equations can be 

combined as: 

01)(  by ii w.x           (1) 

 

The training data points on these two hyperplanes are called as support vectors and are central 

to the establishment of the optimal separating hyperplane. The support vectors of the two 

classes lie on two hyperplanes, which are parallel to the optimal hyperplane and are defined 

by 1biw.x . The margin between these planes is
w

2
.  The maximization of this margin 

leads to the following constrained optimization problem, 

 

min }
2

1
{

2
w              (2) 

 

under the inequality constraints of equation 1. 
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Commonly, the classes are not linearly separable and the constraints of equation 1 cannot be 

satisfied. To deal with such cases using only linear separating boundaries, a new set of 

variables, sometimes referred to as slack variables, r

ii 1}{  , that indicate the distance the case 

is from the optimal hyperplane (Figure 1) and so the amount of violation of the constraints 

may be introduced. The constraint then becomes, 

  

ii by  1)(w.x        (3) 

 

The above constraint, in case of outliers, can always be met by making 
i  very large, so, a 

penalty term, 


r

i

iC
1

  is added to penalize solutions for which 
i  are very large. The constant 

C controls the magnitude of the penalty associated with training samples that lie on the wrong 

side of the decision boundary. With a low value of C, an inappropriately large a fraction of 

support vectors may be derived while with a large value of C there is a danger of the SVM 

over-fitting to the training data and so having low generalization ability. In practice, however, 

a considerable degree of robustness of SVM based classification to variation in its parameters 

has been noted [19]. With the addition of the penalty term, the optimization problem 

becomes, 

   ]
2

min[
1

2





r

i

iC 
w

                                                 (4) 

 

under the constraints of equation 3. In this, the first part of the term aims to maximize the 

margin while the second part seeks to penalize the cases located on the incorrect side of the 

decision boundary with C controlling the relative balance of these two competing objectives 
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[19]. If the classes overlap considerably in feature space, then 


r

i

iC
1

 can be very large and 

the hyperplane may not generalize well.  

 

The basic approach outlined above may be extended to allow for non-linear decision surfaces. 

For example, the input data may be mapped into a high dimensional space through some non-

linear mapping which has the effect of spreading the distribution of the data points in a way 

that facilitates the fitting of a linear hyperplane. Specifically, the training data may be 

projected into a high dimensional, Hilbert, space H , through a mapping function φ , or 

HR qφ : . An input data point x  can be represented as )(xφ  in the high dimensional 

space H . The expensive computation of ( ))(),( ixφxφ in a high dimensional space is reduced 

by using a positive definite kernel such that: 

 

),())(),(( ii k xxxφxφ                 (5)                                          

 

 leading to decision functions of the form;  

 

)),(sgn()(
1

bkyxf i

r

i

ii  


xx               (6)                                

 

where αi, i=1,…,r are lagrange multipliers, the maximal magnitude of which is governed by C 

[19]. To train the classifier (equation 6), only the kernel is required and no explicit knowledge 

of φ  is needed. A kernel that can be used to construct a SVM must meet Mercer‘s condition 

[27-29] and one such kernel is the radial basis functions (RBF),  
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2

)(
),( iek i

xx
xx





    (7) 

where γ is the parameter controlling the width of the Gaussian kernel. The accuracy of 

classification by a SVM is dependent on the magnitude of the parameters C and γ. With a 

large value of γ and/or C, there is a tendency for the SVM to over-fit to the training data, 

yielding a classifier that may generalize poorly. In such circumstances, it may be possible to 

classify the training data accurately but the accuracy with which an independent testing set is 

classified may be small. Consequently, the magnitude of C and γ must be determined 

carefully. In practice, a large generalization ability may be obtained by setting γ appropriately 

given a defined value for C. If ground data are plentiful, it may be possible to use a cross-

validation approach or a validation set, distinct from both the training and testing sets, to help 

select appropriate values for the parameters or to predict the generalization ability directly 

from the training set [19]. 

 

Unfortunately, however, SVMs were originally designed for binary classification yet most 

remote sensing applications involve multiple classes. For the benefit of the SVM approach to 

be realised in remote sensing, therefore, some means of extending the SVM approach to 

classification to multi-class situations is required. 

