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Abstract. We investigate the Becker-Döring model of nucleation with three

generalisations; an input of monomer, an input of inhibitor and finally, we allow

the monomers to form two morphologies of cluster. We assume size-independent

aggregation and fragmentation rates. Initially we consider the problem of constant

monomer input and determine the steady-state solution approached in the large-time

limit, and the manner in which it is approached. Secondly, in addition to a constant

input of monomer we allow a constant input of inhibitor, which prevents clusters

growing any larger and this removes them from the kinetics of the process; the inhibitor

is consumed in the action of poisoning a cluster. We determine a critical ratio of

poison to monomer input below which the cluster concentrations tend to a non-zero

steady-state solution and the poison concentration tends to a finite value. Above the

critical input ratio, the concentrations of all cluster sizes tend to zero and the poison

concentration grows without limit. In both cases the solution in the large-time limit

is determined. Finally we consider a model where monomers form two morphologies,

but the inhibitor only acts on one morphology. Four cases are identified, depending on

the relative poison to monomer input rates and the relative thermodynamic stability.

In each case we determine the final cluster distribution and poison concentration. We

find that poisoning the less stable cluster type can have a significant impact on the

structure of the more stable cluster distribution; a counter-intuitive result. All results

are shown to agree with numerical simulation.

1. Introduction

In 1935 Becker & Döring [1] presented an enduring model of nucleation where clusters

form by the addition, or subtraction, of single particles (monomers) with no interaction

between larger clusters. Such larger clusters evolve by maintaining a dynamic balance of

monomer aggregation and fragmentation. Modelling this process as a series of chemical

reactions and denoting an r-sized cluster by Xr, we have

Xr +X1 ⇀↽ Xr+1. (1)

For each reaction there are two reaction rates to prescribe, we denote the forward rate

by ar and the reverse by br+1, both non-negative. Defining Jr as the net flux from cluster
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size r to r + 1 and xr(t) as the concentration of clusters Xr at time t, we express the

system by

ẋ1 = x0(t) − J1 −
∞
∑

r=1

Jr, (2)

ẋr = Jr−1 − Jr, r ≥ 2, (3)

Jr = arxrx1 − br+1xr+1, r ≥ 1, (4)

where originally x0(t) was assumed to be such that ẋ1 = 0 [1]. Later Penrose [2]

generalised this by setting x0(t) = 0, thus ensuring the conservation of density

ρ =
∞
∑

r=1

rxr. (5)

These modified equations are still referred to as the Becker-Döring equations. For certain

aggregation and fragmentation rates the existence and uniqueness of a solution to (2)-

(4) have been demonstrated by Ball, Carr & Penrose [3] for densities below a critical

value; furthermore this result was subsequently generalised to arbitrary initial data by

Ball & Carr [4]. The asymptotic solution for a variety of aggregation and fragmentation

rates has been described by Wattis & King [5], King & Wattis [6] and Wattis et al. [7].

Various aspects of the Becker-Döring equations have been investigated, including

the existence of metastable solutions by Penrose [8], the aggregation-dominated regime

by Carr [9] and the difficulties in numerically modelling metastable systems by Carr,

Duncan & Walshaw [10] and Duncan & Soheili [11]. The self-replication of micelles and

vesicles, including the size-templating matrix effect, have been successfully modelled by

novel generalisations of the Becker-Döring model [12, 13, 14, 15]. Additionally the origin

of RNA has been studied by Coveney & Wattis [16]. While being widely applicable,

the Becker-Döring equations make the restrictive assumption that only monomers may

interact with clusters. Smoluchowski [17] proposed a more general model allowing all

cluster sizes to aggregate, and for a cluster to split into uneven fragments. Blackman

& Marshall [18] exploit the Smoluchowski equations to study scaling behaviour in

essentially the Becker-Döring regime. Da Costa [19] generalised the Becker-Döring

model to include dimer interactions; a model subsequently analysed by Bolton & Wattis

[20]. Thus the Becker-Döring model with either x0(t) = 0 or x0(t) such that ẋ1 = 0

has been extensively studied and generalised. We propose to investigate a more general

system which maintains a constant influx of monomers, that is x0(t) = x0, which is

relevant to many industrial processes which rely upon continuous flow reactions rather

than production in batches.

A constant input of mass can be balanced either by removing mass at larger cluster

sizes or by adding a poison influx; and we model the latter. The inhibitor is consumed

in the action of poisoning a growing cluster; once poisoned, a cluster has no further

interactions and is assumed to be removed from the system. Previously inhibition has

been studied by Wattis & Coveney [21], where clusters above a chosen size could be

neutralised by an inhibitor. However, this description lacked an influx of poison, and
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monomer, and rather considered the case where the system initially has a finite stock

of monomer and poison.

