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Abstract

Post inhibitory rebound is a nonlinear phenomenon present in a variety of nerve cells. Following

a period of hyper-polarization this effect allows a neuron to fire a spike or packet of spikes before

returning to rest. It is an important mechanism underlying central pattern generation for heartbeat,

swimming and other motor patterns in many neuronal systems. In this paper we consider how

networks of neurons, which do not intrinsically oscillate, may make use of inhibitory synaptic

connections to generate large scale coherent rhythms in the form of cluster states. We distinguish

between two cases i) where the rebound mechanism is due to anode break excitation and ii) where

rebound is due to a slow T-type calcium current. In the former case we use a geometric analysis

of a McKean type model to obtain expressions for the number of clusters in terms of the speed

and strength of synaptic coupling. Results are found to be in good qualitative agreement with

numerical simulations of the more detailed Hodgkin-Huxley model. In the second case we consider

a particular firing rate model of a neuron with a slow calcium current that admits to an exact

analysis. Once again existence regions for cluster states are explicitly calculated. Both mechanisms

are shown to prefer globally synchronous states for slow synapses as long as the strength of coupling

is sufficiently large. With a decrease in the duration of synaptic inhibition both systems are found

to break into clusters. A major difference between the two mechanisms for cluster generation is

that anode break excitation can support clusters with several groups, whilst slow T-type calcium

currents predominantly give rise to clusters of just two (anti-synchronous) populations.

PACS numbers: PACS number(s):87.18.Sn, 87.19.La
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I. INTRODUCTION

Recordings from nerve cells demonstrate that if the potential at the cell body is increased

above a certain threshold value, then a pulse-like signal can be initiated along the outgoing

axon. In addition to the action potential, one other important nonlinear phenomenon in a

variety of nerve cells is post inhibitory rebound (PIR). Here the excitability of the neuron

is enhanced temporarily following a period of voltage depression (hyper-polarization). As

a result the neuron may fire a single spike or a packet of spikes (i.e., it may burst). Post

inhibitory rebound has been shown experimentally to play an important role in central

pattern generating networks that produce rhythmic output [1–4], as well as providing a

neural mechanism for the extraction of temporal cues in human speech [5]. The theoretical

importance of post inhibitory rebound for central pattern generation in networks of non-

oscillatory neurons was perhaps first recognized by Perkel and Mulloney [6], although dates

back to work by Brown [7] on so-called half-center oscillators. In certain nerve cells, such

as those of the medicinal leech, the ionic mechanism for post inhibitory rebound has been

uncovered [8, 9]. It is important to note, however, that many excitable models of neural

membrane, such as the Hodgkin-Huxley and FitzHugh-Nagumo model, are known to exhibit

a form of post inhibitory rebound that is more properly called anode-break excitation.

Thus it becomes interesting to distinguish between mechanisms for rebound based upon the

basic mechanism of anode break excitation (common to many excitable neuron models) and

novel ionic currents that do not form part of the make-up of minimal models of excitable

membrane. Specifically we are interested in the slow T-type calcium current known to

underly bursting behavior in single neurons upon release from inhibition. This particular

current is known to play an important role within the context of thalamocortical oscillations

[10, 11].

The focus of this paper will be on the existence of phase-clustered states as a function

of the speed and strength of inhibitory synaptic interaction in networks of globally coupled

neurons. Such states are a collection of sub-populations within a network each of which

consists of a fully phase-synchronized set of neurons. Note that we are concerned with

the strong coupling of elements that do not intrinsically oscillate. As such this work is

complementary to previous important studies of globally coupled phase-oscillators, such as

by Golomb et al. [12], Hansel et al. [13], and Okuda [14], relevant for networks of weakly
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interacting oscillators.

In section II we consider the Hodgkin-Huxley model of an excitable membrane and its

reduction to a planar dynamical system. This more easily allows us to describe the phe-

nomenon of anode break excitation using geometric notions. The equations of motion of

the reduced Hodgkin-Huxley model are then approximated in a piece-wise linear fashion to

obtain a single neuron model of McKean type [15]. Under the assumption of a separation

of time-scales for the voltage and recovery variables of this modified McKean model we are

able to exactly quantify the PIR response of the neuron to an inhibitory step input. This

analysis forms the basis for a subsequent network study with global inhibitory synaptic con-

nections of simple on/off type. Analytical expressions for the existence of phase-clustered

states are obtained in the singular limit and shown to be in good qualitative agreement with

simulations of a Hodgkin-Huxley network.

