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ABSTRACT 

 

Gene knock-out studies in acute experimental stroke suggest that nitric oxide (NO) produced by the 

neuronal or inducible isoforms of nitric oxide synthase (nNOS, iNOS) is detrimental, whilst that 

derived from the endothelial isoform (eNOS) is beneficial. However, experimental studies with 

nitric oxide synthase inhibitors (NOS inhibitors) have given conflicting results. 

 

Published controlled studies of NOS inhibitors in experimental stroke were identified from 

EMBASE, PubMed and reference lists. Data on the effect of NOS inhibition on lesion volume 

(mm
3
, %) and cerebral blood flow (CBF, %, ml.min

-1
.g

-1
) were extracted and analysed using the 

Cochrane Review Manager software. 

 

72 studies were identified. NOS inhibitors reduced total infarct volume in permanent (standardised 

mean difference, SMD -0.51, 95% confidence intervals, 95% CI -0.82, -0.20) and transient (SMD -

1.01, 95% CI –1.29, -0.73) experimental stroke. Similar reductions in lesion volume were present in 

cortical and sub-cortical areas in both models. Cortical CBF was reduced in permanent (SMD -0.80, 

95% CI –1.34, -0.27) but not transient stroke. When assessed by type of inhibitor, total lesion 

volume was reduced in permanent models by nNOS (SMD -1.36, 95% CI -0.67, -2.05) and iNOS 

(SMD -0.92, 95% CI –1.16, -0.69) inhibitors, but not by non-selective inhibitors. All types of NOS 

inhibitors reduced infarct volume in transient models. 

 

Selective inhibitors of nNOS and iNOS appear to reduce lesion volume in both permanent and 

transient models of cerebral ischaemia. The lack of effect on lesion size by non-selective inhibitors 

could reflect co-inhibition of eNOS. NOS inhibition may have negative effects on CBF but further 

studies are required. Selective nNOS and iNOS inhibitors are candidate treatments for acute 

ischaemic stroke. 
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INTRODUCTION 

 

Nitric oxide (NO) is synthesised from its precursor L-arginine by the action of nitric oxide synthase 

(NOS). NO is produced in the brain following the onset of cerebral ischaemia (Malinski et al 1993), 

although its precise role in the pathophysiology of stroke is unclear. Gene knockout studies have 

determined that NO derived from the endothelial isoform of NOS (eNOS) is beneficial in acute 

stroke (Huang et al. 1996). This may be due, in part, to antiplatelet effects (Welch and Loscalzo 

1994) and preservation of cerebral blood flow (Iadecola et al. 1994). In contrast, NO produced by 

the neuronal and inducible isoforms of NOS (nNOS, iNOS) can be neurotoxic (Huang et al. 1994; 

Zhao et al. 2000). This probably occurs through NO induced formation of peroxynitrite (Beckman 

et al. 1990) and toxic free radicals leading to damage by lipid peroxidation (Radi et al. 1991). NO 

further potentiates damage by inhibiting enzymes needed for mitochondrial respiration (respiratory 

chain complex 1 and 2), glycolysis (GAPDH) and DNA replication (ribonucleotide reductase) 

(Dawson et al. 1992b; Dimmeler and Brune 1993; Garthwaite 1991; Nathan 1992). Moreover, NO 

has been reported to stimulate the release of the neurotransmitter glutamate and could contribute to 

excitotoxicity (Montague et al. 1994; Sorkin 1993). Consequently, inhibition of NO production has 

been considered to be a candidate treatment for acute stroke. 

 

The first NOS inhibitors were the guanidino aminoacids, many of which act competitively at the 

NOS active site.  Examples include, N
G
-nitro-L-arginine (L-NNA), N

G
-nitro-L-arginine methyl 

ester (L-NAME, a methyl ester pro-drug that is activated to become L-NNA) and N
G
-monomethyl-

L-arginine (L-NMMA). Both L-NAME and L-NNA exhibit greater in-vitro potency than L-NMMA 

in inhibiting nNOS and eNOS versus iNOS. However, none of the guanidino aminoacids 

discriminate sufficiently to enable them to be used to target a single NOS isoform. By contrast, 

some inhibitors possess higher affinity against one isoform and are commonly referred to as 

‘selective’, although this term is used rather indiscriminately (Alderton et al. 2001). Agents that are 

used to target iNOS include: aminoguanidine, N
G
-iminoethyl-L-lysine (L-NIL), N

G
-iminoethyl-L-

ornithine (L-NIO), the bis-isothioureas (PBITU) (Garvey et al. 1994), 1400W (N-[3-

(aminomethyl)benzyl]acetamidine), GW273629 and GW274150 (Young et al. 2000). Other agents 

are used to target nNOS and include: 7-nitroindinazole (7-NI), tri(fluoromethylphenyl)imidazole 

(TRIM) (Handy et al. 1995), ARL 17477, AR-R18512 (Reif et al. 2000), BN 80933 (Chabrier et al. 

