
Page Composition using PPML as a Link-editing Script
Steven R. Bagley and David F. Brailsford

Electronic Publishing Research Group
School of Computer Science & IT

University of Nottingham
Nottingham NG8 1BB, UK

{srb , dfb}@cs.nott.ac.uk

ABSTRACT
The advantages of a COG (Component Object Graphic) approach
to the composition of PDF pages have been set out in a previous
paper [1]. However, if pages are to be composed in this way then
the individual graphic objects must have known bounding boxes
and must be correctly placed on the page in a process that
resembles the link editing of a multi-module computer program.
Ideally the linker should be able to utilize all declared resource
information attached to each COG.

We have investigated the use of an XML application called
Personalized Print Markup Language (PPML) to control the link
editing process for PDF COGs. Our experiments, though
successful, have shown up the shortcomings of PPML's resource
handling capabilities which are currently active at the document
and page levels but which cannot be elegantly applied to
individual graphic objects at a sub-page level. Proposals are put
forward for modifications to PPML that would make easier any
COG-based approach to page composition.

Categories and Subject Descriptors
E.1 [Data]: Data Structures — Trees; I.7.2 [Document and Text
Processing]: Document Preparation — Markup languages; I.7.4
[Document and Text Processing]: Electronic Publishing.

General Terms
Algorithms, Documentation.

Keywords
PDF, PPML, graphic objects, Form Xobjects, link editing .

1. INTRODUCTION
The Component Object Graphic (COG) model for PDF,
introduced in [1], creates each page of a document from separate
graphical blocks. Taking this present paper as an example, each
heading, paragraph, etc., in the COG approach, would be a
separate graphical object. In what follows our strategy would
apply to COGs expressed in any language, but for the purposes of
our tests all COGs were expressed in PDF.

Each COG is required to be a self-contained entity, independent
of any previous graphical operations. The COG sets up the state it
requires before it draws anything and resets the state once
rendering complete. In this way the appearance of a page is
independent of the order in which COGs are placed on it. If each
COG represents a unit such as a paragraph, table, diagram etc.
then this effects a good balance between positional flexibility and
potential re-usability of components.

COGs are drawn on the PDF page by the use of a ‘Spacer’ object,
which causes the COG to be rendered on the page at a particular
position. Since the final page position of each COG is not known
when the COG is defined, all COGs are drawn relative to a local
origin. It is the spacer that applies a specific translation in order to
locate the COG on the page. Internally, PDF-COGs are
implemented using PDF’s FormXObject structure[2].

To demonstrate COG-PDF technology, an Acrobat plug-in was
created to allow users to directly drag and drop COGs onto a
page. A ditroff [3] post-processor, pdfdit, was written to create
COGs, with all internal spacings and displacements expressed
relative to a local COG origin (rather than the page origin).

2. COG LINK-EDITING
The flexibility provided by COGs can only be fully exploited if
COGs from multiple sources can be combined to form a
composite document. To bring this about we need to borrow, from
compiler technology, the idea of a Linker [4,5] to take COGs from
a variety of sources and link them together to form a single
document.

In a program language linker, object modules are created using a
local base address of zero (exactly as our COGs all have a local
(0,0) origin). But unlike this traditional linker, where the relative
location of the object code within the final executable is
unimportant, the placement of COGs on the visible page is vital
for achieving the desired appearance. Therefore a COG linker
needs to know which COGs appear, on which page, and at which
positions. Our search for a suitable link-editing language
(preferably XML based) led us to Personalized Print Markup
Language (PPML).

2.1. Introduction to PPML
PPML was developed by a consortium of digital press
manufacturers (under the name PODi [6]) to meet the needs of
personalized printing (where each document is a custom variation
of some master template). Essentially it is a standardized method
for describing personalized documents [7]. The impetus behind
PPML is to allow a page to be composed from blocks of material
that can be Raster Image Processed (RIPped) just once and then
cached in their RIPped form for reuse.