 

Two main approaches have been suggested for applying SVMs to multi-class classifications. 

In each the underlying basis has been to reduce the multi-class problem to a set of binary 

problems, enabling the basic SVM approach to be used. The two approaches are, however, 

very different in detail. In the ‗one against all‘ approach a set of binary classifiers, each 

trained to separate one class from the rest, is undertaken and the pixel allocated to the class 

for which the largest decision value was determined [25]. Specifically, with this approach 
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after solving equation 4, for a case xi there are n decision functions, where n is the number of 

classes,  

 

iii b )()( xφw , where i=1,….n 

 

The data xi then belongs to the class, for which the above decision function has the largest 

value. That is, 

 

class of xi = argmax i=1, …., n ))()(( iii b
xφw    (8) 

 

This approach has been used to map land cover from remotely sensed data [e.g. 15]. As well 

as requiring n analyses to be undertaken this approach may suffer from error caused by 

markedly imbalanced training sets. 

 

The second method of reducing a multi-class problem to a series of binary ones to enable the 

application of the basic SVM model for multi-class classification is the ‗one against one‘ 

approach. In this, a series of classifiers are applied to each pair of classes, with the most 

commonly computed class label kept for each pixel. The application of this method requires 

n(n-1)/2 classifiers or machines be applied to each pair of classes and a strategy to handle 

instances in which an equal number of votes are derived for more than one class for a pixel 

[25]. Once all n(n-1)/2 classifiers have been undertaken, the max—win strategy is followed. 

Specifically, if 
jlijl b )()sgn( xφw ) evaluates xi to be in j

th
 class, then the vote for the j

th
 

class is incremented by one, else that for the l
th

 class is increased by one. Finally, the training 

data vector xi is predicted to belong to the class with maximum number of votes. 
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Multi-class classifications of remotely sensed data by SVM have to-date been based mainly 

on the above approaches [e.g. 15, 17, 18, 30]. While both strategies to reducing the multi-

class problem to a set of binary classifications enable the basic SVM to be employed, a more 

appropriate approach may be to consider all classes at one time, yielding a multi-class SVM 

[25]. One means to achieve this, which is similar in basis to the ‗one-against-all‘ approach, is 

by solving a single optimisation problem. With this, n two class rules where the m
th

 function 

bm  )(xφw  separates the training data vectors of class m from that of others are constructed. 

Hence, there are n decision functions or hyperplanes but all are obtained by solving one 

problem, 




 
iym

mi

l

i

m

n

m

m
bw

C ,

11
,, 2

1
min 


ww    ,   (9) 

under the constraints, 

mimimyiy bb
ii ,2)()(  

xφwxφw , 

imi ynmli \},....1{,,.....,1,0,   

where i=1,…,l are the training data vectors. The decision function is then, 

 

argmax m=1,…n  ( mim b )(xφw )    (10) 

 

In reducing the classification to a single optimization problem this approach may also require 

fewer support vectors than a multi-class classification based on the combined use of many 

binary SVMs [25]. Additionally, with the multi-class SVM approach the values for the 

parameters C and γ need only to be defined once. 
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III.  DATA AND METHODS OF CLASSIFICATION 

Imagery acquired by an airborne thematic mapper (ATM) was used. These data were acquired 

by a Daedalus 1268 ATM in July 1986 over an agricultural region adjacent to the village of 

Feltwell in Eastern England. The data were acquired in 11 spectral wavebands with a spatial 

resolution of approximately 5 m. Near the time of the ATM data acquisition a crop map for 

the test site was constructed by conventional field survey methods. This map identified the 

single crop type planted in the fields, which were very large in comparison to the spatial 

resolution of the imagery.  

 

Most of the test site had been planted to wheat, sugar beet, carrots, barley, grass and potatoes. 