1999), S-ethyl and S-methyl thiocitrulline and vinyl L-NIO. Recent in-vitro studies have suggested 

that in some cases the distinction between selective iNOS and selective nNOS inhibitor may not be 

straightforward. For example, aminoguanidine is only mildly selective against nNOS in-vitro (~5 

fold) and probably affects other molecular targets (Alderton et al. 2001). Similarly, 7-NI has been 

found to be an equipotent inhibitor of all three isoforms of NOS at the isolated enzyme level 

(Alderton et al. 2001; Escott et al. 1998) although it has more selectivity for nNOS in vivo, possibly 

a consequence of cell specific effects (neuronal verses endothelial) (Alderton et al. 2001).  

 

Pre-clinical studies of all of these agents have given variable results for effects on lesion size and 

cerebral blood flow (CBF) in animal models of cerebral ischaemia (Willmot and Bath 2003). 

Hence, the aim of the present investigation was to determine systematically what effect NOS 

inhibitors have on these parameters. 



METHODS 

 

Study identification 
Experimental studies assessing the effects of NOS inhibitors on stroke lesion volume and cerebral 

blood flow (CBF) in ischaemic stroke models (transient or permanent, global or focal, any species) 

were identified. Searches were made of ‘EMBASE’ and ‘Pubmed’ by MW for articles published 

from 1980 - 2002. For the EMBASE search four primary keywords (nitric oxide, brain, ischaemia, 

non-human) were chosen combined with a fifth chosen from a list of NOS inhibitors. Different 

primary keywords were used in the Pubmed search (nitric oxide, cerebro*, ischaemia) which was 

then limited to animal studies. Other publications were found from reference lists and review 

articles by CG, SM and PB. Abstracts were then used to select relevant articles for an examination 

of the full publication by MW. Final decisions on inclusion or exclusion were made by MW and 

PB. Articles were excluded for several reasons, namely: not a stroke model, NOS inhibitor not 

administered, outcomes other than infarct volume or CBF, no control group, insufficient other data 

given, or duplicate publication. 

 

Data Extraction 

Infarct volume data (mm
3
 or % of normal brain) and CBF data (ml.min

-1
.g

-1
 or % of baseline 

readings or baseline control) were extracted for analysis. Infarct volume measurements from the 

longest period of follow-up were used. CBF measurements after one hour of occlusion or 

reperfusion were used in permanent and transient stroke respectively. Where possible, regional 

infarct volume and CBF data were obtained separately for total brain, cortex and sub-cortex. In 

cases where region was not specified then the measurements were classified as total brain. If an 

article investigated dose response relationships or optimal timing of administration then data from 

each individual experimental condition were included separately. In cases where the number of 

animals in each experiment was given as a range then it was assumed to be the lowest figure. 

Where numerical values were not available, data were estimated directly from enlarged graphs 

using a ruler. All data extraction was done by two independent authors (MW, CG); discrepancies 

were resolved by PB. Finally, the methodological quality of the included articles was assessed on 

an 8 point scale (Horn et al. 2001) based on published recommendations for investigating new 

agents in experimental stroke (Stroke Therapy Academic Industry Roundtable (STAIR) 1999); one 

point was given for written evidence of each of the following factors; (i) randomisation; (ii) 

monitoring of physiological parameters; (iii) assessment of dose response relationship; (iv) 

assessment of optimal time window; (v) blinded outcome measurement; (vi) assessment of outcome 

at day 1-3; (vii) assessment of outcome at day 7-30 and; (viii) combined measurement of infarct 

volume and functional outcome. 

 

Analysis 

Study data were grouped by protocol prior to analysis: (i) experimental model - permanent or 

transient; (ii) outcome location - total brain, cortex, sub-cortex; (iii) outcome measure - infarct 

volume (mm
3
, %), and CBF (ml.min

-1
.g

-1
, %). Data from each of these groups were analysed as 

forest plots using the Cochrane Collaboration Review Manager (RevMan version 4.1) software. 

Publication bias was assessed using Egger’s asymmetry test (Egger et al. 1997) (Stata function 

‘metabias’). Results are given as standardised mean difference (SMD, reported in units of standard 

deviation), which allows data measured on different scales to be merged, and 95% confidence 

intervals (CI). A random effects model was used since statistical heterogeneity, assessed with a χ
2 

test, was expected in view of the wide range of protocols. Sensitivity analyses were performed to 

look at likely sources of heterogeneity, including NOS inhibitor type (grouped as non-selective 

inhibitors, iNOS inhibitors, nNOS inhibitors), animal species and timing of administration. For the 

latter, articles were divided into those that administered NOS inhibitors before (pre-treated), 0 to 1 

hour after (early treatment) or >1 hour after (late treatment) onset. Meta-regression (STATA, 

version 7.0) was used to analyse the relationship between timing of administration and the effect on 



total infarct volume (SMD) in order to try and determine the size of the therapeutic window. 