In section III we consider a spiking neuron model, possessing a slow T-type calcium

current, that can support a rebound spike burst in response to an inhibitory synaptic current.

For slow synaptic inhibition we are able to formulate network dynamics in terms of a firing

rate model. An exact analysis of this model is possible for a Heaviside firing rate function and

is used to calculate the regions in parameter space where cluster states exist. In comparison

to section II we do not explicitly exploit any underlying geometric features of the dynamics

and are able to consider a more general class of synaptic response functions.

Finally, in section IV we discuss the similarities and differences between cluster states

generated by the two mechanisms discussed in this paper.

II. ANODE BREAK EXCITATION

In the Hodgkin-Huxley model of excitable nerve tissue the membrane current arises

mainly through the conduction of sodium and potassium ions through voltage dependent

channels in the membrane [16]. The contribution from other ionic currents is assumed to

obey Ohm’s law. In fact the Hodgkin-Huxley dynamics is considered to be a function of

membrane potential v and three time and voltage dependent conductance variables m, n
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and h:

µ
dv

dt
= F (v, m, n, h) ≡ −gL(v − vL)− gKn4(v − vK)

− gNahm3(v − vNa) + I. (1)

Here, µ is the membrane capacitance, gK , gNa and gL are constants and VL, VK and VNa

represent the constant membrane reversal potentials associated with the leakage, potassium

and sodium channels respectively. I is an externally injected current. The conductance

variables m, n and h take values between 0 and 1 and approach the asymptotic values m∞(v),

n∞(v) and h∞(v) with time constants τm(v), τn(v) and τh(v) respectively. Summarizing, we

have that

τX(v)
dX

dt
= X∞(v)−X, X ∈ {m, n, h}. (2)

The six functions τX(v) and X∞(v), X ∈ {m,n, h}, are obtained from fits with experimental

data (given in the Appendix).

A systematic approach for reducing the dimension of Hodgkin-Huxley type models has

been proposed by Abbott [17], called the method of equivalent potentials. We may use

this approach to obtain a reduced two-dimensional version of the Hodgkin-Huxley model

that can be readily investigated with the tools of phase-plane analysis and geometry. In

essence this approach makes use of the fact that τm(v) is small for all v so that the variable

m rapidly approaches its equilibrium value m∞(v). Moreover, the equations for h and n

have similar time-courses, so that they may be slaved together via a so-called equivalent

potential, w. The result of this procedure is a two dimensional model with membrane

current f(v, w) = F (v, m∞(v), n∞(w), h∞(w)), such that

µ
dv

dt
= f(v, w) + I,

dw

dt
= g(v, w), (3)

where

g(v, w) =

∂F
∂h

[
h∞(v)−h∞(w)

τh(v)

]
+ ∂F

∂n

[
n∞(v)−n∞(w)

τn(v)

]
∂f

∂h∞

dh∞(w)
dw

+ ∂f
∂n∞

dn∞(w)
dw

, (4)

and ∂F/∂h and ∂F/∂n are evaluated at h = h∞(w) and n = n∞(w). The variable v

corresponds to a membrane potential while w is associated with the refractory properties of

a neuron. One natural consequence of this reduction is that the nullcline for w (defined by

ẇ = 0) is the straight line w = v. The voltage nullcline has a more cubic shape, as expected

for a model of excitable membrane. A plot of the phase-plane for this model is given in
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Figure 1. It is convenient to discuss the “cubic” nullcline in terms of left, middle and right

hand branches. When I = 0 the fixed point falls on the left hand branch and is stable. With

increasing I the fixed point can become unstable and moves on to the middle branch. As

it goes unstable (in a Hopf-bifurcation) one sees the appearance of a stable periodic orbit.

