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Abstract. In this paper we carry out an investigation of some of the
major features of exam timetabling problems with a view to developing
a similarity measure. This similarity measure will be used within a case-
based reasoning (CBR) system to match a new problem with one from
a case-base of previously solved problems. The case base will also store
the heuristic or meta-heuristic technique(s) applied most successfully to
each problem stored. The technique(s) stored with the matched case will
be retrieved and applied to the new case. The CBR assumption in our
system is that similar problems can be solved equally well by the same
technique.

1 Introduction

1.1 Examination Timetabling

Exam timetabling is a subset of the general timetabling problem, proved to be
NP-hard by Cooper & Kingston [17]. A set of exams must be scheduled to a set
of timeslots such that every exam is located in exactly one timeslot within the
timetable, subject to certain constraints. In most real life problems there will
also need to be some allocation of resources (e.g. rooms, invigilators and special
equipment) to each exam. The constraints on the problem can be divided into
hard constraints and soft constraints. Hard constraints are those which must
be satisfied in order for the resulting timetable to be considered feasible. Soft
constraints are those which are desirable to be satisfied, but which in general
cannot all be wholly satisfied. The quality of a resulting timetable is measured
according to an objective function which weights the violation of the different
soft constraints. The aim of the timetabling problem is to create a timetable
which minimises this objective function, meaning that as many soft constraints
are satisfied as possible. If a timetable cannot be found which violates no hard
constraints then the problem is said to be infeasible. In such cases, some hard
constraints must be relaxed in order to produce an acceptable timetable.

Both hard and soft constraints vary between institutions, as can be seen
from the survey of British universities carried out by Burke et. al. [1]. The most
common hard constraints can be summarised as follows:



– Every exam must be scheduled in exactly one timeslot
– Every exam must be assigned to a room(s) of sufficient size and assigned an

invigilator(s)
– No student must be scheduled to be in two different exams at the same time
– There must be enough seats in each period for all exams scheduled
– Certain exams must be scheduled into specific timeslots or rooms
– Certain exams must take place simultaneously

Depending on the institution in question, some of these hard constraints
may not be relevant. Some universities have very tight constraints on room
space whereas others have a large amount of rooms usable for exams so that the
constraint on room availability is unnecessary. Soft constraints tend to be a lot
more varied and much more dependent on the peculiarities of each institution
since it is these which measure, amongst a given set of feasible timetables, which
are the most desirable. For some exam timetabling problems it is difficult to find
a feasible solution at all, whereas for other problems there are a large number of
feasible solutions and the focus of the problem solving is very much directed to
the minimisation of soft constraint violations. Soft constraints often encountered
include the following:

– Exams for each student should be spread as far apart as possible
– A student should not be required to take x exams in y periods
– Time windows for certain exams
– No more than x exams taking place simultaneously
– No more than y students scheduled to sit exams at any one time
– Exams should not be split across rooms
– No more than one exam in a room at a time
– Teacher or student preferences
– Distance between rooms holding a given exam should be minimised (when

the exam is split across two or more rooms)
– The total number of periods should be minimised

Some constraints may be soft in one problem, but hard in another, depending
on the requirements of the universities. In some cases, the total number of periods
is fixed a priori and is taken as a hard constraint, whilst in others this is taken
into account in the objective function with one of the aims being to minimise the
length of timetable produced. It may also be the case that different institutions
with the same basic constraints place differing weights on the soft constraints
in the objective function to define what they consider a good timetable. It can
often be the case that two or more soft constraints on a given problem are
conflicting, such as the wish to spread exams as far apart as possible and the
wish to minimise the total length of the timetable.

Due to its NP-hard nature, the exam timetabling problem lends itself well to
being tackled by a variety of different meta-heuristic techniques. These are es-
sentially techniques which work in the solution space of exam timetables, having
been seeded with an initial solution which may be either feasible or infeasible.
Initial solutions are often found using a fast graph colouring or bin packing



heuristic which sequentially assigns each exam into an initially empty timetable
until all exams are assigned to a timeslot [3]. Such construction heuristics can
themselves produce solutions of an acceptable quality and are often combined
with a second, improvement phase [13, 14, 18].

A range of different meta-heuristic techniques have been applied to exam
timetabling in recent years. Amongst those successfully applied include Simu-
lated Annealing [27, 28], Tabu Search [25, 29, 26], Great Deluge [7] and Memetic
algorithms [2, 4]. Amongst the current methods being applied to exam time-
tabling are Ant Colony optimisation and Variable Neighbourhood Search. For a
wider view on exam timetabling techniques, consult the Selected Papers volumes
from the past PATAT conferences. Burke et al. [8] propose a case-based reason-
ing (CBR) technique for selecting amongst a set of previously used heuristics
and meta-heuristics a suitable one to apply to a new problem. In this paper, we
examine this idea further, looking more closely at the key features involved in
measuring the similarity of exam timetabling problems.