Focusing on just these six classes, a stratified random sample of 100 pixels per-class was 

derived for each class and available for use in training the classification analyses. Training 

sets comprising a sample of between 15 and all 100 pixels per-class were constructed to allow 

the effect of training set size on classification accuracy to be evaluated. Since the results of a 

classification may be highly dependent on the specific sample of pixels selected, for each size 

of training set, except that using all 100 pixels available for each class, five independent 

samples were derived from the available training data. For each training set size, each of the 

five training sets was used to train a classification and, to avoid extreme results, the main 

focus here is on the classification with the median accuracy. Accuracy was assessed using a 

further, independent, random sample of 320 pixels that was acquired for use as a testing set. 

This testing set was used in the evaluation of the accuracy of all the classification analyses 

undertaken.  

 

To ensure that the basic assumptions that underlie classification, namely of pure pixels and 

discrete classes, were satisfied, locations in the vicinity of field boundaries were masked-out 
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of the analyses to ensure that the sampled pixels were located within the relatively 

homogeneous cover of the crop planted in the large fields.   

 

From previous research with this data set it was apparent that the data in all 11 wavebands 

were not required [31]. Here, the three wavebands identified as providing the greatest level of 

inter-class separability were selected for the analyses. These were the 0.60-0.63, 0.69-0.75 

and 1.55-1.75 μm wavebands and the location of the classes in the feature space they define is 

shown in Figure 2. 

 

The multi-class SVM approach with a RBF kernel and C=1 was used to classify the data. 

Since the accuracy of the classification may vary with the γ parameter, the relationship 

between accuracy and γ, sampled over the range 0.005 to 1.0, was defined for each analysis. 

For each of the training sets used, the results for the most accurate classification of the testing 

set were derived and the median value selected. Some implications of this approach for the 

relative evaluation of the SVM against more conventional classifiers is discussed below after 

first outlining the other classifiers used in this study. 

 

In addition to the multi-class SVM approach to classification outlined above, three other 

classifiers were used. These were a discriminant analysis, decision tree and feedforward 

neural network.  

 

Discriminant analysis is a conventional probabilistic classifier that like the maximum 

likelihood classifier allocates each case to the class with which it has the highest posterior 

probability of membership. As a basic probabilistic classifier, the discriminant analysis results 

provide a benchmark against which the relative accuracy of the other classifications may be 
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assessed. Furthermore, as a basic statistical classifier, a major concern in the training stage of 

the classification is to derive a representative description of each class, specifically of its 

mean and variance. Consequently, it is typically recommended that the training set comprise, 

as a minimum, a sample of typically 10-30 pixels per-class per-waveband used [32]. Such a 

sample size is, on the assumption that the data are normally distributed, deemed to provide an 

appropriate summary of the data‘s distribution from which a representative estimate of the 

mean and variance may be derived.  

 

The decision tree algorithm used the gain ratio to split nodes and the pessimistic error rate in 

tree pruning [33]. Again the size of the training set can influence classification accuracy and 

other studies have shown that the accuracy of decision tree classification increases with 

training set size [14].   

 

The neural network used was a basic multi-layer perceptron. The network‘s architecture and 

algorithm parameters were defined from an evaluation of several hundreds of candidate 

networks. Previous studies have shown that the training set, notably in terms of its size and 

composition can have a marked impact on the accuracy of classification by a neural network 

[34-36]. Moreover, it is apparent that the individual training cases vary in importance, with 

those lying close to the class borders most informative and helpful in determining the location 

of the classification hyperplanes [37].  

 

The four classifiers, therefore, differed markedly in their basis for class allocation and 

expected dependency on training set size. These differences between the four classifications 

mean that they may perhaps be viewed as complimentary approaches and so used together 
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rather than individually. This may be valuable as ensemble based approaches can yield 

accurate image classifications [38-41]. 

 

For fair comparison of the classifications it is important to note some important implications 

associated with the methodology adopted. Although the generalization ability of the SVM 

may be relatively robust to variation in the parameter settings used [19], the method used to 

define γ in the SVM classification will ensure a high accuracy was derived. To facilitate fair 

comparison an approach that helps to identify appropriate parameter settings was adopted, if 

appropriate, for the other classifiers. Thus, for example, the parameters of the neural network 

classifiers were also defined in a manner that would help ensure high accuracy. Specifically, 

the learning algorithm and architecture of the neural networks used were defined from trials 

of hundreds of candidate networks using a software package that sought to define an optimal 