FINAL DRAFT of paper accepted for:
DocEng’04, October 28–30, 2004, Milwaukee, Wisconsin, USA.
Copyright 2004 Bagley and Brailsford

Figure 1. The logo and Web address of a church

The following listing shows a sample PPML document
corresponding to the diagram of Figure 1.
<PPML><DOCUMENT_SET><DOCUMENT>
<REUSABLE_OBJECT>
 <OBJECT Position="0 0">
 <SOURCE Dimensions="723 227"
Format="application/postscript">
 <EXTERNAL_DATA Src="logo.eps" />
 </SOURCE></OBJECT>
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="churchlogo"/>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>
<PAGE Dimensions="595 842">
 <MARK Position="72 300">
 <OBJECT Position="0 0">

 <SOURCE Dimensions="450 100”
Format="application/postscript">

 <INTERNAL_DATA>
 /Times-Italic 18 selectfont 0 12 moveto

(http://www.beeston-free.org) show
 </INTERNAL_DATA></SOURCE></OBJECT>
 </MARK><MARK Position="72 200">
 <OCCURRENCE_REF Name=”churchlogo” />
 </MARK></PAGE></DOCUMENT>
</DOCUMENT_SET></PPML>

In this example the logo for the church has been declared as a
<REUSABLE_OBJECT> so that it can potentially be used on
more than one occasion. Note that PPML does not define its own
drawing operators. Instead, content is imported in whatever
format the PPML consumer understands (the example here uses
PostScript). The content can either be embedded in the PPML
stream as <INTERNAL_DATA> or it can be called up (e.g. as
logo.eps in the present example) from an external file as
<EXTERNAL_DATA>. A PPML document’s root node is
<PPML> and this can contain one or more <DOCUMENT_SET>s
each of which contains at least one <DOCUMENT>. In what
follows we confine our discussion to PPML scripts that represent
just a single document. Content defined by a
<REUSABLE_OBJECT> at the <DOCUMENT> level is available
for the rest of the document, and the same rules apply to content
defined at the <PPML>, <DOCUMENT_SET> and <PAGE> level.
Note the use of the <OBJECT> and <SOURCE> elements to place
pieces of content within the space of the
<REUSABLE_OBJECT>. The <OCCURRENCE_LIST> allows
many <OCCURRENCE>s of the content to be defined, each with a
different transformation applied by an optional <VIEW> tag.

In a typical document most of the content will take the form of
non-reusable objects, rather like the Web address part of the
current example. All content is imaged on the page by <MARK>
elements, which have a Position attribute, to define where the
content appears. An <OCCURRENCE_REF> enables one to
invoke a particular <OCCURRENCE> of the content. For one-off
content, as here, it can be defined inside the <MARK> itself.

3. MAPPING COGS USING PPML
Because PPML is content-agnostic the example we have just
shown could equally well be applied to PDF versions of the
church logo and its Web address caption. In particular, each of
these components might be turned into a PDF COG. On the whole
PPML works well as a link-edit scripting language for COGs, but
an analysis of its strengths and shortcomings proves very
illuminating.

Let us begin with the COG object features that map nicely into
PPML. Firstly, the Spacers in COG PDF map directly to PPML
<MARK>s with the Position attribute placing the COG on the
page. Next, the COG’s unique identifier can be used as a name for
a single <OCCURRENCE>. This identifier can also be used as
the Name attribute of <OCCURRENCE_REF>, to refer to a COG
that has been made into a <REUSABLE_OBJECT>. The
FormXObject that constitutes the PDF COG maps directly to
PPML’s <REUSABLE_OBJECT>. The size of the COG is stored
in the <SOURCE>’s Dimensions attribute (the Format being
given as “application/cog”) and the PDF content stream is copied
into the <INTERNAL_DATA> section. The order of Spacers on
the PDF page object is identical to the order of <MARK>s in the
PPML <PAGE>, and the order of <PAGE> elements is identical
to a depth-first search of the PDF pages tree.