1.2 The Automation of Exam Timetabling

One of the major goals in the area of timetabling research is to develop new tech-
niques able to solve problems in a given domain (such as exam timetabling) and
test these techniques on benchmark problems to see how they compare against
other methods. However, another major aim of the automated timetabling com-
munity is to apply these techniques to real world problems, not simply as test
data, but as part of an actual system which will be used in one or more insti-
tutions to produce their regular timetables. The survey conducted by Burke et.
al. [1] of British Universities in 1996 gives a very good overview of the varying
constraints between different universities and of their methods for dealing with
these. Of perhaps most interest though were the somewhat surprising results in
response to the question of computer usage and automation of the timetabling
process:

‘Fifty eight percent of those universities that responded use a computer
at some stage in the timetabling process. Of these, eleven (21%) have a
facility to perform scheduling, although these may, in some cases, still
require a certain amount of manual input and previous knowledge of
the particular timetabling problem. . . Four other universities stated that
they are either currently developing their own or customising a commer-
cial package’

The authors also report that, of those universities which don’t schedule by
computer, half use the previous year’s timetable as a template for the new one
and half construct a new timetable each year. The time taken by the latter group
to produce their timetables tends to be around four weeks, indicating that some
form of automation could certainly be of benefit. It is also noted that 10 of the
11 universities which use a scheduling system make no use of the previous year’s
timetable. A number of different techniques were employed by those not using a



computer for their timetabling process, but many of these relied on assumptions
which, in many cases, are becoming increasingly less valid. One of the main
examples of this is the technique of building up the global timetable by putting
together individual exam timetables produced by each department. With the
increase in modular courses which have a large inter-departmental dependence,
this technique becomes much less viable. For the manual timetabler, this results
in a potentially huge change in the way timetables must be constructed and
the lack of any kind of automation can make the timetabling process employed
very inflexible to the changing requirements of a modern university. In many
cases, a manual equivalent to the kind of case-based reasoning approach applied
to course timetabling by Burke et al. [5, 6] is used - some parts of the previous
year’s timetable are re-used with slight alterations while the rest is rebuilt using
the new partial timetable as a starting point.

Often, re-using parts of previous timetables is not a very efficient or useful
method for creating a new timetable. However, the use of the same technique
as has been used either for the same institution the previous year (or in earlier
years) or by a different institution whose timetabling needs are similar can be
very effective. For this, a case-base of problem solving methodologies would
be stored rather than parts of actual problem solutions. These can then be
retrieved and applied to the timetabling problem at hand. Such a system would
require some method of deciding which technique to retrieve to apply to the new
problem.

In case-based reasoning (CBR), this process is carried out using a similar-
ity measure between problems. Key features of exam timetabling problems are
stored in the case-base as individual cases, together with the successful tech-
nique(s) used on each problem forming part of each case. The key features of
any new problem can then be matched against those in the case-base and the
best match found. The assumption from CBR is that the technique used for that
retrieved problem should be able to provide a high quality solution to the new
similar problem also. With a large enough case-base of problems and their as-
sociated techniques, such a system could be used very effectively by universities
to solve their timetabling problems using knowledge stored from the problem
specifications of other universities. Acting as a “black box”, there would be no
personal data about any university’s timetabling problem within the system,
only contextualised knowledge as to the overall problem structure which may be
similar to that in many other institutions. In this paper we examine many of
the key features which will form a part of a similarity measure between exam
timetabling problems. Using this within a CBR framework, we can match a new
problem with a previously solved problem to retrieve a technique which should
work well on the new problem.

1.3 Issues in Automated Timetabling

Given the findings of the survey of British universities, one obvious question
to consider is why so few universities used (in 1996, at least) an automated
or at least partially automated system to produce their timetables, given that



those who do can save many weeks of time on the scheduling process. This
wasn’t one of the questions specifically asked by the survey, however there are a
number of indicators from the results of the survey which may help to explain.
Most obviously, in the case of those universities which use the previous year’s
timetable to construct the new one, there is no current need for automation.
So long as the requirements are not changing significantly from year to year,
it is relatively easy for an experienced timetabler to account for these changes
whilst adapting the previous timetable. Also, in doing so, the timetabler can get
a much better feel for the structure of the timetable and how it was put together
than would be possible with the use of an automated system. Having said that, a
semi-automated process involving a human timetabler manually moving exams
around a partial or fully completed timetable could serve the same purpose
provided the interface is user-friendly. This was one of the points covered by
the conclusions of the survey when considering the requirements for a general
timetabling system which may be used by non-experts.

For those institutions which can feasibly split their exam timetabling prob-
lem into departmental blocks, there may also be deemed to be no need for an
automated timetabling package as each of these sub-problems may be relatively
small and easy to solve by the individual departments. With the increase in
modularised courses however, this technique becomes less feasible as mentioned
earlier. The piecing together of the individual parts of the timetable from each
department into a global timetable may require a lot of moving around of exams,
which may result in a final timetable unacceptable to some departments.

Perhaps one of the main reasons behind the seeming unwillingness to au-
tomate the timetabling process in many universities is the sheer size and com-
plexity of the problem. Hand in hand with this may come a lack of trust or
belief by human timetablers in the ability of meta-heuristic methods to be able
to solve such problems to an acceptable quality. In many cases, timetabling is
carried out by one or more experts who have an in-depth knowledge of the over-
all timetabling problem and the various constraints included. For many experts,
whatever their area of expertise, the idea that their years of experience at deal-
ing with the problem could be satisfactorily replaced by an automated system is
understandably greeted with some scepticism. In building up their experience,
experts will invariably develop a vast knowledge of their subject area, the tech-
niques used to solve the problems, solutions and parts of solutions which are
acceptable or not and many other small pieces of information which are used.