Finally we generalise the above poisoning model by allowing competition for the

monomers which can form clusters of two morphologies and allow only one morphology

to be poisoned. Preliminary work on this system has been reported by Wattis [22] where

the constant density system (x0(t) = 0) was analysed and included the possibility of

two morphology of clusters developing from the monomers, the first is denoted by Xr

and the second Yr. Thus the reactions that were allowed had the form

Xr +X1 ⇀↽ Xr+1 Yr +X1 ⇀↽ Yr+1. (6)

No cluster can change morphology from X to Y or vice-versa; the only way mass can

change from one form to the other is by the stepwise break-up of one cluster entirely into

monomers (which have no morphology) and the subsequent re-aggregation of monomers

in the other form. The system analysed in [22] was shown to have the same basic

properties as the original Becker-Döring system, that is a conserved density, a unique

equilibrium solution and a Lyapunov function. Again this model lacks the influx of

monomers and poison which we will consider here.

This introduction concludes with a description of the general model of monomer

input, competition and inhibition, and how this model is truncated so that numerical

simulations may be performed. Due to the complexity of the model we study each

generalisation to the original Becker-Döring system in turn. In Section 2 we formulate

the model which includes a constant influx of monomers, and assumes that there is no

poison and only one morphology of cluster can form. We derive the solution that is

approached in the large-time limit and calculate the large-time kinetics. In Section 3

we add a poison influx to the model, still allowing only one morphology of cluster. We

identify a critical level of poison influx and solve the system when the poison addition

rate is above and below this threshold. Finally, in Section 4, we consider the full model,

with two morphologies forming, a poison influx which affects only one type of cluster and

a monomer influx. In particular we consider how poisoning the less stable cluster type

can influence the concentration profile of the more stable cluster. The paper concludes

with a discussion of the results in Section 5.

1.1. General model

In the format of chemical reactions if we permit the Xr clusters to be poisoned, we

include

P +Xr → U, ∀r > 1, (7)

as well as the reactions (6). The poisoned clusters, U , are assumed to be completely inert

and have no further interaction with the system and so are ignored in the derivation of

the kinetic equations. We define the rate at which clusters are poisoned to be kr and

applying the law of mass action to (6) and (7) we obtain the infinite set of differential
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equations

ẋ1 = x0(t) − J1 − I1 −
∞
∑

r=1

Jr −
∞
∑

r=1

Ir, (8)

ẋr = Jr−1 − Jr − krxrp, ∀r ≥ 2 (9)

ẏr = Ir−1 − Ir, ∀r ≥ 2 (10)

ṗ = p0(t) −
∞
∑

r=2

krxrp, (11)

Jr = arx1xr − br+1xr+1, ∀r ≥ 1 (12)

Ir = αrx1yr − βr+1yr+1, ∀r ≥ 1 (13)

where p0(t) is the input rate of the poison and x0(t) is the input rate of the monomer.

The concentrations of X-clusters are denoted xr(t) and those of the Y morphology

by yr(t). This system is much more complex than the original Becker-Döring model,

with the addition of not only competition but also an influx of monomers and poison.

To simplify the system we assume throughout this paper that all the aggregation,

fragmentation and poisoning rates are size-independent, that is ar = a, br = b, αr = α,

βr = β and kr = k; also that the influx of monomers and poison are time-independent,

so that x0(t) = x0 and p0(t) = p0. In addition we assume that the initial conditions are

xr = yr = p = 0 ∀r, that is there are no clusters, monomer or poison present initially.

We study several simplifications of (8)–(13) before finally including all the terms in

Section 4.

1.2. Numerical Simulation

To solve the system numerically we truncate the system at a finite size r = N .

However, due to the constant monomer influx, we expect a steady-state, or a borderline

equilibrium, solution to arise (xr = x1 or yr = x1 ∀r). We assume that JN = ax1xN−bxN

and IN = αx1yN − βyN ; this ensures that if xN , yN = 0 then JN , IN = 0 and hence the

equilibrium solution will be correctly reproduced and also if xr = x1 or yr = x1 then

this steady-state, or borderline equilibrium, solution will also be correctly reproduced.

With these boundary conditions we numerically solve

ẋ1 = x0 − J1 − I1 −
N
∑

r=1

Jr −
N
∑

r=1

Ir, (14)

ẋr = Jr−1 − Jr − kpxr, 1 < r ≤ N, (15)

ẏr = Ir−1 − Ir, 1 < r ≤ N, (16)

ṗ = p0 −
N
∑

r=2

kpxr, (17)

Jr = ax1xr − bxr+1, Ir = αx1yr − βyr+1, 1 ≤ r < N, (18)

JN = ax1xN − bxN , IN = αx1yN − βyN . (19)

We solve the truncated system of equations by use of ode23s and ode15s of the Matlab 6

package [23]; these are special solvers for stiff systems which are accurate to large times,
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as required by some of our simulations. All numerical simulations referred to in this

paper are of the above form with the relevant aggregation, fragmentation and poisoning

rates and influxes as given by the particular example.