Within PDF, each page contains a list of references to the
FormXObjects that are used on that page (in its Resources
dictionary) and it would appear sensible at first to map this across
to PPML, placing the <REUSABLE_OBJECT> definitions at the
<PAGE> level. However, PPML does not provide a general
method of referring to objects, except those on the same page or
those that have been made truly global at the topmost levels of
PPML. This in turn, means that for COGs to be shared they must
be placed at the <DOCUMENT> level. Currently we promote all
our COG objects to the <DOCUMENT> level to make it easier to
add or remove them from the final document.

4. THE RESOURCE PROBLEM
The major area where problems were encountered in linking
COG-PDF via PPML, lay in the handling of resources (e.g. fonts)
used by the COGs. In PDF, COGs are tightly coupled to the
resources they use by means of dictionary entries in the COG’s
FormXObject, which point to the actual resources held at either
the page or document level. The names used for these resources
have a scope that is local to the FormXObject dictionary. Thus the
same Times Roman font might be referred to as R in one COG
and as T in another. Equally, and very usefully, two different
COGs might use the same name, H, to refer, perhaps, to two
subtly different versions of a Helvetica font, with different
metrics, one for use in a company logo letterhead and the other for
use in body text.

In PPML there is indeed a <SUPPLIED_RESOURCES> element,
which can be used to name resources at the <PPML>,
<DOCUMENT_SET>, <DOCUMENT> or <PAGE> levels and
these resources are then visible for the rest of that level (although
it is possible to alter their scope; for example, they can be made
global via a Scope=”global” attribute declaration, in which
case they are cached in the consumer application to be available to
other PPML streams). PPML also supplies a
<REQUIRED_RESOURCES> element that can, in turn, contain a
<SUPPLIED_RESOURCE_REF> to indicate that a particular

<PAGE>, <DOCUMENT> etc. needs this resource. The PPML
specification makes it clear that this element is optional, but hints
that it might be useful in pre-flight checking of a print job, or in
subsetting pages from a composite document.

The nub of the problem with PPML’s scoping rules is as follows.
Objects and resources can have a global scope, at the level of the
whole document or document set (analogous to the extern storage
class in the C language) or they can have a scope restricted to the
current page (analogous to the static storage class in C, which
restricts scope to the current C source file). But PPML lacks a
mechanism for local scope, as might be found for variables inside
C functions, or member names in a C++ class, or indeed resource
names in a PDF FormXObject dictionary. More precisely, there is
no way in PPML to attach resources to a <MARK>, <OBJECT> or
<REUSABLE_OBJECT>. This omission means that any PPML-
based linker for PDF COGs would need to interpret the PDF
content stream to find out which resources that COG uses. This
would slow down the linker (considerably) and would also require
it to understand PDF graphical operators.

The lack of locally scoped names in PPML means that each
<SUPPLIED_RESOURCE> declares a unique identifier (the
ResourceName attribute) for the resource itself using the name
by which the resource is called out within the graphical objects
themselves. In addition, it declares a label (using the Name
attribute) by which the resource can be referred to within the
current scope. This, in turn, means that it is quite impossible to
use the same Name to refer to different resources. Equally, any
attempt to use different ResourceNames for the same resource
(by supplying two <SUPPLIED_RESOURCE> sections with
different ResourceNames) would simply result in multiple
copies of the same resource, rather than the sharing of one copy.

To overcome this problem we have adapted PPML to allow a
local binding of resources to objects. The resulting language we
have called PaC (PPML Adapted for COGs). If a PaC script is
now used for link editing COGs then the link editor can identify
and merge all the resources needed for each page of the output
document. Moreover, the extra information in PaC allows it to
unify resource requests and resolve name clashes.

Let us assume that the Web address and caption COGs for Figure
1 both use the local name, F, to refer to the Times Italic and
Times Bold fonts, respectively. If the linker’s output is to be a
unified COG PDF, then there is no problem. The FormXObjects
of the output COGs already support two different local bindings
for F. However, to produce a conventional PDF file, with
resources located at the Page or Document level then a PaC-based
linker has to identify the clash and rename one of the uses.