In many cases expert timetablers can look at the timetable they produce and
decide ‘by feel’ how good it is and what areas need changing. It is perhaps that
issue of ‘feel’ which is key - something which cannot easily be represented purely
by numbers and equations. The ability to take a general overview of a timetable
you have constructed and decide how good it is without any kind of numerical
evaluation is one which expert manual timetablers rely heavily on. To rely on
a fully automated system to do the same job would require all that knowledge
of the expert to be adequately transferred to a computer system dealing with
exact numerical inputs. Many universities attempt to copy the role of a human



expert by creating what are known as ‘expert systems’ which incorporate into
a rule-based system the methods which the human expert relies on to construct
his or her timetables. Such automated methods are perhaps far more acceptable
and trusted by those in charge of timetabling at universities than the somewhat
more abstract methods employed by meta-heuristics.

Another issue with the automated timetabling process is that of defining
and modeling the problem for the automated system to solve. Given a set of
constraints and their weights forming a single objective, a meta-heuristic tech-
nique will attempt to create a timetable by minimising this objective function.
However, the final timetable produced will only be as good as the constraint
weightings fed into the system by the human timetabler. Given two very differ-
ent timetables, each with the same penalty evaluated by the objective function,
will the human timetabler consider the two to be equally good or will he/she
regard one as a lot better? If so then why is one better than the other and
how can this information be included into the automated system so that it will
be evaluated as such? Since there is rarely, if ever, such a thing as the perfect
timetable, the ability of an automated system to output a variety of different
timetables, often very quickly can be extremely useful. Depending on the tech-
nique used, the timetables produced may all be quite similar with just small
differences or have a large amount of diversity whilst still having similar eval-
uation by the objective function. Provided the system runs relatively fast, the
weightings on the constraints can easily be altered to change the focus of the
timetables produced also. This provides a much greater degree of flexibility than
is usually possible for a human timetabler and is one of the biggest strengths of
an automated system.

In the following section we examine the various features of exam timetabling
problems in a qualitative manner with a view to developing a measure of simi-
larity between problems based on their most important features for use within
our CBR system. With a number of potentially very different techniques within
the case-base, we aim to develop a case-based reasoning system which will allow
the user to input their needs and can, if desired, return a selection of complete
timetables of similar quality from which the human timetabler can select the
best one. If none of the timetables produced are acceptable, the user can change
the focus of the constraints and ask the system to produce a new set of solutions
from which to choose. By learning from its past experiences, the system will se-
lect from its case-base of heuristic and meta-heuristic techniques the one which
best fits the new problem. Feedback from the human user as to the quality of
the timetable(s) produced is also important for the system to learn whether the
match was a good one or whether re-indexing is required to avoid the chosen
heuristic being selected again for the given problem.



2 Studying the features of Exam Timetabling problems

2.1 The requirements of a CBR system

As mentioned earlier, our aim is to produce a case-based reasoning (CBR)
heuristic/meta-heuristic selector which will intelligently select, from a variety
of techniques, the one best suited to a new problem given to the system. This is
done by a matching process which employs a similarity measure between exam
timetabling problems. Within the case base, each case is made up of a set of
feature-value pairs representing a given problem, together with the heuristic or
meta-heuristic technique(s) which give the best results for that problem. When
presented with a new problem, its set of feature-value pairs is matched with
those of all cases within the case-base and the most similar case(s) will be re-
trieved. The similarity measure employed will calculate a weighted sum of the
difference in value for each feature between the two problems under comparison
and is shown in equation 1

S(Cx, Cy) = g(
n∑

i=1

hi(|fxi − fyi|)) (1)

where:

– n is the number of features in the similarity measure
– fxi and fyi are the values of the ith feature of cases Cx and Cy respectively
– hi(a) := wia

2 + 1; wi representing the weight of the ith feature
– g(b) := 1/

√
b

The similarity, S(Cx, Cy), between two cases will be in the interval (0, 1],
with 1 representing two identical cases and results closer to 0 indicating cases
with a low degree of similarity.

Clearly the key elements of this similarity function are the features together
with their weights representing the importance of each feature to the overall
similarity measure. To decide exactly which features should be used in the case-
base and how to weight them is a near impossible task to perform purely by
hand. Instead, we use knowledge discovery techniques in two stages, as reported
by Burke et al. [11]. An initially large set of features and cases is systematically
trimmed leaving only those cases which contribute positively to the knowledge of
the system and identifying which combinations of features give the best system
performance. In [11], the system performance is measured as being the number of
successful retrievals of one of the best two heuristics as pre-calculated for a set of
training cases and a set of test cases. Using these knowledge discovery techniques
the system can tune the weightings on the features used as well as selecting the
best subset of features themselves to improve the performance of the case base.
Tabu Search and Hill Climbing techniques are both used within the knowledge
discovery to obtain the best feature vector from the search space of all possible
feature vectors. It is found that the best system performance comes from having
a relatively small number of features within the case-base (usually between 3 and



7). Fewer features give too little information from which to accurately measure
similarity, whilst too many features reduce system performance by diluting the
impact of the most important features. In the following subsection we examine
the initial list of simple features with which we begin the knowledge discovery
process. Ratios between all pairs of simple features are also included within the
features search space as many of these will provide far more meaningful measures
of similarity than single features.