Studies were weighted by sample size and only those that administered NOS inhibitors after onset 

of ischaemia were included. Significance was set at P<0.05. 



RESULTS 

 

Design of studies 

Altogether 455 articles were found in the literature search (figure 1). Most of these did not qualify 

for the review, leaving 72 studies (s). Table 1 summarises the characteristics of the included 

articles. The most commonly used agents were non-selective inhibitors such as L-NAME (s=37) 

and L-NNA (s=15). In addition, several compounds were used to target nNOS, including: 7-NI 

(s=9), AR-R 17477 (s=4), BN 80933, PPBP and TRIM. In contrast, there were only two types of 

iNOS inhibitor represented: aminoguanidine (s=12) and 1400W. NOS inhibitors were administered 

to 23 permanent / focal models and to one permanent / global model. More articles assessed the 

effect of NOS inhibition in transient stroke (29 focal, 13 global and 2 using both). In addition, 2 

studies were included which compared a combination of permanent and transient models (Buchan 

et al. 1994; Dawson et al. 1994). Rats were the animal models used in the majority of studies (24 

Sprague Dawley, 21 Wistar, 7 spontaneously hypertensive, 1 Long Evans, 1 Lewis, 1 Fischer). 

Other studies used diverse species, including; rabbits (Anderson and Meyer 1996; Anderson and 

Meyer 2000), cats (Clavier et al. 1994; Nishikawa et al. 1993; Nishikawa et al. 1994), mice 

(Carreau et al. 1994; Ding-Zhou et al. 2002; Goyagi et al. 2001; Gursoy-Ozdemir et al. 2000; Kamii 

et al. 1996; Nowicki et al. 1991; Sugimoto and Iadecola 2002; Zhu et al. 2002), gerbils (Chabrier et 

al. 1999; O'Neill et al. 2000; Spatz et al. 1995), pigs (Greenberg et al. 1995; Hiramatsu et al. 1996; 

Schleien et al. 1998; Segawa et al. 1998), and lambs (Dorrepaal et al. 1997). 

 

Variable methods of drug administration were utilised, e.g. different routes (oral, intra-venous, 

intra-ventricular, intra-arterial, intra-peritoneal), different timings (1
st
 dose ranging from 6 weeks 

before to 48 hours after induction of ischaemia) and different dosage regimens (e.g. total 

administered dose of L-NNA 0.06 – 40.0 mg/kg, L-NAME  0.1mg/kg – 4.2 g/kg, aminoguanidine 

100 – 800 mg/kg, ARL-17477 1.0 – 10.0 mg/kg and 7-NI 0.1 – 100 mg/kg). Study design was more 

consistent for outcome measures. Infarct volumes were assessed by histological staining techniques 

and image analysis of sequential coronal brain sections in nearly all of the studies. An exception to 

this were 3 articles that used serial MRI techniques to monitor lesion progression (Cash et al. 2001; 

Quast et al. 1995; Wei and Quast 1998). Regional CBF after stroke onset was commonly measured 

as percentage (of baseline or control values) using laser doppler flowmetry (Batteur-Parmentier et 

al. 2000; Buchan et al. 1994; Goyagi et al. 2001; Greenberg et al. 1995; Gursoy-Ozdemir et al. 

2000; Hashimoto et al. 1999; Humphreys and Koss 1998; Iadecola et al. 1996; Iadecola et al. 1995; 

Jiang et al. 1999; Prado et al. 1993; Sakashita et al. 1994; Santizo et al. 2000; Sugimura et al. 1998; 

Zhang and Iadecola 1993; Zhao et al. 1999). In addition, one article indirectly assessed total CBF 

using an ultrasonic flow transducer (Dorrepaal et al. 1997). Alternatively, several studies analysed 

CBF as ml.min
-1
.g

-1
 using 

14
C-iodoantipyrine (Ashwal et al. 1994; Stagliano et al. 1997; Wei et al. 

1994), hydrogen clearance (Matsui et al. 1997; Sadoshima et al. 1997; Segawa et al. 1998; Uetsuka 

et al. 2002), radiolabelled microsphere (Clavier et al. 1994; Hiramatsu et al. 1996; Nishikawa et al. 

1993; Nishikawa et al. 1994; Schleien et al. 1998) or umbelliferone fluorescence (Anderson and 

Meyer 1996; Anderson and Meyer 2000) techniques.  

 

The median quality rating for the included articles was 3 points (range 1-6/8). Treatment was 

allocated by randomisation in only 16 articles whilst 26 studies assessed dose response; just 13 

studies assessed the optimal timing of administration. Most studies examined outcome measures 

between days 1-3; only 9 did this blinded to treatment whilst 11 looked at functional outcome as 

well as infarct volume. 