However, our interest is in the response of the system to inhibitory input. Consider for the

moment a negative value of I such that the fixed point moves to a hyper-polarized value

(with respect to the case when I = 0). Since this fixed point is also stable it will remain

there for all time. However, an abrupt removal of this inhibition leads to a rebound spike: to

equilibrate back to the fixed point the system makes a transition to the right hand branch,

as illustrated in Figure 1, before jumping back to the left hand branch and relaxing to the

fixed point for I = 0. We see that the systematic reduction of the Hodgkin-Huxley model to

the plane is a natural way in which to uncover the geometric mechanism underlying anode

break excitation. The mechanism of anode break excitation is clearly dependent on the
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FIG. 1: (Color online) The phase-plane for the reduced Hodgkin-Huxley model obtained by the

method of equivalent potentials. The straight diagonal line is the w nullcline, w = v, whilst the

two “cubic” curves are the v nullclines with I = 0 and I = −4. The inset shows the rebound spike

that arises when the fixed point with I = −4 is abruptly removed, by setting I = 0.

overall cubic shape of the v nullcline, but is independent of any detailed structure. Hence,

further insight is likely to come from a simpler (yet similar) choice of this shape. We note

from Figure 1 that the main effect of an inhibitory drive is to simply reduce the minima of

the v nullcline whilst leaving other parts of the curve relatively unchanged. From the desire

to work with a mathematically tractable model that captures the essential features of the
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Hodgkin-Huxley model we therefore introduce the following choices for f(v, w) and g(v, w):

f(v, w) + I = f(v; I)− w + w0, (5)

g(v, w) = v − w, (6)

where

f(v; I) =


−(v − v0)/β0(I) v < v1

(v − v2)/β(I) v1 ≤ v ≤ v2

−(v − v2)/β1 v > v2.

(7)

Parameters of this model are easily fit to the reduced Hodgkin-Huxley model and have

a natural physical interpretation as points of maxima and minima of the v nullcline or

gradients on the left, middle and right branches. This is most easily described with the aid

of the plot in Figure 2. Here we have set β1 = 3 and

β0(x) =
v1 − v0

w0 − w1(x)
, β(x) =

v2 − v1

w0 − w1(x)
, (8)

with w0 = −42.5, w1 = −65.2, v0 = −76.0, v1 = −63.7, v2 = −19.5. The function

w1(x) = w1 + w(x), describes how much the minima of v is perturbed by a constant current

injection. A detailed comparison with the reduced Hodgkin-Huxley model suggests a choice

such as w(x) = 4 log(1+x/4.75) (x < 0). However, for the sorts of mechanistic questions we

are interested in simpler choices, such as w(x) = x, are equally as valid. We call the above

the modified McKean model since it has piece-wise linear nullclines, as does the original

McKean model [15]. However, we take more care in obtaining an approximation of the

Hodgkin-Huxley model by fitting to the properties of the reduced Hodgkin-Huxley model.

Mathematical progress in quantifying anode break excitation for this model can be made

under the simplifying assumption of fast relaxation which allows one to use some of the tools

of geometric singular perturbation theory. The system has nullclines defined by w − w0 =

f(v; I) and w = v. The case when the fixed point is such that v < v1 is said to define the

excitable regime. It is convenient to keep track of which branch of the nonlinear function (7)

is playing a role in the dynamics. If the time-scale for the v dynamics is fast compared to

the time-scale for the w dynamics (i.e., in the limit as µ → 0), then v spends no appreciable

time off of the nullclines for v̇ = 0. When v < v1 we shall say that the system is on the left
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FIG. 2: (Color online) The phase-plane for the modified McKean model, with v nullclines plotted

for I = 0 and I = −4. Also shown is a rebound spike created by removing inhibition from the rest

state with I = −4. µ = 0.01, w(x) = 4 log(1 + x/4.75) and other parameters as in Figure 1.

hand branch: w − w0 = (v0 − v)/β0(I) and when v > v2 the system is on the right hand

branch: w − w0 = (v2 − v)/β1. In this case the slow dynamics takes the form

ẇ =

A0(I)− γ0(I)w v < v1

A1 − γ1w v > v2

, (9)

where γ0(x) = 1 + β0(x), γ1 = 1 + β1, A0(x) = v0 + β0(x)w0, A1 = v2 + β1w0 and we

have adopted the notation ẇ = dw/dt. Note that a necessary condition for anode break

excitation within this model is that the fixed point on the left branch be lower than the

minima with I = 0, i.e., A0(I)/γ0(I) < w1. Networks of weakly coupled oscillatory McKean

neurons have previously been discussed in [18, 19]. In the next section we shall pursue the

case of strong inhibitory coupling and the emergence of network rhythms that can co-exist

with a stable quiescent network state.

A. Clustering

At a synapse presynaptic firing results in the release of neurotransmitters that cause a

change in the membrane conductance of the postsynaptic neuron. This postsynaptic current

may be written

I(t) = (vs − v)u(t), (10)
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where v is the voltage of the postsynaptic neuron and vs is the membrane reversal potential.