2.2 Qualitative analysis of features used within the CBR system

Whilst Burke et al. [11] concluded that between 3 and 7 features gives best per-
formance for a CBR system, we initially wish to identify as many features as
possible to use in the knowledge discovery process. In this way, a more thor-
ough search can be performed to find the best feature vector to be used for our
similarity measure given in equation 1. An analysis of the features used is given
below, including combinations of features which may prove important.

Number of Students By itself, the number of students within an exam time-
tabling problem can be extremely misleading as a measure of problem difficulty
and as such needs to be carefully considered before being input as a feature to be
considered. In [9], the authors examine the role of the ‘students’ in the definition
of an exam timetabling problem. It is evident that for real life problems with tight
room capacity constraints resulting in a capacity constraint on each period of
the timetable, the number of students is a crucial factor. However, it was noted
that for the problems considered in that paper (no capacity constraints), the
number of students was irrelevent. In such cases, the only role of the ‘students’
is to define the conflict matrix via their enrolments.

Having set up the conflict matrix, the students play no further part in the
problem and how many of them there are is unimportant. Indeed, there are
a huge number of student enrolment sets which could define exactly the same
conflict matrix - of particular note are the set of 2-enrolment students in which
every student has just two enrolments and contributes to exactly 1 edge on the
conflict graph. In this case the number of students would be equal to the number
of edges in the conflict graph (with weights on edges counting as multiple edges).
At the other end of the spectrum would be the minimum set of ‘students’ which
would define the same conflict matrix. This set would be obtained by assigning
the largest clique of exams in the conflict graph to a student and then continuing,
assigning the remaining largest clique to a new student until all exams and edges
are assigned to a student. The relevence of this as a measure for similarity is
considered later under the heading of “Cliques”.

In those problems where capacity constraints are important, the number of
students becomes more important, but only as a ratio to the total capacity avail-
able over the period of the timetable and in other ratios concerning enrolments
for individual exams. Purely by itself, the number of students in a problem does
not represent a feature which can contribute to a similarity measure.



Number of Events (Exams) Always reported together with the number of
students to give an idea of the size of a given data set, the exams form the core of
the problem, being far more influencial than the student numbers in defining the
problem structure. The exam timetabling problem is concerned, of course, with
assigning these exams to timeslots within a timetable with the main constraint
being that two clashing exams are not scheduled in the same slot. In a graph
colouring model of exam timetabling, the exams form the nodes of the graph
with the edges, defined by the student enrolments, representing the conflicts. It
is the structure of this graph representation which is one of the key aspects in
how well a given heuristic or meta-heuristic technique will perform when opti-
mising the problem. As a similarity feature by itself, results from the literature
suggest that ‘no. of exams’ is a simple, yet effective indicator as to the poten-
tial best technique. The Great Deluge technique with adaptive initial solution
generation presented by Burke and Newall [7] provides best known results at
the time of writing on the 3 largest problems3 from the Carter benchmark data
sets [13] (see tables 1 and 2), each with > 500 exams. On some of the smaller
problems, however, this technique proves less effective when compared to those
of Caramia [12], Merlot et al. [20] and Casy and Thompson [16] (see table 3).

One major area which can be affected by the number of exams in the problem
is the run time of a particular technique. In a majority of cases, more exams in the
problem equates to longer running time of the algorithm or fewer iterations than
would be possible in the same time on a smaller problem. As such, techniques
which can converge to a good result in fewer iterations will have an advantage
on larger problems. Other noteworthy features based on the number of exams
include exams per student and exams per period averages. In the case of the
Carter benchmarks, the STA-F-83 data set has a very large number of exams per
student and exhibits very different behaviour from other problems - The GRASP
technique of Casey & Thompson [16] gives a best known solution to this problem
notably better than results reported from most other techniques. Clearly there
are other factors which make this problem fairly anomalous amongst the 11 data
sets considered however, as EAR-F-83 and YOR-F-83 also have a relatively large
exam/student ratio whilst not exhibiting the same behaviour when optimised.

Number of Periods The number of periods in a timetable can be either fixed
a priori or may be a variable to be minimised as part of the objective function
or seperately. In this paper, we consider the case where the number of periods
is fixed. For those problems in which number of periods is not fixed, similarity
can only be measured against other problems in which this is also the case. As
a feature by itself, the number of periods assigned to a problem tells us next to
nothing since it is only relevant in conjunction with other features to determine
how highly constrained the problem is. In particular, the average number of
exams per period and the ratio of number of clashes to number of periods may
be of importance. Certainly, the number of exams per period gives a simple
measure of one aspect of the difficulty of the problem and when combined with
3 measured by number of exams



Table 1. Simple features for Carter Data Sets

Data No. of No. of No. of Graph No. of
Set exams students enrolments Density periods

CAR-S-91 682 16925 56877 0.13 35
CAR-F-92 543 18419 55522 0.14 32
EAR-F-83 181 1125 8109 0.27 24
HEC-S-92 81 2823 10632 0.42 18
KFU-S-93 486 5349 25113 0.06 20
LSE-F-91 381 2726 10918 0.06 18
STA-F-83 139 611 5751 0.14 13
TRE-S-92 261 4360 14901 0.18 23
UTA-S-92 622 21267 58979 0.13 35
UTE-S-92 184 2750 11793 0.08 10
YOR-F-83 190 941 6034 0.29 21