 

Infarct volume and CBF 

Collectively, NOS inhibitors caused a significant reduction in total, cortical and sub-cortical infarct 

volume of magnitude 0.5 to 1.2 standard deviations (table 2). Paradoxically, detrimental effects on 

CBF were observed in the cerebral cortex of permanent stroke models. Most CBF data came from 



studies administering non-selective inhibitors. There was no evidence of publication bias for 

articles reporting the effect of NOS inhibition on total lesion volume in permanent (Egger’s test 

p=0.33), or transient (Egger’s test p=0.65) models. Since heterogeneity was observed in several of 

the analyses, infarct volume and CBF were further examined by type of NOS inhibitor (table 3), in 

different animal models (table 4) and by different timings of administration (table 5). 

 

Type of NOS inhibitor 
Non-selective inhibitors 

In permanent stroke models non-selective inhibitors did not significantly alter infarct volume but 

did reduce cortical CBF (table 3). By contrast, after transient ischaemia non-selective inhibitors 

reduced total infarct volume and did not affect CBF (table 3). 

 

nNOS inhibitors 

nNOS inhibitors significantly reduced infarct volume in both permanent and transient stroke models 

(table 3). At 1 hour of reperfusion there was no overall effect on cortical CBF in transient models. 

However, reduced cortical CBF was seen in one small (n=8) study involving permanent ischaemia. 

 

iNOS inhibitors 

Aminoguanidine and 1400W significantly reduced infarct volume in both permanent and transient 

stroke models. No studies of selective iNOS inhibitors on CBF were identified. 

 

Timing of treatment 

Treatment before stroke onset was effective at reducing infarct volume in transient models (table 4) 

whilst early administration of NOS inhibitors (within 1 hour of onset) was effective in permanent 

stroke. Later treatment after 1 hour of onset had a beneficial effect on infarct volume in both types 

of stroke model. Meta-regression analysis found no evidence of a relationship between total infarct 

volume (SMD) and timing of administration in permanent (p=0.18) or transient (p=0.20) models 

(figure 3).  

 

Animal Model 

Overall, NOS inhibitors appeared to reduce total brain lesion size in agyrencephalic species (table 

5) but not in rabbits or cats. Limited data were available on the effects of NOS inhibitors in higher 

animals. 



DISCUSSION 

We have examined systematically the effects of NOS-inhibitors on infarct size in experimental 

stroke models. Apart from 7 studies (Hamada et al. 1995; Kamii et al. 1996; Kuluz et al. 1993; 

Nakashima et al. 1999; Xu et al. 2000; Yamamoto et al. 1992; Zhang and Iadecola 1993), most of 

the individual articles were either positive or neutral for this outcome. However, when considered 

together there was an overall beneficial effect, such that NOS-inhibitors decreased lesion size by 

about 0.5 to 1.2 standard deviations. Mechanisms that may explain these findings include; reduced 

formation of peroxynitrite and reactive oxygen species (Caldwell et al. 1995; Gumuslu et al. 1997; 

Seif-el-Nasr and Fahim 2001; Solenski and Kwan 2000), inhibition of brain oedema (Peeters-

Scholte et al. 2002; Quast et al. 1995), reduced vascular damage (Ding-Zhou et al. 2002; Gursoy-

Ozdemir et al. 2000), and inhibition of apoptosis and necrosis (Charriaut-Marlangue et al. 1996; 

Peeters-Scholte et al. 2002). Additional work confirms that NOS inhibitors can increase 

hippocampal neuronal survival in experimental stroke (Caldwell et al. 1994; Chabrier et al. 1999; 

Jones et al. 1998; Kohno et al. 1995; Nanri et al. 1998; O'Neill et al. 1996; O'Neill et al. 1997; 

O'Neill et al. 2000) and improve functional outcome (Chabrier et al. 1999; Ding-Zhou et al. 2002; 

Gursoy-Ozdemir et al. 2000; Nagayama et al. 1998; Parmentier et al. 1999). However, not all 

published experimental studies agree with these findings, possibly because of differences in drug 

pharmacology, dosage, route of administration, timing of treatment, animal model and type of 

ischaemia. Some of these factors were examined further in this systematic review. 

 

NOS inhibitor type 

Non-selective inhibitors did not alter infarct volume in permanent ischaemia, whereas the selective 

nNOS and iNOS inhibitors reduced lesion size regardless of experimental model. It is likely that the 

beneficial effects of non-selective inhibitors were limited because they inhibit eNOS to a similar 

degree as nNOS or iNOS. Consequently, they may aggravate brain ischaemia by increasing platelet 

aggregation and white cell activity, raising blood pressure, and by restricting penumbral blood 

supply. Evidence of reduced CBF after administration of non-selective inhibitors to permanent 

stroke models is consistent with this hypothesis. Hence, the non-selective inhibitors are not agents 

of first choice for testing in clinical stroke. 