2. Constant flux

In this Section we study the Becker-Döring model with a constant influx of monomers;

however, in this simplification we do not allow for a poison influx or for competition for

the monomers and so the equations to be studied are

ẋ1 = x0 − J1 −
∞
∑

r=1

Jr, (20)

ẋr = Jr−1 − Jr. (21)

Assuming that no clusters are present initially, the dynamics arise due to the steady

influx of monomers. In the absence of input the equilibrium solution is given by

xeq
r = θr−1x1, (22)

where θ = ax1/b which has density ρ = x1/(1 − θ). Since the density in the system

(20)–(21) satisfies ρ = x0t we expect that θ −→ 1 as t −→ ∞. Numerically solving the

system reveals that as more mass is injected into the system x1 rises until θ approaches

unity and the borderline equilibrium solution xeq
r = x1 = b/a is approached, as mass

aggregates to increasingly large cluster sizes.

Consider the zeroth moment, defined by

M0 =
∞
∑

r=1

xr, (23)

which, with the equations for ẋr (21) for r = 1, 2, . . ., yields

Ṁ0 = x0 + b(1 − θ)M0 − bx1. (24)

Obviously this is dependent on the monomer concentration but we know that the

monomer concentration is tending to xeq
1 = b/a and so we assume that x1(t) = xeq

1 +q1(t)

with q1(t) −→ 0 as t −→ ∞, and hence obtain θ = 1 + aq1/b which in equation (24)

yields, at leading order,
(

x0 −
b2

a

)

= aq1M0, (25)

and leads to the scalings M0 = M 0t
µ, q1 = q1t

−µ with M 0 = (x0 − b2/a) /aq1. To

consider the correction terms of equation (24) we need to include more terms in the

expansion of M0 and x1, so that

M0 = M 0t
µ + M̂0t

µ−ν , (26)

x1 =
b

a
+ q1t

−µ + q2t
−µ−ν , (27)

and so we obtain

µM0t
µ−1 = −bq1t

−µ − aM 0q2t
−ν − aq1M̂0t

−ν. (28)
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To balance all the terms in this equation, we require that µ = 1/2 and ν = 1/2;

numerical simulations confirm that µ = 1/2.

We proceed by investigating the evolution of the size-distribution xr(t) as t −→ ∞.

We assume that x1 = b/a + q1t
−1/2 and xr = bψ(r, t)/a with ψ(r, t) −→ 1 as t −→ ∞,

where ψ = 1 for r = 1 and ψ −→ 0 as r −→ ∞. From equation (21), for ẋr, we obtain

∂ψ

∂t
= b

∂2ψ

∂r2
− aq1

t1/2

∂ψ

∂r
. (29)

This equation has a self-similar solution which can be written in terms of the self-

similar variable η = r/
√
t, yielding the solution ψ = A erfc

(

r/2
√
bt− s1

)

, where

s1 = aq1/
√
b and we determine A from the boundary condition ψ = 1 at r = 1;

that is A = 1/erfc(−s1), and so finally

xr(t) ∼
b

a

erfc
(

r
2
√

bt
− s1

)

erfc(−s1)
, as t −→ ∞ for r = O(

√
t). (30)

In summary, we have considered a simplified system which neglects competition

and poisoning effects, but includes an influx of monomers. Numerically we found

that at small times the system tends to a local equilibrium solution, and over large

times this solution tends to xr = x1, with increasingly large clusters being produced.

The timescale over which this occurs has been investigated and it was found that the

monomer concentration tended to b/a with correction term decaying with O(t−1/2), and

that xr is given by the similarity solution (30) as t −→ ∞.

3. Inhibition

Having investigated the model without an inhibitor we proceed to consider the more

general case of a non-zero influx of poison, p0 > 0, but maintain only a single morphology

of cluster (i.e. no competition for monomers). Hence we consider the equations

ẋ1 = x0 − J1 −
∞
∑

r=1

Jr, (31)

ẋr = Jr−1 − Jr − kpxr, (32)

ṗ = p0 −
∞
∑

r=2

kpxr. (33)

We seek a solution to this system of equations which balances the monomer influx by the

poison influx. The behaviour depends on the relative value of the monomer to poison

influx and all possible ratios are considered below.

3.1. Case A: 2p0 < x0

First we consider the parameter regime 2p0 < x0; that is, a relatively small influx of

inhibitor. The addition of poison will permit the existence of steady-state solutions in

the large time limit and for these solutions we assume that xeq
r = θ̂r−1

x x1 and the effect
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of poisoning suggests that θ̂x < 1. Requiring ẋr = 0 with (32) yields

(θ̂x − θ)(θ̂x − 1) =
kpθ̂x

b
, (34)

which is solved by

θ̂x =
1

2

(

1 + θ +
pk

b

)

± 1

2

√

√

√

√

(

1 + θ +
pk

b

)2

− 4θ, (35)