network in terms of the accuracy with which the testing set is classified. Thus, both the SVM 

and neural network classifiers have been defined in a manner that helps ensure a high 

accuracy. Ideally, with classifiers such as the SVM and neural network, for which parameters 

must be defined and ideally optimised, a cross-validation approach or validation set would be 

used to determine appropriate parameter settings. However, for a basic statistical classifier 

such as the discriminant analysis, no such parameterization is necessary and a validation set 

unnecessary. Forming a validation set from the data available for training the discriminant 

analysis would act to reduce the number of training data vectors usefully contributing to the 

classification process. In addition, the use of data for cross-validation and validation sets may 

be inappropriate when ground data are scarce, such as the situation in some of the analyses 

reported below. To maintain direct comparability of the results between the discriminant 

analysis and all other classifiers, therefore, the main set of analyses followed the approach 

outlined above. In recognition that this is imperfect, however, a series of analyses using both 
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cross-validation and validation set based approaches to the selection of SVM and, where 

appropriate, neural network parameters are presented to facilitate fair comparison of these 

classifiers. For brevity, and since these analyses are intended to show that the methodology 

adopted did not lead to significant bias in the results, these analyses focus on just a single 

training set size. Two approaches to aid the parameterization of the classifiers were evaluated. 

First, five-fold cross validation (using a random sample of one fifth of the training set for 

validation purposes) to define γ in the SVM was evaluated for the situation in which 75 

training cases were available. Second, an independent validation set of 25 cases was used 

together with 75 training cases to select appropriate parameters for both the SVM and neural 

network classifiers. As with the main analyses, these analyses were repeated five times and 

the median accuracy reported.   

  

IV.  ACCURACY ASSESSMENT AND COMPARISON 

Fundamental to this work is the comparison of classification accuracy statements. The 

evaluation and comparison of classifications is plagued with problems [2]. Classification 

accuracy is commonly expressed using a metric computed from the error or confusion matrix 

using the testing set and estimates for different classifications compared to indicate the 

significance of differences in the classification outputs. One approach that has been used 

commonly in remote sensing is to express accuracy in terms of the kappa coefficient of 

agreement and use a Z test to evaluate the significance of differences in classification 

accuracy [e.g. 42]. However, there are many problems with this type of approach. For 

example, the kappa coefficient may be an inappropriate metric [43, 44] and the comparative 

method used typically assumes independent samples which is often, and here, not the 

situation as the same testing set has been used throughout [45]. Here, the proportion of cases 

correctly classified, expressed as a percentage, which is the most widely used measure of 
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accuracy in land cover studies, was calculated for each classification and used to represent 

classification accuracy. The confusion matrices are, however, presented for the analyses based 

on the largest training set size to indicate the pattern of class allocations and, if appropriate, 

enable other metrics of accuracy to be derived if desired. 

 

The comparison of classification accuracy statements should be undertaken in a statistically 

rigorous fashion. Here, the statistical significance of differences in the accuracy of 

classifications derived using different methods was assessed using a M
c
Nemar test, without 

correction for continuity, for related samples. This is a non-parametric test that may be 

applied to confusion matrices that are 2x2 in dimension, which is the situation in 

classification comparison in which the two classes represent the instances when the 

classifications compared agree or disagree [45]. This test is based upon the standardised 

normal test statistic, 

 

2112

2112

ff

ff




       (11) 

 

in which f12  and f21 represent the off-diagonal entries in the matrix. The analysis may 

sometimes be based on a chi-square ( 2 ) distribution; the square of Z follows a chi-squared 

distribution with 1 degree of freedom.  

 

V. RESULTS AND DISCUSSION 

From the range of classifications undertaken, the highest accuracy, 93.75%, was obtained 

from the SVM trained with 100 cases of each class (Figure 3). Moreover, this classification 

was significantly more accurate than that derived from the decision tree and discriminant 
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analysis (p<0.05). The value of the γ parameter had a marked impact on classification 

accuracy (Figure 4). In the SVM classifications reported, the γ parameter ranged from 0.005 

to 0.08. The number of support vectors used ranged from 74 to 331. 