Table 2. Further features for Carter Data Sets

enrolments enrolments Largest no.
Data per student Exams per per exam of clashes
Set average max (num) period average max for 1 exam

CAR-S-91 3.36 9 (1) 19.5 83.40 1385 472
CAR-F-92 3.01 7 (29) 17.0 102.25 1566 381
EAR-F-83 7.21 10 (9) 7.5 44.80 232 134
HEC-S-92 3.77 7 (1) 4.5 131.26 634 62
KFU-S-93 4.70 8 (11) 24.3 51.67 1280 247
LSE-F-91 4.01 8 (3) 21.2 28.66 382 134
STA-F-83 9.41 11 (209) 10.7 41.37 237 61
TRE-S-92 3.42 6 (20) 11.4 57.09 407 145
UTA-S-92 2.77 7 (23) 17.8 94.82 1314 303
UTE-S-92 4.29 6 (20) 18.4 64.09 482 58
YOR-F-83 6.41 14 (1) 9.0 31.76 175 117

Table 3. Results from the literature (best results given)

Data Carter Caramia Burke & Di Casey & Merlot
Set et al. et al. Newall Gaspero Thompson et al.

CAR-S-91 7.1 6.6 4.6 5.7 5.4 5.1
CAR-F-92 6.2 6.0 4.0 - 4.4 4.3
EAR-F-83 36.4 29.3 36.1 39.4 34.8 35.1
HEC-S-92 10.6 9.2 11.3 10.9 10.8 10.6
KFU-S-93 14.0 13.8 13.7 - 14.1 13.5
LSE-F-91 10.5 9.6 10.6 12.6 14.7 10.5
STA-F-83 161.5 158.2 168.3 157.4 134.9 157.3
TRE-S-92 9.6 9.4 8.2 - 8.7 8.4
UTA-S-92 3.5 3.5 3.2 4.1 - 3.5
UTE-S-92 25.8 24.4 25.5 - 25.4 25.1
YOR-F-83 36.4 36.2 36.8 39.7 37.5 37.4



the conflict matrix density4 this measure is potentially a very important one.
The number of periods used for the benchmark data sets is slightly higher in
each case than the minimum number of periods found to schedule all the exams
in, however the constraints are still very high since the objective function used
for these problems is concerned with spreading clashing exams as far apart as
possible in the timetable. Clearly, the more periods available in the timetable
over the minimum required to obtain a feasible solution, the more the exams
can be spread out. As can be seen from table 2, the ratio of exams to periods
varies hugely between problems. The main reason for this is the difference in the
conflict graphs for the problems. More highly conflicting problems will result
in lower exams per period since the large number of conflicts often makes it
hard to schedule all the exams in fewer periods. One of the key strengths of
the knowledge discovery techniques we use to select which are the important
features is that they can combine pairs of simple features which we select and
chose amongst the resulting large number of features the most promising feature
vector which may include combinations of two simple features which we wouldn’t
have otherwise considered. In problems were the number of rooms forms a tight
constraint on the problem, the ratio between exams per period and the number
of available rooms per period will also form an important characteristic of the
problem.

Conflict Matrix Density Hand in hand with the analysis of number of periods
given above comes the conflict matrix density. The conflict matrix is an exams
x exams size matrix in which pairs of clashing exams are noted by a 1 with all
non-clashing pairs being denoted by 0. The conflict matrix density gives the ratio
of 1’s as a fraction of the total matrix. Therefore, a high conflict matrix density
represents a high probabilty of conflict between any two exams, e.g. a density of
0.5 implies that on average each exam will clash with half of the other exams in
the problem. From tables 1 and 2, it can be seen that there is a strong correlation
between exams per period and conflict matrix density. As mentioned above, this
is due to the fact that a densely conflicting exam graph tends to mean that a
higher number of periods are needed than sparesly conflicting graphs of the same
size and therefore the average number of exams per period is correspondingly
lower.

The conflict matrix is one of the most important aspects of any exam time-
tabling problem, representing both the hard constraints and some major soft
constraints. Problems with a very high conflict matrix density, such as HEC-S-
92 tend to be more difficult to find feasible solutions to in the first place. Also,
for meta-heuristics which work only in the space of feasible solutions, this can
lead to the search space being very disconnected with respect to certain move
neighbourhoods. This can have a major impact on how successfully a particular
meta-heuristic can traverse the search space to find a high quality solution. Also,
the more disconnected the search space is for a given local search technique,
the more focus is placed on the initial solution fed to the local search - whilst
4 discussed in more detail later on



some techniques are relatively independent of initial solution and can connect
the majority of the search space very effectively, others rely heavily on a good
initialisation.

Conflict matrix density is one of the simplest metrics to be taken from the
conflict matrix and also one of the most effective in measuring problem difficulty.
However, it does only give an average on the percentage of other exams that
each exam will clash with. Two problems with the same conflict matrix density
can still be very different in structure. We discuss below some of the other
measures, which when combined with conflict matrix density, should give a better
indication of problem structure for the pruposes of measuring similarity.