The variable u corresponds to the probability that a synaptic receptor channel is in an open

conducting state. This probability depends on the presence and concentration of neuro-

transmitter released by the presynaptic neuron. The sign of vs relative to the steady state

resting potential, vss, determines whether the synapse is excitatory (vs > vss) or inhibitory

(vs < vss). In this paper we will regard the post-synaptic conductance as a train of pulses,

each one induced by the arrival of a pre-synaptic action potential at a time Tm (m ∈ Z):

u(t) =
∑
m

η(t− Tm). (11)

The arrival times are calculated according to a voltage jump condition in the pre-synaptic

neuron, which we shall take to occur as the neuron makes a transition from the left to

right branch of the v nullcline. The shape of the post synaptic conductance is given by the

function η(t) (η(t) = 0, t < 0). So that simple geometric arguments can be used we shall

consider on/off type synapses of the form

η(t) = gsΘ(t)Θ(α−1 − t). (12)

Here α−1 is the duration of a rectangular pulse, gs its strength and Θ(t) is a Heaviside step

function. We shall also focus on the case of strong inhibition so that vs − v ≈ vs, (i.e., we

drop the effects of shunting). For a globally coupled network of N neurons we consider the

natural extension

Ii(t) = − J

N

N∑
j=1

∑
m

Θ(t− Tm
j )Θ(α−1 − t + Tm

j ), (13)

where J = −gsvs > 0 and Ii(t) is interpreted as the input to the ith neuron, with i =

1, . . . , N .

For a globally coupled network the symmetry to permutations implies the existence of

a homogeneous solution. This could either be a homogeneous fixed point (HFP), in which

all neurons in the system remain at rest or a homogeneous limit cycle (HLC), in which all

neurons oscillate synchronously. This latter solution is what we shall refer to as a single

cluster state. It is also possible that other cluster states will arise through a process of

spontaneous symmetry breaking. The most symmetric cluster states will be ones in which

there are M clusters, each consisting of N/M fully synchronized neurons, with a non-zero
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phase difference between each cluster. We might more properly call this a splay-cluster state

as we would expect the phase difference between any two groups to be an integer multiple

of 2π/M . Note that we may also interpret the HLC as a 1-cluster state.

First let us consider the construction of a globally synchronous state (a single cluster).

If a cluster is released from inhibition and makes a transition from the left to right branch

then inhibition is immediately re-instated. The cluster evolves on the right hand branch

until it jumps back to the left on reaching w0. By assumption it is still in the inhibited state

and will evolve on the left hand branch until it is released from inhibition (when the synapse

turns off). Hence, the condition for the existence of such a solution is that the value of w

at the jump from left to right branches be lower than the minimum value of the v nullcline

without inhibition (when J = 0). The period of oscillation is simply the duration of the

synapse α−1, so that a critical value of α may be defined in terms of the minimum period

of oscillation. This minimum period is simply the time spent on the left and right branches

when the jumping off point (from left to right branches) is equal to w1. Since the dynamics

for w is piece-wise linear it is a simple matter to calculate these times and obtain a condition

on α as α < 1/(∆L(−J) + ∆R) where

∆R =
1

γ1

log

(
A1 − γ1w1

A1 − γ1w0

)
(14)

∆L(I) =
1

γ0(I)
log

(
A0(I)− γ0(I)w0

A0(I)− γ0(I)w1

)
. (15)

Now let us turn our attention to an M-cluster state. In such a state we may imagine

that there is a phase relationship between clusters such that at any given time there is

a constant level of inhibition given by I = −J/M (apart from the times of measure zero

where transitions occur). To maintain this constant level requires that just before release

from inhibition all M clusters evolve on the left hand branch. A single cluster then evolves on

the right hand branch and makes a transition back to the left hand branch before inhibition

terminates. In this way there are again M clusters on the left hand branch (each feeling an

inhibition of −J/M) when the next cluster makes a transition to the right hand branch. The

total period of oscillation is simply M multiples of the duration of synaptic inhibition, which

is also equal to the time spent on the left and right branches over a single orbit. Hence,

using an identical argument as for the 1-cluster state we obtain a condition on α = α(M) as

α(M) <
M

∆L(−J/M) + ∆R

. (16)
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Moreover, since we have assumed that only one cluster can make the jump from left to right

branch we also have that

α(M) >
M − 1

∆L(−J/M) + ∆R

. (17)