  

With all four classification methods it was apparent that classification accuracy was positively 

related to training set size (Figure 5). For the SVM based classifications, the difference in 

accuracy between the classifications trained on the largest and smallest training sets was 

6.25%. Classification by the decision tree algorithm appeared to be most sensitive to training 

set size, with the accuracy increasing from 77.18% to 90.31% as the training set increased 

from containing 15 to 100 cases of each class. For all classifiers, except the neural network, 

the difference in the accuracy of the classifications derived with the use of the largest and 

smallest training sets was statistically significant (p<0.05). At each training set size, the SVM 

was also relatively accurate and often the most accurate classifier, with accuracies often 

statistically different from those derived from the other classifiers (Table 1). 

 

The effect of variation in training set size on the accuracy of the classifications by the four 

classifiers is compatible with results reported in the literature [e.g. 15]. The sensitivity of the 

accuracy of the SVM classifications to training set size indicates the need for the training set 

to include the outlying cases, which yield appropriate support vectors. While a large training 

sample may not be required in order to estimate a statistical distribution it is, however, critical 

for the training sample to include useful support vectors and, unless some intelligent training 

data acquisition process is followed, these are more likely to be found from a large rather than 

small sample. The sensitivity of the SVM classification to the nature of the sample is also 

evident in Table 2 which shows that the five SVM classifications based on a training set 

comprising 15 cases of each class were very varied in accuracy. Thus, while the SVM 
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classification may be based on the information provided by a small number of training sites, 

forming the support vectors, a large training sample may still be required to ensure that 

appropriate support vectors are available.  

 

Although the four classifiers were able to classify the data very accurately, each >90% 

accurate for the analyses based on the largest training set size, there were some important 

differences. It was apparent, for example, that the classifiers varied in their ability to 

distinguish between specific classes and the accuracy with which individual classes were 

classified differed markedly (Table 3). Since the four classifiers operated in very different 

ways, they may be viewed as complimentary sources of information rather than competing 

options. This may make them useful candidates for use in a consensual or ensemble based 

approach to image classification. For example, 8 cases of sugarbeet in the testing set were 

misclassified by the SVM (Figure 3). Of these, 2 were misclassified by all four classifiers but 

a correct allocation made by at least one of the other classifiers for the other 6 cases. 

Moreover, for 5 of these cases the correct allocation was made by the decision tree 

classification. Similarly, there were 8 cases of wheat in the testing set that were misclassified 

by the SVM. Half of these cases were correctly allocated by the discriminant analysis.  

 

Finally, to ensure mainly that the results of the SVM classifications had not been 

optimistically biased by the methodology adopted in their parameterization, classifications 

using cross-validation and validation set based approaches to parameterization were 

undertaken. The results (Table 4) show that the classification accuracies derived with the use 

of these approaches were as large or only marginally and insignificantly (at 95% level) lower 

than those of the comparable analysis reported in Table 3.  
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Although the results are data-specific and sensitive to how the classifiers were parameterised 

they do indicate the value of multi-class SVM classification. The SVM classifications were 

generally more accurate than comparator analyses and, with the analyses constrained to a 

single optimization problem, rapid computationally. As a guide to processing time the most 

rapid classifications were by the discriminant analysis but classification by the SVM approach 

was faster than both the decision tree and neural network classifications. Classification 

accuracy was, however, a function of training set size and the potential of using small training 

sets in SVM based classification will require a means of intelligent training data acquisition. 

 

VI. CONCLUSIONS 

SVMs have considerable potential for the classification of remotely sensed data. To-date the 

use of SVMs for multi-class classification has been based mainly on the use of multiple 

binary analyses. It has been demonstrated here that a single multi-class SVM classification 

may be undertaken and used to derive very accurate classifications. In general, the SVM 

classifications were more accurate than comparable classifications derived with the use of the 

other classification techniques. The accuracy of the classifications produced from all of the 

classifiers was positively related to training set size, with the accuracy of the classifications 

derived from three of the classifiers increasing significantly as the training set size increased 

from 15 to 100 cases per-class. Although a SVM classification is effectively based on a small 

number of training sites a large training sample may still, therefore, be required to ensure that 

appropriate training data are included. Finally, the results show that the classifiers differ in the 

allocations made for individual cases and, in order to utilise their different merits, may be 

attractive as parts of a consensual or ensemble based approach to classification. 
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Figure captions 

 

Figure 1. Basics of classification by a SVM. (a) separable case and (b) non-separable case. In 

each case the aim is to separate two classes (solid and open diamonds representing 

the classes yi = +1 and yi = -1 respectively) with a linear hyperplane. The support 

vectors are encircled and lie on two planes, P1 and P2. The optimal separating 

hyperplane lies between and parallel with P1 and P2.  