Largest Degree The degree of an exam is defined as the number of other exams
in the problem with which it conflicts through having students in common. One
of the most common graph heuristics for constructing initial solutions for local
search techniques uses a largest degree ordering of the exams to assign sequen-
tially to the timetable. In this way, the most conflicting exams are assigned first
as these are deemed to be the most difficult to schedule. The largest degree of
an exam timetabling problem would be the exam of largest degree. As another
measure to be obtained from the conflict matrix, this gives us some more infor-
mation on the problem structure, but by itself of course isn’t enough to be of
use. The number of exams of largest degree could provide useful information,
but is in most cases equal to one.

Of more interest to us as a feature of the timetabling problem are statisti-
cal measures resulting from the conflict matrix. The density mentioned earlier
provides an average degree, with the largest degree giving us a maximum. In
order to distinguish between two very different problems of equal conflict matrix
density we need to consider statistical measures such as the variation in degree
from the average and the degree of the exam at different percentiles5. We could
also consider, as a variation, the number of exams or the percentage of the to-
tal exams whose degree is within a given percentage of the largest degree. As
with all areas of statistical analysis, there are a potentially infinite number of
different statistical measures we could take based on the structure of the conflict
matrix which could each provide some useful information relevent to measuring
the similarity between two problems. For our work, we will concentrate on just
a small number of these to be fed into the knowledge discovery process.

All of the above statistical measures can, of course, be combined as a ratio
with our other features and of particular note would be those ratios to the total
number of periods in the timetable. Also, a relatively simple measure which could
provide useful knowledge is the percentage of the total exams whos degree is
strictly less than the number of periods. Depending on the neighbourhood used,
exams which clash with another exam in every period of the timetable may be
unable to move within the local search process if the search is conducted within
the set of feasible solutions only. For instance, many techniques successfully
utilise the most simple move neighbourhood which selects a single exam and
5 with exams ordered in decreasing order of degree



moves it to a new period of the timetable, selected either at random or by some
deterministic method. Using this neighbourhood, only those exams which do not
have a clash in every other period of the timetable can be moved which can lead
to a large amount of disconnectivity in the search space. On the other hand,
using a neighbourhood such as the Kempe Chain neighbourhood employed by
Thompson & Dowsland [27] and Casey & Thompson [16] ensures that every
exam within the timetable can move to any other timeslot. In doing so, a series
of other exams will also often have two be exchanged between the two periods
in question. This is investigated further in the following paragraph.

Fluidity Analysis In table 4, we present an analysis of the fluidity of the
benchmark problems studied when optimised using Simulated Annealing with
the simplest move neighbourhood6 over 100 runs, each with a different initial
solution. The initial temperature and cooling schedule were set extremely high
and slow respectively for these experiments since our aim was to examine how
many exams within the timetable never moved from their initial position as given
by our largest degree construction heuristic. With such a high temperature and
slow cooling schedule, we can say with a relatively high degree of certainty that
any exam which is capable of moving within the neighbourhood used would
do so at some point over the course of the 100 seperate runs. Of course, there
will be exams which may have a small window of opportunity to move in this
neighbourhood, when a period briefly becomes available that they can move to,
but given the random nature of the move selection, the exam wasn’t selected
to be moved during this window. However, such exams will be very few across
100 runs of the algorithm. Our main objective was to examine how different the
data sets are with respect to fluidity for this commonly used neighbourhood.

Table 4. Percentage of total number of exams which never move in x runs out of 100
of Simulated Annealing using the simple move neighbourhood

Data No. of runs in which x% of exams never moved
Set 100 75-99 50-74 25-49 1-24 0

CAR-S-91 1.17% 3.96% 3.96% 3.81% 10.12% 76.98%
CAR-F-92 3.31% 3.31% 2.76% 3.50% 9.39% 77.72%
EAR-F-83 0.55% 6.63% 0.55% 2.21% 10.50% 79.56%
HEC-S-92 0.00% 1.23% 3.70% 2.47% 50.62% 41.98%
KFU-S-93 1.65% 2.88% 1.44% 3.70% 4.53% 85.80%
LSE-F-91 1.57% 4.99% 1.57% 1.31% 3.15% 87.40%
STA-F-83 37.41% 0.00% 0.00% 3.60% 1.44% 57.55%
TRE-S-92 0.77% 2.68% 0.38% 1.15% 7.66% 87.36%
UTA-S-92 3.05% 5.31% 3.05% 1.93% 7.07% 79.58%
UTE-S-92 6.52% 0.54% 1.63% 1.09% 5.43% 84.78%
YOR-F-83 0.53% 1.58% 0.53% 0.00% 8.42% 88.95%

6 Move a single exam to a new timeslot whilst maintaining solution feasibility



It is clear that in the case of exams which never move throughout the local
search process, their positioning in the initial solution is crucial to the quality
of the final solution. For the majority of data sets in table 4, this percentage of
exams is relatively small and generally below ∼ 3%. There are also a relatively
small percentage of exams which fail to move in > 75 of the 100 runs. A higher
percentage are imobile in < 25 runs, but in most cases ∼ 80% of the exams in
the data sets move at least once in every one of the 100 runs. Of course, our
analysis does not tell us whether many of the exams moved just once during the
local search or whether they moved hundreds of times, but in this analysis we
are mostly interested in the boolean variable of whether an exam moved at all
or not. Whilst 9 out of the 11 benchmark data sets presented share fairly similar
fluidity analysis which doesn’t add much to our similarity measurement, 2 of the
data sets exhibit very different behaviour.