 

Type of experimental model 

Indirect assessment of the pooled data in table 2 suggests that NOS inhibitors were equally effective 

in transient and permanent ischaemia. However, sub-group analysis revealed that non-selective 

inhibitors did not work in permanent stroke but did in transient stroke (table 3). This discrepancy 

could be attributed to the presence of additional beneficial effects after transient ischaemia, such as 

limitation of reperfusion injury caused by eNOS-derived NO (Gursoy-Ozdemir et al. 2000). 

Alternatively, it could be due to the absence of detrimental effects of non-selective inhibitors in 

transient models. Consistent with this second theory is the observation that non-specific inhibitors 

had no detrimental effects on CBF at 1 hour of reperfusion (table 3).  

 

Timing of treatment 

The administration of 1
st
 dose varied considerably from 6 weeks prior to 24 hours after onset of 

ischaemia. Treatment with NOS-inhibitors was effective prior to onset of transient ischaemia, 

within 1 hour of permanent ischaemia, and even beyond 1 hour of onset in both transient and 

permanent ischaemia models. The neutral findings seen with pre-treatment of permanent models 

and early treatment of transient models probably represents the use of non-selective agents and 

paucity of data rather than lack of response to NOS inhibitors. More important is the confirmation 

that these agents reduce infarct volume even when administered beyond 1 hour after stroke onset. If 

NOS-inhibitors are effective beyond the normal neuroprotective window of 2-4 hours, then it is 

likely that they work through other mechanisms, perhaps enhancing neurogenesis. Also, beneficial 

activity several hours after stroke suggests that the NOS inhibitors might be useful in clinical 



stroke. Unfortunately, meta-regression analysis of timing of administration did not find any 

evidence of a therapeutic window. More experimental studies with delayed administration are 

required to assess when the optimum time window closes. 

 

Animal model 

Significant infarct reductions after either transient or permanent ischaemia were seen in all rat 

strains apart from Fischer rats. Only spontaneously hypertensive rats responded to NOS inhibitors 

in both transient and permanent models. This discrepancy could arise because normotensive strains 

(SDR, WR, Fischer) suffer smaller and more variable infarcts than SHR (Ginsberg and Busto 

1989). In mice, NOS inhibitors worked in permanent but not transient stroke. This inconsistency is 

most likely due to lack of data, although these studies are complex to assess because different 

transgenic mouse strains were used. Unfortunately, lack of data prevents any definitive statements 

about the role of NOS inhibitors in rabbits and cats. More studies need to be performed in 

lissencephalic and/or gyrencephalic species before clinical trials are commenced, as per the STAIR 

recommendations (Stroke Therapy Academic Industry Roundtable (STAIR) 1999). 

 

Limitations 

Although this study has demonstrated an association between administration of NOS inhibitors and 

reduced infarct volume, the findings are limited by several factors. First, there were differences 

between study protocols in terms of animal species, physiological parameters (e.g. blood pressure), 

drug administration (dosage, route), surgical methodology, and duration of ischaemia. 

Unfortunately, it is not possible to judge whether the relationships we observed were independent 

of these factors. In addition, protocol variations can lead to statistical heterogeneity and make the 

analysis less reliable. To take account of this we used a random effects model and performed 

sensitivity analyses to identify sources of heterogeneity. Second, some relevant articles may not 

have been identified for inclusion in the review. Publication bias can contribute to this, either 

through of lack of reporting of neutral or negative studies or through suppression of positive studies 

for commercial reasons, e.g. intellectual property rights. This could mean the benefits of NO on 

infarct volume and CBF have been either over or underestimated. Statistical assessment using 

Egger’s asymmetry test did not suggest the presence of publication bias but the possibility that 

some relevant data was omitted cannot be ruled out. Third, there were several instances when 

numerical data were not readily available and we had to derive these directly from published 

figures. This can be imprecise, although we enlarged graphs and used two authors to extract data. 

Fourth, some NOS inhibitors work though additional neuroprotective mechanisms that do not only 

involve inhibition of NO synthesis. Moreover, some of the ‘selective’ inhibitors only discriminate 

moderately between iNOS and nNOS (Alderton et al. 2001). Unfortunately, it is not possible to 

ascertain whether the relationships we have observed in each sub-group are independent of this. 

Fifth, the technique of extracting multiple pieces of information from single publications has a 

potential to introduce bias into the review since the results would have been generated by the same 

investigators / laboratories. Finally, since the median quality rating of the studies was only 3 out of 

a total of 8, there are likely to be methodological weaknesses in the included studies. Two key areas 

of concern are that studies are not reporting that they randomised animals to active and control 

treatment, and performed outcome assessment blinded to treatment assignment. All studies 

evaluating agents in experimental stroke models should follow published recommendations on 

preclinical drug development (Stroke Therapy Academic Industry Roundtable (STAIR) 1999). 

 

Accepting these limitations, this systematic review brings together data from all published studies 

and suggests that NOS inhibitors, especially if ‘selective’ to nNOS or iNOS, reduce infarct volume 

in experimental stroke. Non-selective inhibitors may be less effective, probably because they 

compromise CBF. Consequently, selective NOS inhibitors are candidate treatments for testing in 

clinical stroke. 
 