Solving ṗ = 0 in (33) gives

p =
ap0(1 − θ̂x)

bkθθ̂x

, (36)

and finally if ẋ1 = 0 then (31) implies that

x0 =
b2θ

a(1 − θ̂x)
(θ̂x − 2)(θ̂x − θ), (37)

and these three equations are solved to give θ, θ̂x and p. Substituting (36) into (34)

implies

(θ̂x − θ)(θ̂x − 1) = (1 − θ̂x)
ap0

b2θ
, (38)

and we discount the possibility that in general θ̂x = 1 since this leads to a contradiction

in (34); thus θ − θ̂x = ap0/b
2θ and we obtain

θ̂x =
x0 − 2p0

x0 − p0
. (39)

Given that x0 > 2p0, equation (35) yields

θ =
x0 − 2p0

2x0 − 2p0
+

√

√

√

√

ap0

b2
+

(

x0 − 2p0

2x0 − 2p0

)2

, (40)

with x1 = bθ/a; we take the positive root of (40) so that θ −→ 1 in the limit k −→ 0.

Thus the final value of the poison is

pfinal =
2ap2

0(x0 − p0)

k(x0 − 2p0)
[

b(x0 − 2p0) +
√

b2(x0 − 2p0)2 + 4ap0(x0 − p0)2
] . (41)

We test this analytical result by comparison with a numerical simulation. In the

large-time limit formula (41) is correct as demonstrated in Figure 1A where p(t)− pfinal

is plotted against time, where p(t) is the numerical result; this difference tends to zero

as t −→ ∞ and we note that, with a log scale on the vertical axis, the graph is linear,

indicating exponential decay. In Figure 1B we compare the numerical and analytical

solutions and find they agree with good accuracy; furthermore we find numerically that

the concentrations xr decay exponentially to the given steady-state solution xr = x1θ̂
r−1
x .

Given the condition x0 > 2p0 then this analysis holds, and we note that θ̂x is independent

of a and b (numerically confirmed); however, x1 is dependent on a and b. If p0 = 0 then

θ̂x = θ = 1 as t −→ ∞ as previously obtained. We also note that the average cluster

size, M1/M0 = 1/(1 − θ̂x) is independent of the susceptibility of poisoning (k), but the
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final poison concentration is proportional to 1/k. From (40) we see that θ −→ 0 as

p0 −→ x0/2 and (41) implies pfinal −→ ∞ as p0 −→ x0/2; we will return to these results

when we consider the case x0 = 2p0.
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Figure 1. A) Difference between the numerical value of p(t) and the analytically-

determined pfinal for times 0 < t < 800; illustrating exponential convergence. B)

Comparison of the numerical solution xr(2000) and the equilibrium xr = θ̂r−1
x

bθ/a.

Parameters used were x0 = 1, p0 = 0.4, a = 0.5, b = 1 and k = 0.25.

3.2. Case B: x0 < 2p0

Increasing the level of poison will have a non-trivial impact on the system. Numerical

simulations suggest that all concentrations tend to zero, except for x1(t) which tends to

a constant, and p(t) which grows without limit in a linear fashion. To investigate the

large-time kinetics we make the assumption that xr(t) ∼ zr/t
γr and p(t) = p1t; further

assuming that γ1 = 0. Thus equation (32) becomes

zrt
−γr−1 = az1zr−1t

−γr−1 − bzrt
−γr − az1zrt

−γr + bzrt
−γr+1 − kp1zrt

−γr+1,

(42)

as t −→ ∞ the dominant terms are the first and last term on the right hand side and

by balancing them we find that γr − 1 = γr−1, which with γ1 = 0 yields γr = r − 1. If

we consider equation (33) then the summation is dominated by the first term and so

p1 = p0 − az2
1 . Finally, the leading order terms of equation (31) yield

z1 =

√

x0

2a
, (43)

which, with the leading order terms from equation (42), implies

zr =
(2ax0)

r/2

2 (2p0 − x0)
r−1 . (44)

These results have been confirmed by numerics [24], measurements of the gradient of a

log-log plot of x3 and x4 against time yield 1.99 and 2.97 respectively. Thus as t −→ ∞
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we have

p(t) ∼ (p0 − x0/2)t, (45)

x1(t) ∼
√

x0/2a+ o(1), (46)

xr(t) ∼ (2ax0)
r/2/2(2p0 − x0)

r−1tr−1 for r > 1. (47)

3.3. Case C: 2p0 = x0.

The borderline case, 2p0 = x0, is such that there is just enough inhibitor to poison all the

clusters formed in the system, but it is not obvious how fast this will occur. Numerical

simulations suggest that the following scalings are appropriate for the problem

p = p1t
ξ + p2, (48)

x1 = z1 +
χ1

tξ
, (49)

xr =
zr

tξ(r−1)
+
χr

tξr
, (50)

with ξ = 1/2, and this will be confirmed by the following analysis. We assume no a

priori knowledge of χ1, χr, zr, z1 or ξ, only ξ > 0. The leading order terms in (31) give

x0 − 2ax2
1 = 0 hence z1 =

√

x0/2a. Substituting equations (48)–(50) into (33) yields

ξp1t
ξ−1 = p0 − kp1z2 −

kp2z2
tξ

− kp1(χ2 + z3)

tξ
, (51)

which to leading order gives p0 = kp1z2. Balancing the next order terms gives ξ = 1/2

and so
1

2
p1 = −kp2z2 − kp1(χ2 + z3). (52)