Standing out most obviously are the ∼ 37% of exams in the STA-F-83 data
set which never move across any of the 100 runs. Also noteable is that there
are 0 exams in the 50-99 group and very few in the 1-49 group, indicating that
if an exam can move at all in the STA-F-83 data set within this simple move
neighbourhood, it will tend to do so in the vast majority of runs. Having over one
third of its exams imobile relative to this simple move neighbourhood provides
some important clues to the anomalous nature often displayed by this data set.
The reliance on the initial solution becomes massive with so many exams being
set in the positions they are originally placed in. Coupled with the fact that each
student takes an average of 9-10 exams and these are spread across just 13 time
slots, it is easy to see why this data set yields a very high penalty cost for all
feasible solutions. Those exams which are imobile will, in general, be the ones
with the most clashes and which therefore add the most penalty to the timetable.
With this in mind, one of the reasons we believe Casey & Thompson’s GRASP
technique [16] is so successful on this problem relative to other techniques is
the implementation of the Kempe Chain based neighbourhoods. As discussed
earlier, the Kempe Chain neighbourhood allows any exam in the timetable to
be moved to any other timeslot whilst always yielding a feasible solution. Using
the simple neighbourhood, if the exam, e in timeslot t1to be moved clashes with
an exam in the chosen slot, t2, it cannot be moved there and a new move must
be selected. Kempe chains get around this problem by moving all those clashing
exams from t2 across to t1. Any further clashes induced by this are resolved by
moving the clashing exams across with the orginal exam e to timeslot t2, with
this process continuing until the two periods are conflict-free. Due to the fact
that all periods are conflict-free before the first exam is moved, there will always
exist a feasible resolution to the Kempe Chains; in the worst case scenario this
would involve swapping all exams in t1 with all exams in t2.

The other data set of note is HEC-S-92 whose behaviour is perhaps even more
interesting than that of STA-F-83 and also less easily understandable. Contrary
to the other 10 data sets, HEC-S-92 does not have a single exam which never
moves across 100 runs of Simulated Annealing from a different initialisation each
time. The % of exams which fail to move in 25-99 runs is also very low, yet over



half the exams (41) in the data set fail to move in 1-25 of the 100 runs. A
deeper analysis of this behaviour concerning how much overlap there is in the
runs during which these > 50% of exams do not move would be required to draw
any firm conclusions on this behaviour, but it is worthy of note as being vastly
different from all other data sets. This data set is also the only one which our
Greedy Largest Degree with Backtracking initialisation technique fails to find
a feasible initial solution to. This is due to the fact that our backtracking only
searches 2 levels deep before giving up and restarting, but on this data set it
always reaches the same irresolvable point. This is probably due to a combination
of the high conflict matrix density and also this unusual behaviour indicated by
our fluidity analysis. What this fluidity analysis seems to show is that whilst all
exams in the data set can move around over the course of 100 runs from random
initialisations, the actual fluidity of the data set from any given initialisation is
not so high with a fair number of exams being fixed by their relative positions to
other exams. Again, this behaviour can be attributed to the fact that the conflict
graph is very dense. An analysis of cliques within the problem as discussed in
the following subsection may also shed some light on this behaviour.

From this analysis it would seem that the fluidity of a given data set with
respect to the neighbourhood used in a meta-heuristic can prove crucial to how
successful the meta-heuristic will be. From the point of view of our similarity
measure, this is an area which could prove very important with further analysis
to be carried out.

Cliques One of the most significant features of exam timetabling problems
when modelled as a graph is that there tend to exist large cliques and near-
cliques, unlike the structure of a typical random graph in which any two nodes
have an equal probability of being connected by an edge. In exam timetabling,
many of the edges which contribute to the conflict matrix are clustered to-
gether representing exams which form part of a particular discipline. Students
taking science-based subjects will generally take very few, if any, humanities ex-
ams, but will take a large number of science exams meaning that the density of
clashes between science exams will be far greater than between science exams
and humanities exams. Carter & Johnson [15] investigate the cliques to be found
within the benchmark problems considered in this paper as well as looking at
near-maximum cliques. An investigation of cliques gives another angle to mea-
sure similarity from based on the conflict matrix again. As well as considering
the size of the maximum clique in each problem graph, Carter & Johnson in-
vestigate how many cliques there are of max size and also (max-1) size. As a
problem feature, the number of maximum size cliques could provide invaluable
information for measuring similarity between problems by giving a much more
in-depth view of the structure of the conflict matrix.

The two largest data sets (CAR-S-91 and UTA-S-92) are found to have over
100 maximum size cliques whilst the majority of data sets have fewer than 5.
Again the STA-F-83 data set exhibits very different behaviour to the other data
sets, being the second smallest measured by exam size, but having 60 cliques



of size 13, which is also the number of periods used to construct the timetable.
Carter & Johnson also calculate the number of nodes occuring in all max cliques
and in any max clique together with an analysis of the complement graphs.
When considering cliques of of size (max-1), the number of these is significantly
larger than max-size cliques in the majority of problems. The authors move on
to consider Quasi-cliques, where all nodes in a quasi-clique, Qk, have at most k
missing edges from a true clique. Again these represent very dense areas of the
conflict graph which have a far larger impact on the difficulty of the problem
than the much less dense areas which balance these out to give the overall conflict
matrix density.