In Figure 3 we plot these critical curves for M = 1, . . . , 5 as a function of the strength of

inhibition. We see that for small α (slow synapses) there is a critical value of J above which

a 1-cluster (HLC) state can be found. Moreover, with increasing J one sees windows of α

values where M-cluster states can exist. From this figure it is also apparent that there is

co-existence of cluster states. For example with J = 7 we see that it is possible to find a

region of α values where there is co-existence of the M = 1 and M = 2 states. Moreover with

an increase in J and α it is possible to find a region of parameter space where M = 2 and

M = 3 can coexist. A further increase in α leaves only M = 3 as a possibility, and with a

large enough choice of α no clusters are possible. Note that the HFP is a trivial solution that

exists for all α and J . Direct numerical simulations of a Hodgkin-Huxley network are found
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FIG. 3: (Color online) A plot of the critical curves α(M) as a function of J (i.e. synaptic speed vs

synaptic strength), defining the regions of existence for M-cluster states. Here we choose w(x) = x

and all other parameters as in Figure 2. Note the co-existence of states.

to be consistent with the qualitative predictions of this analysis. Quantitative predictions are

not expected as our theory has been developed in the singular limit (µ → 0), which does not

hold for the standard parameter set of the Hodgkin Huxley model (given in the Appendix).

However, an increasing quantitative agreement between theory and numerics is obtained

with an (artificial) decrease in the capacitance of the Hodgkin-Huxley model, as expected.
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In Figure 4 we show simulations of N = 120 Hodgkin-Huxley neurons, illustrating the

coexistence of a 1-cluster and 2-cluster state. With an increase in the strength of inhibition
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FIG. 4: (Color online) Direct numerical simulations of a network of N = 120 Hodgkin-Huxley

neurons, showing the co-existence of a 1-cluster (top) and a 2-cluster (bottom) state for α = 0.1

and J = 20. In the top trace all of the neurons in the globally coupled network synchronize. In the

bottom figure (with a different set of initial conditions) the network splits into two equally sized

clusters that oscillate in anti-phase.

J and choosing a faster synapse it is possible to find a coexisting 2-cluster and 3-cluster

state, as predicted from the trend seen in Figure 3. This is illustrated in Figure 5.

In the next section we turn to a different mechanism of post inhibitory rebound that

relies on a novel ionic current, not present in the Hodgkin-Huxley model.

III. A REBOUND CURRENT

The response properties of thalamocortical relay neurons are greatly influenced by a low-

threshold, transient Ca2+ conductance known as IT . When this conductance is evoked, Ca2+

entering the neuron via T-type Ca2+ channels causes a large voltage depolarization known as

the low-threshold Ca2+ spike (LTS). Conventional action potentials mediated by fast Na+

and K+ (delayed-rectifier) currents often ride on the crest of an LTS resulting in a burst

response (i.e., a tight cluster of spikes). When a thalamocortical relay neuron is depolarized

(above roughly −60 mV), the low-threshold Ca2+ current inactivates with a time constant

of ∼20 ms. In this situation, further depolarization of sufficient magnitude will evoke a
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FIG. 5: (Color online) Direct numerical simulations of a network of N = 120 Hodgkin-Huxley

neurons, showing the co-existence of a 2-cluster (top) and a 3-cluster (bottom) state for α = 1.25

and J = 200. In the top figure the network has split into two clusters that oscillate in anti-phase.

In the bottom figure the network has split into three equal sized groups, such that the phase

difference between clusters is uniformly distributed on the circle.

train of action potentials (tonic firing) that is independent of IT . However, when a relay

neuron is hyper-polarized (below roughly −65 mV), the low-threshold current de-inactivates

with a time constant of ∼100 ms. In this situation release from inhibition results in a post

inhibitory rebound response consisting of an LTS and a cluster of 2-10 spikes. A minimal

model of this process has been developed by Smith et al. [20] based around intracellular

recordings of relay neuron responses to sinusoidal current injection. This minimal “integrate-

and-fire-or-burst” (IFB) model was constructed by adding a slow variable (representing the

de-inactivation level of IT ) to a classical leaky integrate-and-fire (IF) neuron model [21] and

is able to quantitatively reproduces salient features of relay neuron response properties in

both burst and tonic modes [20, 22].