With the scaling parameter we now consider (32)

−zr

2(r − 1)t(r−1)/2+1
=

√

ax0

2

zr−1

t(r−2)/2
+
aχ1zr−1

t(r−1)/2
+

√

ax0

2

χr−1

t(r−1)/2
− bzr

t(r−1)/2

−
√

ax0

2

zr

t(r−1)/2
− aχ1zr

tr/2
−
√

ax0

2

χr

tr/2
+
bzr+1

tr/2

− kp1zr

t(r−2)/2
− kp2zr

t(r−1)/2
− kp1χr

t(r−1)/2
. (53)

The leading order terms occur at O
(

t−(r−2)/2
)

yielding a recurrence relation with

solution

zr =
(

ax0

2

)r/2 1

akr−1pr−1
1

. (54)

Keeping terms to O(t−(r−1)/2) gives a recurrence relation for χr, that is

kp1χr −
√

ax0

2
χr−1 =

(

ax0

2

)r/2 1

kr−1pr−1
1

Υ (55)

where, for ease of analysis, we define the constant

Υ =
1

a

(

kp1χ1

√

2a

x0
− b− a

√

x0

2a
− kp2

)

. (56)
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Solving the recurrence relation yields

χr =

(

Υ(r − 1) + χ1kp1

√

2

ax0

)

(

ax0

2

)r/2 1

krpr
1

. (57)

Finally, we consider (31), wherein the O(1/
√
t) terms yield

χ1 =
z2(2b−

√

ax0/2)

4
√

ax0/2
. (58)

We now wish to solve equations (52), (56) and (58) to find p1 and χ1. Equation (52)

gives

p2 = − p1

2kz2
− p1χ2

z2
− p1z3

z2
, (59)

which, when combined with equation (56) and (58), yields

p1 =
(

ax0

2

)3/4 1√
ak
, (60)

where the Υ term arising from p2 on the LHS of equation (59) cancels exactly with that

arising from the p1χ2/z2 term on the RHS; thus there is no need to calculate the value

of Υ explicitly. Additionally we have

χ1 =
23/2b−√

ax0

29/4a3/4x
1/4
0

√
k
, (61)

and so the leading order terms have been resolved, however, p2 remains undetermined

since Υ has not been evaluated (that calculation requires higher order equations and is

omitted here).
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Figure 2. The special case x0 = 2p0: (A) the poison concentration against time; (B)

difference between the monomer concentration and its predicted limit, against time.

The parameters used were a = 2, b = 1, x0 = 1.5, p = 0.75 and k = 0.25.

In Figure 2A we plot the numerically-determined poison concentration over time; it

shows an indefinite increase and using a log-log scale we have confirmed that the time-

dependence scales with t1/2. If we assume that p = prmnum
1 t1/2 then by considering the
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last data point (t = 109) we obtain pnum
1 = 1.9167 which is in good agreement with the

analytical result of p1 = 1.9168 from (60). Additionally we have numerically confirmed

that the second-order term decays according to t−1/2 as predicted by the analysis. The

monomer concentration is predicted to tend to a finite limit, and this is shown in Figure

2B. The analysis has predicted this limit to be xeq
1 = 0.6124 and this agrees with

the numerical simulation. Finally we compared the numerical value of χnum
1 = 0.2477

with the analytical prediction from (61), χ1 = 0.2477, and they agree. In this case

monomers enter twice as fast as poison and while the monomer concentration saturates

to x1 −→
√

ax0/2, the poison accumulates according to p ∼ (ax0/2)3/4t1/2/
√
ak, thus

the clusters xr for r > 1 are scarce, and these concentrations decay algebraically, the

most numerous being the dimers which decay according to x2 ∼ (x0/2a)
1/4/

√
kt.

3.4. General ar, br, kr, with x0 < 2p0

Previous analysis has focused on the special case of size-independent rates (ar = a,

br = b and kr = k), which has been solved for all parameter regimes. In this Section

we solve the case of x0 < 2p0 but for general rates, that is, size-dependent non-zero ar,

br and kr. The following analysis is similar to that of Section 3.2. One steady-state is

xr = 0 (r > 1) with x1 tending to a finite value, while the poison concentration grows

linearly. We thus assume xr ≈ zr/t
γr and p = p1t; further assuming that γ1 = 0 in the

final timescale. The ẋr equation yields

zrt
−γr−1 = ar−1z1zr−1t

−γr−1 − brzrt
−γr − arz1zrt

−γr + br+1zrt
−γr+1

− krp1zrt
−γr+1, (62)

and thus we deduce the same balance as before so that γr = r − 1. The leading order

balance for the above equation will be the first and last term on the RHS and so

zr =
a1 . . . ar−1z

r
1

k2 . . . krp
r−1
1

. (63)