 

Figure 2. Location of the data for each class in feature space. 

 

Figure 3. Error matrices for the classifications derived from the discriminant analysis (DA), 

decision tree (DT), neural network (NN) and support vector machine (SVM) 

classifications trained with the largest training set (containing 100 cases of each 

class). For clarity the main diagonal that indicates correct allocations has been 

highlighted.  

 

Figure 4. Relationship between classification accuracy and  for the training data and testing 

data for analyses using the largest training set size. Note logarithmic scale for γ and 

the over-fitting evident at large values of γ. 

 

Figure 5. Relationship between classification accuracy (%) and training set size, indicated by 

the number of cases per-class contained, for classifications derived with each of the 

four classifiers used. 
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DA Predicted Classes    

Actual  Sugarbeet Wheat Barley Carrot Potato Grass Total 

Sugarbeet 87 3 0 0 7 0 97 

Wheat 3 90 2 1 0 0 96 

Barley 0 6 45 0 0 0 51 

Carrot 0 1 0 29 3 0 33 

Potato 0 2 0 0 23 1 26 

Grass 0 0 0 1 2 14 17 

Total 90 102 47 31 35 15 320 

Overall accuracy = 90.00% 

 

DT Predicted Classes    

Actual  Sugarbeet Wheat Barley Carrot Potato Grass Total 

Sugarbeet 89 4 1 0 2 1 97 

Wheat 8 79 6 1 0 2 96 

Barley 3 0 48 0 0 0 51 

Carrot 0 0 0 33 0 0 33 

Potato 0 2 0 0 23 1 26 

Grass 0 0 0 0 0 17 17 

Total 100 85 55 34 25 21 320 

        Overall accuracy = 90.31% 

 

NN Predicted Classes    

Actual  Sugarbeet Wheat Barley Carrot Potato Grass Total 

Sugarbeet 90 3 1 0 3 0 97 

Wheat 3 84 7 1 0 1 96 

Barley 0 2 49 0 0 0 51 

Carrot 0 2 0 31 0 0 33 

Potato 0 2 0 0 23 1 26 

Grass 0 0 0 0 0 17 17 

Total 93 93 57 32 26 19 320 

        Overall accuracy = 91.88% 

  

SVM Predicted Classes    

Actual  Sugarbeet Wheat Barley Carrot Potato Grass Total 

Sugarbeet 89 6 0 0 1 1 97 

Wheat 2 88 5 1 0 0 96 

Barley 1 1 49 0 0 0 51 

Carrot 0 0 0 33 0 0 33 

Potato 0 2 0 0 24 0 26 

Grass 0 0 0 0 0 17 17 

Total 92 97 54 34 25 18 320 

        Overall accuracy = 93.75% 

 

 

Figure 3.  
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Training 

set size 

SVM v DA SVM v DT SVM v  NN NN v DA NN v DT DT v DA 

15 -0.218 4.09 -1.347 1.60 4.65 -3.95 

30 -0.27 3.84 0.85 1.07 3.15 -2.64 

45 0.00 4.58 -0.40 1.14 4.13 -3.28 

60 1.21 2.65 0.00 1.21 2.65 -1.85 

75 1.62 3.00 0.00 2.13 2.85 -1.09 

90 1.56 3.40 0.44 1.70 3.00 -1.26 

100 2.27 2.30 1.50 1.18 0.96 0.16 

 

 