In more detail the IFB model is given by

Cv̇ = −gL(v − vL)− gT (v − vT )hΘ(v − vh) + I, (18)

ḣ =

−h/τ−h v ≥ vh

(1− h)/τ+
h v < vh

. (19)

The voltage variable is subject to reset, limδ→0+ v(T n + δ) = vreset, and refractoriness

T n = inf{t | v(t) ≥ vθ ; t ≥ T n−1 + τR}, (20)
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where vθ is the firing threshold and τR is recognized as an absolute refractory period. Here, gL

is a constant leakage conductance and vL the leakage reversal potential. The low-threshold

Ca2+ current is given by IT = gT (v − vT )hΘ(v − vh). The slow variable h represents the

de-inactivation of the low-threshold Ca2+ conductance. All parameter values for the IFB

model may be found in the Appendix. An example of the response of this model neuron

to an inhibitory step input is shown in Figure 6. This nicely illustrates the sort of rebound

response that can be elicited upon release from inhibition. Such a response can only occur

if the duration of inhibition is sufficiently long and its strength sufficiently great.

v

v
ss

h

FIG. 6: (Color online) Response of an IFB neuron to a hyper-polarizing current step. Note that

upon release from inhibition there is a post inhibitory rebound response consisting of a burst of

spikes. Here vss denotes the steady state of the neuron.

Once again we wish to probe the conditions for a network of neurons to support clustered

states, using straight-forward mathematical analysis. Since IFB neurons possess an idealized

version of the slow T-type calcium current such an analysis naturally complements existing

numerical studies of more detailed biophysical networks. In particular we are thinking

of the work of Golomb and Rinzel [10], who investigate cluster states with a mixture of

numerical simulations and Floquet theory. Although the networks they investigate are not

ideally suited to a mathematical study, important progress in this direction has been made

by Rubin and Terman [23]. These authors consider an idealized model of a neuron with a

generic rebound current and show how a network with global coupling may be analyzed using

techniques from geometric singular perturbation theory. Although we have had success with

a geometric approach in the last section we shall now show how the IFB model is exactly

soluble, under some reasonable assumptions, so that we do not have to work in some singular

limit. In fact we will explicitly construct cluster states in the limit of slow synaptic responses.

However, unlike the last section we will be able to work with both shunts and an arbitrary

shape for the post synaptic conductance.
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A. Clustering

For postsynaptic currents of the form (10) and (11) which are determined in terms of a

set of spike times, there is a simple way to swap to a firing rate description if the synaptic

interactions are slow. Since this is already a necessary condition for post inhibitory re-

bound within the IFB framework we work under this assumption and write the synaptic

conductance at the ith neuron in a globally coupled network as

ui(t) =
1

N

N∑
j=1

∫ ∞

0

η(t′)f(vj(t− t′))dt′. (21)

A more detailed discussion of the derivation of this model can be found in [24], suffice to

say that f(v) is to be interpreted as the firing rate of an IFB neuron and vj = v(hj, uj) is

the steady state of the jth presynaptic neuron given by

v(h, u) =
gLvL + gT vT hs + gsvsu

gL + gT hs + gsu
. (22)

The variable s is a switch such that s = 1 if v(h, u) crosses vh from below and s = 0 if v

crosses vh from above. If the firing rate is dominated by the refractory mechanism then it is

natural to take the instantaneous firing rate as f(v) = τ−1
R Θ(v − vθ). It is in this case that

the model admits to an exact solution.

Generalizing the choice of section II we shall consider the case that η is the Green’s

function of a differential operator L:

Lη(t) = gsδ(t). (23)

The equations of motion for the conductances then take the differential form

Lui =
gs

N

∑
j

f(vj). (24)

The HFP of the system is given by u = gsf(v) with h = 0, whilst the HLC satisfies

Lu(t) = gsf(v(t)). More general M-cluster splay states are described by

Lui =
gs

M

M∑
k=1

f(vk), i = 1, . . . ,M, (25)

where ui now represents the dynamics of one element in a synchronized cluster. We shall

focus on the particular case that η(t) is a so-called alpha-function η(t) = α2te−αt, so that

L = (1 + α−1∂t)
2. (26)
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FIG. 7: (Color online) A plot of the explicit HLC solution with α = 0.05, gs = 2.0 and vs = −100.

For these parameters we find ∆ = 112.9, ∆+ = 26.4 and ∆θ = 11.5.