One final and subtle resource problem remains. If resources are to
be shared then we require some means of being sure that
identically named resources really do represent exactly the same
thing. The solution to this latter problem within PaC is two-fold.
Firstly, the problem of correctly identifying a resource is solved
by assigning each resource a Name, which is a globally unique
identifier (again, as with COGs, a standard UUID is used).
Furthermore this ResourceName attribute is moved from the
resource definition to where the resource is referenced. This
mimics COG-PDF’s behaviour and so removes the problem of
namespace collision in resources. Secondly, to tightly couple
resources to COGs, the <REQUIRED_RESOURCES> section is

now allowed only inside a <REUSABLE_OBJECT> definition
and, moreover, it must occur there. In this way the
ResourceName is used to declare information on the resources
used by a COG, rather like a formal parameter to a procedure.

By adopting the PaC extensions to PPML our linker can now
detect whether particular <REUSABLE_OBJECT>s or uniquely
named resources are shared between several <PAGE>s and if so
they can be promoted to the <DOCUMENT> level and kept in the
cache, with all name clashes resolved. This sort of optimization
would be quite impossible if conventional PPML were used, short
of requiring the linker to indulge in parsing of the content-stream.

5. CONCLUSIONS
From the point of view of traditional workflow, the existing
PPML definition seems adequate. The PPML consumer (usually a
printing press) will find its resources in the same manner as when
processing a PostScript document (the resource models are
virtually identical). If a resource is absent then the job will abort.

However, as we have seen, PPML lends itself to being processed
in other ways. For example, a tool could be written that subsets
the different documents in a PPML stream to separate files, or
which tries to optimize the use of <REUSABLE_OBJECTS> [8].
In these cases, where the structure of the PPML file is altered, the
limited information supplied by PPML on resource usage,
becomes a problem. We believe that the linking of graphic objects
to their resources should be explicit, visible and mandatory.

By altering PPML to handle tight coupling of resources to objects
(as we have done in PaC), our linker can now solve the twin
problems of multiple names for the same resource and the same
name being used for different resources. Equally, this mandatory
naming of resources, on a per object basis, is invaluable for
extracting reusable objects from documents.

6. REFERENCES
1. Steven Bagley, David Brailsford, and Matthew Hardy,
“Creating reusable well-structured PDF as a sequence of
Component Object Graphic (COG) elements,” in Proceedings of
the ACM Symposium on Document Engineering (DocEng’03), p.
58–67, ACM Press, 20–22 November 2003.
2. Adobe Systems Incorporated, PDF Reference (Third Edition)
version 1.4, Addison-Wesley, December 2001.
3. B. W. Kernighan, “A Typesetter Independent TROFF,”
Computing Science Technical Report No. 97, Bell Laboratories,
Murray Hill, New Jersey 07974, March 1982.
4. D. W. Barron, Assemblers and Loaders, Macdonald , 1978 .
5. John Levine, Linkers and Loaders, Morgan Kaufmann , 1999 .
6. PODi, Print markup language functional specification version
2.1, June 23 2003. http://www.podi.org
7. D. DeBronkart and P. Davis, “PPML (Personalized Print
Markup Language): a new XML-based industry standard print
language.,” in XML Europe 2000, p. 1–14. Paris, France
8. Felipe R. Meneguzzi, Leonardo L. Meirelles, Fernado T. M.
Mano, Ana Cristina B. da Silva, and João B. S. de Oliveira,
“Strategies for Document Optimization in Digital Publishing,” in
Proceedings of the ACM Symposium on Document Engineering
(DocEng04), ACM Press, October 2004.

	INTRODUCTION
	COG LINK-EDITING
	Introduction to PPML

	MAPPING COGS USING PPML
	THE RESOURCE PROBLEM
	CONCLUSIONS
	REFERENCES