 

 

ACKNOWLEDGEMENTS 

 

MW is funded by The Hypertension Trust (UK). SM and CG receive funding from NIH via project 

grant NS 29226. PB is Stroke Association Professor of Stroke Medicine; the Division of Stroke 

Medicine receives core funding from The Stroke Association (UK). 

 

 



TABLE 1 

 

Included studies 

 

Drug Studies Species Quality Total N Model P/T Occlusion G/F 1
st
 dose timing (min) route Measures 

         infarct vol CBF 

           

Non specific inhibitors           

L-NAME (Anderson and Meyer 1996) R 3 42 T F -20 i.v.  ml.min
-1
.g

-1
 

  (Anderson and Meyer 2000) R 3 15 P F -30 i.v. % ml.min
-1
.g

-1
 

  (Ashwal et al. 1993) SHR 2 14 T F -60 i.v.  mm
3
  

  (Ashwal et al. 1994) SHR 3 ? T F +0, +120, +150 i.v. mm
3
, % ml.min

-1
.g

-1
, 

% 

 (Ashwal et al. 1995) SHR 3 14 T F -60 i.p. % , mm
3
  

 (Batteur-Parmentier et al. 2000) SDR 3 110 T F +5 i.p. mm
3
 % 

  (Buisson et al. 1992) SDR 2 ? P F +5 i.p.  mm
3
  

  (Buisson et al. 1993) SDR 2 50 P F -30 i.p.  mm
3
  

  (Charriaut-Marlangue et al. 1996) SDR 1 42 T F +5 i.p.  mm
3
, %  

  (Clavier et al. 1994) C 3 24 T G +180 i.v.  ml.min
-1
.g

-1
 

  (Coert et al. 1999) WR 3 92 T F -30 i.v. mm
3
  

  (Dawson et al. 1992a) SDR 3 18 P F -30  s.c mm
3
  

  (Dawson et al. 1994) SDR 3 67 P, T F -30 i.p.  mm
3
  

  (Ding-Zhou et al. 2002) M 4 ? T F +180 i.p.  mm
3
  

  (Greenberg et al. 1995) P 4 20 T G -60 i.v.  ml.min
-1
.g

-1
 

 (Hamada et al. 1995) WR 4 77 P F -20 i.c.v. mm
3
  

 (Hiramatsu et al. 1996) P 2 40 T G -? i.v.  ml.min
-1
.g

-1
 

  (Humphreys and Koss 1998) SDR 3 63 T G -30 i.v.  % 

  (Iuliano et al. 1995) WR 4 78 T F -30 i.v. mm
3
  

  (Kamii et al. 1996) M 2 ? T F +5 i.p. mm
3
  

  (Kuluz et al. 1993) WR 4 24 T F -15 i.v. mm
3
  

  (Margaill et al. 1997) SDR 4 ? T F +5, 180, 360, 540,720 i.p. mm
3
  

  (Nishikawa et al. 1993) C 4 20 P F -30 i.v. % , mm
3
 ml.min

-1
.g

-1
 

  (Nishikawa et al. 1994) C 2 49 T F -60, +45 i.v. % ml.min
-1
.g

-1
 

  (Prado et al. 1993) WR 2 14 T G -5 i.v.  % 

 (Puisieux et al. 2000) WR 2 52 P F -4320 i.p. mm
3
  

  (Quast et al. 1995) SDR 2 36 T F -1 i.v. mm
3
  

 (Schleien et al. 1998) P 3 18 T G -? i.v.  ml.min
-1
.g

-1
 



  (Segawa et al. 1998) P 4 12 T G +90 i.v.  ml.min
-1
.g

-1
 

  (Sercombe et al. 2001) SDR 1 37 P F -20160, -60480 p.o. mm
3
  

 (Stagliano et al. 1997) WR 3 29 P F +5 i.v.  ml.min
-1
.g

-1
 

 (Sugimura et al. 1998) WR 3 18 T G -? ?  % 

 (Uetsuka et al. 2002) WR 3 40 T G -120 i.v.  ml.min
-1
.g

-1
 

  (Wei et al. 1994) LER 2 28 P F +15 i.v.  ml.min
-1
.g

-1
 

  (Wei and Quast 1998) SDR 2 22 T F -1 i.p.  mm
3
  

 (Zhang and Iadecola 1993) SDR 2 31 P F +3 i.a. mm
3
 % 

  (Zhao et al. 1999) WR 2 36 T G -30 i.p.   % 

           