We first consider the construction of the HLC. This can be done by considering a closed

orbit of period ∆ and parameterizing the solution in terms of ∆, the time spent above

the rebound threshold vh, ∆+, and the time spent above the firing threshold vθ, ∆θ. For

convenience we choose an origin of time such that at t = 0 v crosses vh from below.

Assuming that only the most recent burst is influential the HLC takes the explicit form

u(t) = gsQ(t, min(t, ∆θ))/τR, where

Q(t, a) =

∫ a

0

η(t− t′)dt′

= e−α(t−a)[1 + α(t− a)]− e−αt[1 + αt], (27)
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and

h(t) =


he−t/τ−h 0 ≤ t ≤ ∆+

he−∆+/τ−h e−(t−∆+)/τ+
h

+1− e−(t−∆+)/τ+
h ∆+ < t < ∆,

(28)

with

h =
1− e−(∆−∆+)/τ+

h

1− e−∆+/τ−h e−(∆−∆+)/τ+
h

. (29)

Note that outside their natural domains we periodically extend u(t) and h(t). The three

unknowns ∆, ∆+, ∆θ may then be found by the simultaneous solution of the three equations

v(∆θ) = vθ, v(∆+) = vh and v(∆) = vh (∆ > ∆+). Here, v(t) = v(h(t), u(t)) using (22)

and s = 1 for t ∈ [0, ∆+] and is zero otherwise. In Figure 7 we plot the results of such

a calculation. This compares extremely well with results obtained from direct numerical

simulation. In Figure 8 we show a plot of activity for a network of size N = 100, which

illustrates the rapid approach of random initial data to the HLC (for the same parameters

as in Figure 7). Figure 9 shows the time evolution of just one of the neurons in the network.

T
i
m
e

0

1000

0 10050

FIG. 8: (Color online) A plot of the voltage for a network of N = 100 neurons. Bright colors

denote high activity and dull colors low activity. All parameters as in Figure 7. Note the rapid

approach to a HLC from random initial data.

Further numerical simulations of this model with varying α and gs show that the three

most common attractors seem to be the HFP, HLC and 2-cluster state. This is not to say

that larger M-cluster states do not exist or are not stable, but rather that they may have

relatively small basins of attraction. This observation has already been made by Golomb
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FIG. 9: (Color online) Voltage trace for one of the neurons in Figure 8, showing good asymptotic

agreement with the analytically calculated orbit of Figure 7.

and Rinzel in their studies of more detailed biophysical networks (with slow T-type calcium

currents). So although it is easy to generalize the calculation of the HLC to M-cluster splay

states by writing ui(t) = u(t− i∆/M) for i = 0, . . . ,M − 1 with h(t) given by (28) and

u(t) =
1

M

gs

τR

M−1∑
k=0

Q(t− k∆/M, min(t− k∆/M, ∆θ), (30)

we shall only focus on the case M = 2 for the above reason. As before solutions are

determined in a self-consistent fashion by demanding v(∆θ) = vθ, v(∆+) = vh and v(∆) =

vh. A plot of a 2-cluster state is shown in Figure 10. Once again there is excellent agreement

-80
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-20
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0 40 80 120 160
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FIG. 10: (Color online) A plot of the 2-cluster state with α = 0.1. Other parameters as in Figure

7. For these parameters we find ∆ = 99.1, ∆+ = 53.7 and ∆θ = 6.4.

with direct numerical simulations, which we illustrate with the aid of Figure 11.

To establish the stability of the M-cluster states one could pursue the approach of Golomb

and Rinzel [10] and apply Floquet theory. Indeed having the periodic orbits in closed form
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FIG. 11: (Color online) A plot of the voltage for two neurons in a network of N = 100 neurons.

All parameters as in Figure 10. Note the rapid approach to a 2-cluster state from random initial

data, showing good asymptotic agreement with the analytically calculated orbit shown in Figure

10.

is an added bonus for such an approach, as in many models they would only be available

numerically. However, we make the important observation that M-cluster states come in

pairs, with solutions annihilating in a saddle-node bifurcation under variation of system

parameters. Hence, by tracking around these saddle-node bifurcations in parameter space

we may determine the existence regions for stable M-cluster states. Within these regions

a stable and unstable M-cluster state would co-exist. The result of such a calculation is

shown in Figure 12. This clearly highlights the fact that for slow synapses and sufficiently

strong coupling the (stable) HFP, HLC and 2-cluster state can co-exist. With increasing α

the system can no longer support a HLC and prefers a 2-cluster state, although with further

increase in α only the HFP is found. The borders of existence were found to agree extremely

well with direct numerical simulations, although in practice is was hard to find examples

(starting from random initial data) of a 2-cluster state co-existing with a HLC.