To calculate p1 we consider the leading order terms in the equation for ṗ (33) and

obtain, as before, p1 = p0 − a1z
2
1 . We calculate z1 by balancing the leading order terms

in equation (8), thus z1 =
√

x0/2a1, and so p1 = p0 − x0/2, and so we can expect this

solution to fail if 2p0 ≤ x0. Thus as t −→ ∞ we have the solution p ∼ (p0 − x0/2)t and

x1 ∼
√

x0/2a1 + O(1/
√
t). This result is independent of the choice of rate coefficients

and poisoning susceptibility, assuming that these rates are non-zero.

3.5. Summary

In this Section we have considered a system with poisoning and monomer influx, but as

yet without competition for monomers, that is, we have allowed only one morphology

of cluster to form. We find three different cases, which depend on the relative levels of

monomer to poison influx. Firstly, in Case A the poison influx is relatively small; in this

case the concentration profile tends to a steady-state solution and the poison level to a

finite value and these have been calculated explicitly. Numerical simulations reveal that



The Becker-Döring equations with monomer input, competition and inhibition 12

the concentrations of clusters and of poison decay exponentially to their final values.

We additionally note that the average cluster size is unaffected by the susceptibility of

poisoning (k), but the final level of poison does depend on k. Secondly, in Case B the

poison influx is relatively high compared with the monomer influx. This results in linear,

unlimited, growth of the poison concentration (p(t) ∼ (p0 −x0/2)t) while all the cluster

concentrations tend to zero in the large time limit, with the exception of the monomer

concentration which tends to x1 =
√

x0/2a. The timescale over which the concentrations

tend to zero is found to vary according to xr(t) ∼ O(t−(r−1)) for r > 1. This can be

generalised to size-dependent aggregation, fragmentation and poison susceptibility rates

where, in general, x1 −→
√

x0/2a1, xr −→ 0 and p ∼ (p0 − x0/2)t as t −→ ∞. In Case

C, we consider the case where the monomer and poison influxes are balanced, the poison

grows without limit, according to p ∼ (ax0/2)3/4t1/2/
√
ak, the monomer concentration

again tends to x1 =
√

x0/2a and the larger cluster concentrations tend to zero in the

large time limit. However, the larger cluster sizes tend to zero at a slower rate than in

Case B, with xr ∼ t(r−1)/2.

The intuitive reason for a critical point existing at 2p0 = x0 is that since we do not

allow monomers to be poisoned, dimers must form before the cluster can be poisoned,

so with 2p0 < x0 the influx of poison is insufficient to poison all the monomers flowing

into the system. However, with 2p0 > x0 then there is sufficient poison influx to poison

all the mass as dimers and maintain a build up of poison. When 2p0 = x0, most of the

monomers added to the system forms dimers and is poisoned by the inhibitor, however

a few trimers are formed (these have a concentration which is O(1/
√
t) smaller than the

dimer concentration). The poisoning of a trimer leaves a slight excess of inhibitor, thus

the concentration of inhibitor rises at a rate proportional to O(1/
√
t), and so p ∼ O(

√
t).

4. Competition

We now allow competition between two morphologies of cluster growing from monomers,

while the inhibitor only affects one morphology, say the xr clusters, as given by (9)-

(13). There are four types of behaviour observed depending on the aggregation and

fragmentation coefficients and the relative size of 2x0 to p0; these are discussed after a

brief description of the case p0 = 0, that is the case of competition without poisoning.

4.1. No poisoning, p0 = 0

In the absence of poison the input of monomers must be balanced by either the xr or

yr clusters tending to the borderline equilibrium solution, xr = x1 or yr = x1; unless

a/b = α/β in which case they will both tend to this state. If a/b > α/β then

xr −→ x1 =
b

a
, yr −→

(

αb

βa

)r
β

α
as t −→ ∞, r > 1, (64)

that is, the xr-clusters are the more thermodynamically stable and will tend to the

borderline equilibrium solution, and the yr-clusters will tend to an equilibrium solution
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which decays as r → ∞. If a/b < α/β then this situation is reversed so that

yr −→ x1 =
β

α
, xr −→

(

aβ

αb

)r
b

a
as t −→ ∞, r > 1. (65)

4.2. Case I: a/b > α/β, 2p0 < x0

Here xr-clusters are more thermodynamically stable than the yr-clusters and the input

of monomers dominates that of poison. In the parameter regime a/b > α/β and without

poison we expect the xr-clusters to approach the borderline equilibrium solution xeq
r = x1

and the yr-clusters to form an equilibrium solution yr = θ̂r−1
y x1 with θ̂y = αx1/β < 1.