 L-NNA (Buchan et al. 1994) WR, SHR 6 ? T, P G, F -30 , +5 i.p.  mm
3
 % 

 (Carreau et al. 1994) M 3 ? P F +5 i.p.  mm
3
, %  

  (Dorrepaal et al. 1997) L 3 18 T G +35 i.v. .  % 

  (Gursoy-Ozdemir et al. 2000) M 4 65 T F +105 i.p.  mm
3
  

  (Hashimoto et al. 1999) WR 2 ? T F -10 i.p., i.a.. % % 

  (Matsui et al. 1997) SDR 4 148 T F -5, +5 i.p.  mm
3
 ml.min

-1
.g

-1
 

  (Nakashima et al. 1999) WR, FR 1 ? T F +120 i.p., i.v. . mm
3
  

  (Nowicki et al. 1991) M 1 31 P F +5 i.p.  mm
3
  

  (Sadoshima et al. 1997) SHR 2 34 T G +60 i.v.   ml.min
-1
.g

-1
, 

% 

 (Santizo et al. 2000) SDR 2 26 P F -45 i.v.  % 

 (Spatz et al. 1995) MG 2 ? T G -240 i.p.  % 

  (Spinnewyn et al. 1999) SDR 3 88 T F +240 i.v.  mm
3
  

 (Xu et al. 2000) SDR 1 24 P F -30 i.p. mm
3
  

  (Yamamoto et al. 1992) WR 2 37 P F +5 i.v.  mm
3
  

  (Zhang et al. 1996b) WR 3 73 T F +120 i.v.  % % 

           

L-NMMA (Sakashita et al. 1994) WR 1 30 T G -5 i.p.  % 

           

nNOS inhibitors           

           

  7NI (Coert et al. 1999) WR 3 92 T F -60 i.p. mm
3
  

  (Escott et al. 1998) SDR 6 55 T F +5, +90 i.p. %, mm
3
  

  (Goyagi et al. 2001) WR, M 5 115 T F -30  i.p. %  

 (Gursoy-Ozdemir et al. 2000) M 4 65 T F -30, +90 i.p. mm
3
  

  (Humphreys and Koss 1998) SDR 3 63 T G -30 i.v. .  % 

 (Jiang et al. 1999) WR 3 18 T G -20 i.p.  % 



  (Kamii et al. 1996) M 2 ? T F +5 i.p. mm
3
  

 (Uetsuka et al. 2002) WR 3 40 T G -60 i.p.  ml.min
-1
.g

-1
 

  (Yoshida et al. 1994) SDR 3 55 P F +5 i.p. mm
3
  

           

 AR-R 17477 (Harukuni et al. 1999) WR 5 53 P F -30, +60 i.v. . mm
3
  

 (O'Neill et al. 2000) MG, WR 4 ? T F, G 0, +30, +120 i.v. mm
3
  

 (Santizo et al. 2000) SDR 2 26 P F -45 i.v.  % 

  (Zhang et al. 1996b) WR 3 48 T F +120 i.v.  % % 

           

 BN 80933 (Chabrier et al. 1999) SDR, MG 6 ? T F, G +5, 240, 360, 480, 1440 i.v. mm
3
  

           

 PPBP (Goyagi et al. 2001) WR, M 5 115 T F -30 i.p. .i.v. %  

           

 TRIM (Escott et al. 1998) SDR 6 55 T F +5 or 90 i.p. %, mm
3
  

           

           

iNOS inhibitors           

           

1400W (Parmentier et al. 1999) SDR 3 ? T F +1080 s.c. mm
3
  

           

Aminoguanidine (Cash et al. 2001) SDR 3 ? T F +360  i.p. mm
3
  

 (Cockroft et al. 1996) LR 4 ? P F +15, 60, 120, 180 i.p. %  

 (Han et al. 2002) SDR 3 ? T F +0 i.p. %  

 (Iadecola et al. 1995) SHR 2 53 P F +1440 i.p. mm
3
 % 

 (Iadecola et al. 1996) SDR 2 79 T F +360 i.p. mm
3
  

 (Nagayama et al. 1998) SHR 4 60 P F +1440 i.p. mm
3
, %  

 (Sugimoto and Iadecola 2002) M 3 58 P F +1080 i.p. mm
3
  

 (Tsuji et al. 2000) WR 3 31 P G -60 i.p. %  

 (Xu et al. 2000) SDR 1 24 P F -30 i.p. mm
3
  

 (Zhang et al. 1996a) SDR 1 71 T F +1440 i.p. mm
3
, %  

 (Zhang and Iadecola 1998) SHR 3 47 P F +0 i.p. mm
3
  

 (Zhu et al. 2002) M 2 75 T F +360 i.p. %  

 

Abbreviations: Mice (M); Mongolian Gerbil (MG); Piglets (P); Lambs (L); Cats (C); Spontaneously Hypertensive rat (SHR); Sprague-Dawley rat (SDR); Wistar rat (WR); Long-

Evans rat (LER); Lewis Rats (LR); Fischer Rats (FR); Rabbits (R); male (M); female (F); permanent (P); transient (T); global (G); focal (F); intra-venous (i.v.); intra-arterial (i.a.); 

intra-peritoneal (i.p.); infarct volume (infarct vol.); cerebral blood flow (CBF) 



TABLE 2 

 