IV. DISCUSSION

In this paper we have considered clustering in globally coupled networks of non-oscillatory

neurons with inhibitory synaptic connections. A generic mechanism for the generation of

such rhythms is that of post inhibitory rebound. To distinguish between the effects of anode

break excitation and rebound currents we have analyzed a mathematically tractable neuron

model from each of these two classes. For anode break excitation we considered a reduction

of the Hodgkin-Huxley model to a form that we have identified as a modified McKean model.

Analysis of cluster states was performed in some singular limit (where there is a separation of
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FIG. 12: (Color online) Parameter borders encompassing regions of stable HLC and 2-cluster states

in the (α, gs) plane. Other parameters as in Figure 7. Note that the HFP is stable everywhere.

time scales). Regions for the existence of splay cluster states as a function of synaptic speed

and strength were found to be in good qualitative agreement with the full Hodgkin-Huxley

model (away from the singular limit). The main conclusion being that slow synapses and

weak coupling (above some cut-off) favor small numbers of clusters, whilst an increase in

speed and strength favors larger numbers of clusters. For the analysis of a neuron with an

explicit ionic rebound current we chose the IFB model. For the case of slow synapses and a

firing rate response dominated by a refractory process we have shown how to construct splay

cluster states for a broad class of synaptic shunting models. Direct numerical simulations

show that, in contrast to the mechanism of anode break excitation, either a coherent global

oscillation or an anti-phase rhythm is preferred. One major similarity between the two

mechanisms is that the single cluster state is generated for very slow synapses (for some

sufficiently strong coupling). Although, for simplicity, we have focused on the construction

of the most symmetric cluster states (splay clusters), the techniques we have described are

ideally suited for the study of less symmetric states and even partially clustered states.

Because of the underlying simplicity of the models we have developed it is also possible

to pass over to the case of structured interactions. The results of such an analysis will be

presented elsewhere.

For both mechanisms it is also an interesting issue as to whether cluster states are robust

to noise. For networks utilizing anode break excitation as the means to generate rhythms
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this has been explored in a previous paper [25]. Here it was shown that the effect of

weak additive Gaussian noise is basically two-fold: i) causing a neuron to switch between

different clusters, and ii) causing the whole system to switch between different cluster states

if the system is inside a multi-stable regime. Moreover, for large networks and moderate

noise, it is possible for the system to support a form of coherence resonance [26] (whereby

a rhythm is noise induced and would be absent without noise). Similar effects have been

observed in model networks with a slow T-type calcium current [10, 27]. In an extension of

their original work on clustering, Golomb and Rinzel [28] have also numerically explored the

issue of heterogeneity and found both partially synchronized and partially anti-synchronized

states. It remains an open problem to extend the techniques of this paper to heterogeneous

systems.

Acknowledgements

SC was financially supported by the EPSRC through Grant No. GR/R76219.

Appendix

For the Hodgkin-Huxley mode the six functions τX(v) and X∞(v), X ∈ {m, n, h}, are

obtained from fits with experimental data. It is common practice to write

τX(v) =
1

αX(v) + βX(v)
, X∞(v) = αX(v)τX(v), (31)

for X ∈ {m, n, h} where

αm(v) =
0.1(v + 40)

1− exp[−0.1(v + 40)]
, (32)

αh(v) = 0.07 exp[−0.05(v + 65)], (33)

αn(v) =
0.01(v + 55)

1− exp[−0.1(v + 55)]
, (34)

βm(v) = 4.0 exp[−0.0556(v + 65)], (35)

βh(v) =
1

1 + exp[−0.1(v + 35)]
, (36)

βn(v) = 0.125 exp[−0.0125(v + 65)]. (37)
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All potentials are measured in mV, all times in ms and all currents in µA per cm2. We use the

following parameter values: µ = 1µF cm−2, gL = 0.3, gK = 36, gNa = 120, VL = −54.402,

VK = −77 and VNa = 50.

For the IFB model we use the parameter set vθ = −35mV, C = 0.2 µF/cm2, gL = 0.0354

mS/cm2, vreset = −50mV, vh = −70mV, τ−h = 20ms, τ+
h = 100ms, gT = 0.07mS/cm2,

vT = 120mV and τR = 5ms.
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