There is a large amount of analysis which can potentially be done on cliques,
with Carter & Johnson’s work [15] providing a crucial backbone to this. How
much of the clique analysis could be used as part of our similarity measure
remains to be seen however, since finding the largest clique in a graph of size
n is in itself an NP-hard problem. As such, it may not be feasible for our CBR
system to calculate the required feature data for a new problem in order to
compare with those in the case base. Having said that, cliques clearly form the
basis of the core problem definition in most exam timetabling problems so cannot
be ignored.

Side constraints & the Objective function So far we have considered fea-
tures which are common to the core exam timetabling problem where the only
hard constraints are that every exam must be scheduled to exactly one timeslot
within the timetable and no two exams with students in common can be sched-
uled in the same time slot. The only soft constraint so far considered is that of
spreading clashing exams around the timetable using the proxinity cost given
by Carter et. al [13]. In reality, real world problems requiring to be solved will
have a number of other constraints, both hard and soft. The hard constraints
will determine the feasible solutions space, whilst the soft constraints will give a
measure of how good the timetable is, either by being combined in a weighted
single objective function or by forming a pareto front in a multi-objective opti-
misation.

When attempting to measure similarity between exam timetabling problems,
it is required that the problems being compared have the same constraints.
Attempting to compare two problems, one in which the number of periods in
the timetable is fixed and one in which it is a variable to be minimised is clearly
not sensible. For this reason, we need within the case-base a large variety of
problems with different hard and soft constraints to give the system as wide
applicability as possible. This can be done potentially by adding in constraints
to the core problems and forming new cases with these additional constraints.
In this way, any core problem7 can be compared to any other core problem by
adding in suitable side-constraints. Clearly there are a number of issues with
this as regards how many constraints to add and how wide a set of constraints
to include within the case base, but they are beyond the scope of this paper.
7 The core problem being with the hard constraints we have so far considered



The author’s previous work investigating the effect of the objective function
on potential similarity measures [10] showed that even when the same soft con-
straints are employed within the problem, using a different set of weights on the
constraints can have an effect on the performance of a given heuristic applied to
the problem. This is to be expected since the objective function defines the height
of the problem landscape at every point, therefore using different weights on the
same set of constraints could change the structure of the landscape significantly
causing a meta-heuristic which may previously have traversed the landscape very
effectively to now get stuck more in local optima and provide a less high quality
result.

From this analysis, it would seem that the matching process employed within
our CBR system can only compare two problems whose definitions are the same
regarding the hard and soft constraints included as well as the weightings applied
to those soft constraints. It may be possible to adapt problems within the case
base to use the weightings of a new problem given to the system with the same
constraints, but this would likely require too much computational time for the
system.

3 Conclusions and future work

In this paper we have discussed the needs and requirements of an automated
timetabling system together with some of the many issues involved in using a
fully or semi-automated system as oppose to a human timetabler. We consider
the methods with which timetables are constructed by human timetablers and
the areas in which automation could improve the process. One such area would
be to store a case-base of exam timetabling problems together with the heuristic
and/or meta-heuristic technique(s) successfully applied to give the best results
amongst those tested. With a large base of past knowledge included within the
case base, a timetabler could present a new timetabling problem to the system,
which would then suggest the best technique to apply based on past experience.
This would be done by matching the new timetabling problem with those in the
case base to find the most similar case.

The biggest issue in such a system is how to measure the similarity between
two exam timetabling problems in a meaningful way such that the general CBR
assumption that similar problems have similar solutions holds true. In our case,
this assumption would be that similar problems can be solved equally successfully
by the same technique. Such a system could provide huge benefits by storing the
information used in a large number of different problems so that new problems
can be solved effectively without having to construct a new technique specifi-
cally for the problem. Our aim is not to beat the results produced by the more
problem specific heuristics, but to provide a higher level of generality than would
otherwise be possible to ensure that a suitable technique will be chosen to solve
a new problem.

We carried out an investigation of a number of key features of exam time/-
tabling problems, assessing their importance to the problem solving method and



also how they can be combined to provide much better features by which to
provide similarity. A knowledge discovery process will be applied, which will
select from a large number of features (including ratios of all pairs of features
included in the system), those which provide the best measure of similarity
between exam timetabling problems. It has been shown [11] that between 3 and
7 features tend to give the best performance for a similarity measure and it
is thought likely that most of these features will be ratios of the more simple
features presented in this paper, some of which may not have been considered
important, but which may be found to provide crucial knowledge of the problems
studied.

Future work on the similarity measure may include investigating the use of
Fuzzy Sets for indexing and retrieval of cases within CBR [19]. This technique
has numerous advantages, allowing numerical features to be simplified into a
number of fuzzy sets for comparison as well as making it possible to index a
case multiple times on a given feature with different degrees of membership.
The use of fuzzy sets would allow more flexibility in the comparison of features
with matches being suggested which might not otherwise have come up as the
most similar case.
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