Figure 3 shows the large-time solution of the system both with and without poison. The

addition of poison alters the structure of the xr concentrations and the yr concentrations

remain in equilibrium, though with x1 and θ̂y reduced; from xr = x1 to xr = θ̂r−1
x x1

with θ̂x < 1 as in Case A (see Section 3.1, equations (39), (40) and (41)). In Figure 3 we

also plot the large-time solution for the system with an influx of poison. By poisoning

the xr clusters sufficiently, the yr become the more stable species as expected, although

we note that due to the poisoning of the xr clusters the concentrations of the yr clusters

has also fallen; this is due to the reduced monomer concentration, x1. In general, there

will be a critical value of inhibitor influx, pcrit
0 , such that θ̂x = θ̂y so that xr = yr ∀r; by

combining θ̂y = αx1/β and equations (39) and (40) we deduce that pcrit
0 satisfies

βb

α

(

aβ

αb
− 1

)

=
pcrit

0 (x0 − pcrit
0 )2

(x0 − 2pcrit
0 )2

, (66)

which clearly has a unique root for pcrit
0 between 0 and x0/2.
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Figure 3. The large-time solution of xr and yr without poison and with a small

amount of poison (2p0 < x0) are shown. The arrows indicate how the addition of

poison has effected each distribution. Parameters: a = 1.3, b = 1, α = 1.2, β = 1,

x0 = 1, k = 0.25, t = 106 and N = 500 with p0 = 0 and p0 = 0.4.
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4.3. Case II: a/b > α/β, x0 < 2p0

Here the xr-clusters remain more stable than the yr-clusters, but there is now an

abundance of inhibitor. Case II differs from Case I only by the increase of inhibitor

in the system, thus without poison the concentration profiles will be identical to those

shown in Figure 3. With an increased amount of poison, p0 > x0/2, the yr-clusters

remain in equilibrium (yr = x1(αx1/β)r−1) while the xr-clusters behave as described

in Case B (Section 3.2), thus xr −→ 0 for r > 1 and x1 −→
√

x0/2a as t −→ ∞. In

this case the poison concentration rises linearly without limit, p ∼ p0t, and the xr are

completely inhibited from growing, and so the yr clusters remain as the only stable form

of cluster in the system, as shown in Figure 4. In summary, as t −→ ∞, we have

x1 =

√

x0

2a
+ O

(

1

t

)

, (67)

yr ∼
(

α

β

)r−1 (
x0

2a

)r/2

, (68)

xr = O
(

t−(r−1)
)

, (69)

p ∼ p0t. (70)
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Figure 4. The large-time solution of xr and yr without poison and with a large

amount of poison (p0 > x0/2). The parameters used were a = 1.3, b = 1, α = 1.2,

β = 1, x0 = 1, k = 0.25, t = 106 and N = 500 with p0 = 0 and p0 = 0.51.

4.4. Case III: a/b < α/β, 2p0 < x0

In this case the yr-clusters are more stable than the xr-clusters and there is an abundance

of monomer over inhibitor. In Figure 5 we plot numerical results of the case with no input

of inhibitor, showing that the yr-concentrations approach the borderline equilibrium

solution yr = x1 = β/α. From Section 2 we recall that the monomer concentration

adjusts such that αx1/β = 1 in the large time limit. The xr concentrations form the

equilibrium solution xr = (ax1/b)
r−1x1 = (aβ/bα)r−1β/α.
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Figure 5. The large-time solution of xr and yr without poison and with a small

amount of poison (p0 < x0/2) are shown. The parameters used were a = 1.2, b = 1,

α = 1.3, β = 1, x0 = 1, k = 0.25, t = 106 and N = 500 with p0 = 0 and p0 = 0.4.

The addition of any amount of poison causes the monomer concentration to fall and

thus the yr-clusters to revert to an equilibrium solution which decays with increasing r,

given by yr = θ̂r−1
y x1 with θ̂y < 1. The condition 2p0 < x0 implies that the xr-clusters

adjust to a steady-state solution given by xr = θ̂r−1
x x1. Since the yr-clusters are in

equilibrium, the analysis of Case A (Section 3.1) holds exactly and θ̂x, θ and pfinal are

given by equations (39), (40) and (41) respectively, as shown in Figure 5.

This is a surprising result. Without poison the yr clusters form increasingly large

clusters and are by far the more stable configuration. While it is true that with poison

the yr clusters are still the more stable morphology, the form of the solution for the

yr clusters is altered considerably, from the borderline equilibrium in which the mass

of yr-clusters grows without bound (
∑

r ryr = O(t)) to an equilibrium solution with a

finite mass; a change induced by poisoning the less stable cluster type (xr).

4.5. Case IV: a/b < α/β, x0 < 2p0

In the final case, yr-clusters are more stable than xr-clusters and the influx of poison

dominates that of monomers. If no poison is present then we still expect the long time

results shown in Figure 5, however, we now investigate the effect of a large amount of

poison on the system, that is 2p0 > x0. The yr-clusters form an equilibrium solution

yr = θ̂r−1
y x1 and so the analysis of the xr clusters follows exactly that of Case B (Section

3.2); thus in the large time limit we expect xr −→ 0 as t −→ ∞ for all r > 1 and the

monomer concentration to be given by equation (43). In Figure 6 we plot the numerical

xr and yr concentrations in the large time limit and note that equation (43) predicts a

monomer concentration of x1 = 0.6455 which agrees well with the numerical simulation.