Table 1. Comparisons of classification accuracy statements. The classifications derived with 

each method (SVM = support vector machine, DA = discriminant analysis, DT = decision 

tree and NN = neural network) at each size of training set, defined by the number of cases of 

each class, were compared using a M
c
Nemar test. Differences significant at the 95% 

confidence level (Z  |1.96|) are highlighted in bold with positive values indicating that the 

first named classifier had the higher accuracy. 
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Training 

set size 

Discriminant 

analysis 

Decision tree Neural network Support vector 

machine 

 Min Max Min Max Min Max Min Max 

15 87.50 88.40 75.31 81.56 88.75 89.68 84.38 89.37 

30 87.80 89.70 78.75 84.06 89.37 91.25 90.00 91.87 

45 89.10 90.60 83.43 85.62 90.93 92.81 90.31 90.93 

60 89.40 90.30 83.75 88.44 90.93 92.18 89.69 92.50 

75 88.80 90.30 84.06 90.94 91.56 93.43 92.50 92.81 

90 89.70 90.30 87.19 89.37 91.56 92.50 92.50 93.12 

100  90.00 90.00 90.31 90.31 91.88 91.88 93.75 93.75 
 

Table 2.  Minimum and maximum accuracy achieved from the classifications at each training 

set size. Training set size is indicated by the number of cases of each class contained within 

the set. For all classifications, except that using 100 cases of each class in training, five 

independent training sets were used.  
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                          Classification accuracy (%) 

 Class  

Classifier Training set size SB W B C P G Overall  

         

DA 15 85.6 94.8 84.3 78.8 92.3 82.4 87.80 

 30 85.6 93.8 86.3 87.9 88.5 82.4 88.40 

 45 88.7 93.8 84.3 93.9 88.5 88.2 90.00 

 60 89.7 94.8 88.2 84.8 88.5 82.4 90.00 

 75 88.7 93.8 88.2 87.9 88.5 82.4 89.70 

 90 88.7 94.8 88.2 87.9 88.5 82.4 90.00 

 100 89.7 93.8 88.2 87.9 88.5 82.4 90.00 

         

DT 15 87.6 71.9 86.3 48.5 73.1 82.4 77.18 

 30 81.4 76.0 80.4 87.9 88.5 100.0 81.87 

 45 82.5 86.4 76.5 87.9 84.6 100.0 84.37 

 60 90.7 78.1 88.2 93.9 88.5 76.5 85.94 

 75 93.8 71.9 94.1 100.0 84.6 94.1 87.19 

 90 85.6 82.3 94.1 93.9 88.5 94.1 87.50 

 100 91.7 82.3 94.1 100.0 88.5 100.0 90.31 

         

NN 15 86.6 92.7 90.2 93.9 88.5 82.3 89.68 

 30 85.6 94.8 84.3 96.9 88.5 88.2 89.68 

 45 87.6 90.6 96.1 96.9 88.5 100.0 91.56 

 60 89.7 91.6 92.1 96.9 84.6 100.0 91.56 

 75 90.7 92.7 94.1 96.9 88.5 100.0 92.81 

 90 88.6 90.6 98.0 96.9 88.5 100.0 92.18 

 100 92.8 87.5 96.1 93.9 88.5 100.0 91.88 

         

SVM 15 92.8 94.8 76.5 66.7 88.5 88.2 87.50 

 30 88.6 92.7 92.1 90.9 88.5 94.1 90.94 

 45 91.7 85.4 96.1 90.9 92.3 100.0 90.93 

 60 87.6 93.7 92.1 96.9 88.5 94.1 91.56 

 75 91.7 90.6 94.1 100.0 88.5 100.0 92.81 

 90 92.8 89.6 98.0 93.9 88.5 100.0 92.81 

 100 91.7 91.6 96.1 100.0 92.3 100.0 93.75 

 

 

 

 

Table 3. Classification accuracies, for individual classes from the producer‘s perspective and 

overall, derived from the four classifiers trained with differently sized training sets. 
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     Classification accuracy (%) 

Approach   Neural network SVM 

Comparator   92.81   92.81 

5-fold cross validation -   92.81 

Validation   90.93   90.62 

 

 

 

Table 4. Classification accuracies derived using different approaches to parameter selection. 

The comparator refers to the classification summarised in Table 3 that was undertaken with 

75 training cases per-class. 

 

 