Again it is interesting that poisoning the less stable clusters causes a dramatic change

in the form of solution of the more stable cluster type.
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Figure 6. The large-time solution of xr and yr without poison and with a large

amount of poison (x0 < 2p0) are shown. The parameters used were a = 1.2, b = 1,

α = 1.3, β = 1, x0 = 1, k = 0.25, t = 106 and N = 500 with p0 = 0 and p0 = 0.4.

5. Conclusion

In this paper the Becker-Döring model has been generalised several times to build up

a complicated model of competition for an influx of monomers, between two types of

morphologies, with one morphology being susceptible to an inhibitor which is also being

introduced at a constant rate. Numerical simulations have been performed to confirm

the analytical results obtained, after truncating the model at a large finite size r = N ,

typically 500.

Initially we considered the Becker-Döring model with a constant influx of monomers.

At small times the clusters form an equilibrium-like structure with θ = ax1/b < 1.

We found that as t −→ ∞, x1 −→ b/a so that the borderline equilibrium solution

xr = x1 = b/a is approached. We calculated the similarity solution which is valid in the

large-time limit (30).

The next generalisation added to the model is allowing a constant influx of inhibitor.

When a cluster is poisoned it is effectively removed from the system, since it plays no

further role in the kinetics of cluster growth. The solution is found to depend on the

relative influx of monomer (x0) to inhibitor (p0), with a special case when 2p0 = x0. In

the case 2p0 < x0 we found that the poison tends to a finite concentration while the xr-

clusters tend to a steady-state solution. In contrast, if x0 < 2p0 then the concentration

of inhibitor increases without limit, linearly in time, and xr −→ 0 for r > 1, with

xr = O(t−(r−1)) as t −→ ∞. In the borderline case 2p0 = x0, the system again tends

to the solution xr −→ 0 for r > 1 as t −→ ∞ and the inhibitor concentration tends

to infinity as t −→ ∞. In this case the appropriate scalings are p ∼ t1/2, x1 ∼ x1

and xr ∼ 1/t(r−1)/2; and we calculated the leading order terms in all cases. In the case

x0 < 2p0 the scalings hold for general ar, br and kr, calculating the final solution and

the timescale over which this is approached. If clusters of size r < m were immune
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from poisoning, then we expect a critical input ratio at x0 = mp0, with all cluster

concentrations decaying to zero if x0 < mp0 and a non-zero steady-state if x0 > mp0.

The final generalisation to be added to the model is to allow competition for

monomers, that is, where monomers aggregate into one of two types of cluster, xr or

yr, but we allow only the xr-clusters to be poisoned. In the absence of a poison influx,

we find that the less thermodynamically cluster forms an equilibrium solution which

decays with increasing r, while the more stable morphology approaches the degenerate

equilibrium solution in which the concentrations of all sizes are equal x1. In the presence

of inhibitor, we first assume that the yr-clusters are the less stable, then poisoning the

xr-clusters results in a steady-state solution for the xr-clusters if 2p0 < x0, and if

x0 < 2p0 then xr −→ 0 for all r > 1 (identical results as previously obtained without

competition). However, if, without poison, the yr-clusters are more stable and form

the degenerate equilibrium solution yr = x1, then poisoning the less stable cluster,

(xr), results in the yr-clusters forming an equilibrium solution which decreases at large

cluster sizes. The size distribution of the more stable morphology is significantly altered

by poisoning the less stable cluster; this is not an intuitive result. A naive interpretation

of such an observation would lead one to assume that the inhibitor was acting primarily

on yr-clusters, or possibly on both the xr- and the yr-clusters. In the unpoisoned case

the less stable morphology (xr) reaches its equilibrium and then all input monomers

form the y-morphology, whereas with an inhibitor a steady-state is reached in which all

input monomers form the x-morphology and are then poisoned.

These results have important applications in polymorph prediction, and in

explaining why the predicted most stable morphology of a crystal is not always the

one observed in nature. In cases where two polymorphs have a similar thermodynamic

stability, the presence of other chemical species may have a stronger inhibiting effect

on the growth of the more stable morphology, thus allowing the less stable morphology

to dominate. We hope to generalise this work to the more complex cases where the

aggregation and fragmentation rates are size-dependent. This occurs, for example,

in classical nucleation theory (see Lewis [25] for details), where statistical mechanical

models of the growing crystal nucleus are formulated in terms of a surface energy and

a bulk energy. As well as systems which can form multiple morphologies of crystal,

models such as these could also be applied to the problems of protein crystallisation

where amorphous solids as well as crystals are often produced, see Kam [26] and Weber

[27] for further details.
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