Effect of NOS inhibitors on lesion volume and cerebral blood flow (SMD, 95% CI) by brain region in permanent and transient ischaemia 

 

Outcome  Permanent   Transient 

 

 

 Total 

 

Cortical Sub-cortical Total Cortical Sub-cortical 

Lesion volume -0.51*  

(-0.82, -0.20) 

S=19, n=532 

 

-1.13*  

(-1.57, -0.70) 

S=15, n=303 

-0.57*  

(-0.92, -0.23) 

S=13, n=318 

-1.01*  

(-1.29, -0.73) 

S=28, n=919 

-0.69*  

(-0.94, -0.43) 

S=12, n=488 

-0.40* 

 (-0.74, -0.06) 

S=11, n=363 

CBF  

No data 

 

-0.80*  

(-1.34, -0.27) 

S=6, n=87 

-0.73  

(-1.83, 0.36) 

S=1, n=14 

 

-0.57 

(-1.26, 0.11) 

S=8, n=120 

-0.22  

(-0.52, 0.07) 

S=15, n=320 

-0.38 

(-1.03, 0.26) 

S=3, n=66 

 

Abbreviations: Standardised mean difference (SMD); cerebral blood flow (CBF); 95% confidence intervals (95% CI); number of studies (S); number 

of animals (n); *p<0.05 



TABLE 3 

 

Effect of selective and non-selective nitric oxide synthase inhibitors on infarct volume and cerebral blood flow (SMD, 95%CI) in stroke models 

 

 Permanent Transient 

Inhibitor Total Volume Cortical CBF Total Volume Cortical CBF 

Non-selective 0.11 

(-0.43, 0.65) 

S=13, n=258 

 

-0.68* 

(-1.17, -0.19)  

S=6, n=83 

-0.90* 

(-1.34, -0.47) 

S=18, n=455 

 

-0.33 

(-0.68, 0.02) 

 S=14, n=266 

iNOS -0.92* 

(-1.16, -0.69) 

S=6, n=256 

 

 

No data 

-1.98* 

(-2.80, -1.15) 

S=6, n=91 

 

 

No data 

nNOS -1.36* 

(-2.05, -0.67) 

S=1, n=30 

-2.62* 

(-4.89, -0.35) 

S=1, n=8 

-0.90* 

(-1.28, -0.54) 

S=7, n=373 

+0.12 

(-0.38, 0.62) 

S=4, n=66 

 

Abbreviations: Inducible nitric oxide synthase (iNOS); neuronal nitric oxide synthase (nNOS); standardised mean difference (SMD); cerebral blood 

flow (CBF); 95% confidence intervals (95% CI); number of studies (S); number of animals (n); *p<0.05 



 TABLE 4 

 

Effect of timing of administration on total infarct volume (SMD, 95%CI) 

 

Model Timing   

 Pre-treatment Early Late 

Permanent 

 

+0.40  

(-0.01, 0.81) 

S=8, n=170 

 

-0.83*  

(-1.25, -0.41) 

 S=8, n=249 

-1.20* 

 (-1.55, -0.86) 

S=4, n=141 

Transient 

 

-1.55*  

(-2.11, -0.99) 

S=9, n=191 

 

-0.16  

(-0.98, 0.67) 

S=3, n=140 

-0.87*  

(-1.24, -0.50) 

S=11, n=454 

 

Abbreviations: Standardised mean difference (SMD); 95% confidence intervals (95% CI); number of studies (S); number of animals (n); *p<0.05 



TABLE 5 

 

Effect of nitric oxide synthase inhibitors by animal model on total infarct volume (SMD, 95%CI) 

 

 

Model Spontaneously 

hypertensive 

rat 

Lewis rat Sprague 

Dawley rat 

Wistar rat Fischer rat Mouse Rabbit Cat 

 

Permanent -0.99* 

(-1.36, -0.61) 

S=3, n=135 

 

-0.89* 

(-1.28, -0.50) 

S=1, n=80 

-0.18 

(-0.74, 0.39) 

S=7, n=152 

+1.05 

(-0.05, 2.15) 

S=3, n=55 

 

No data 

-1.64* 

(-2.22, -1.07) 

S=2, n=68 

+1.31* 

(0.20, 2.42) 

S=1, n=15 

+0.20 

(-0.68, 1.08) 

S=1, n=20 

 

Transient -2.10* 

(-2.81, -1.39) 

S=1, n=51 

 

No Data 

-1.15* 

(-1.56, -0.74) 

S=9, n=239 

-0.61* 

(-1.10, -0.12) 

S=5, n=236 

+0.69 

(-0.06, 1.43) 

S=1, n=34 

 

-0.91 

(-1.90, 0.08) 

S=3, n=156 

 -0.05 

(-0.81, 0.71) 

S=1, n=30 

 

 

 

Abbreviations: Standardised mean difference (SMD); 95% confidence intervals (95% CI); number of studies (S); 



FIGURE 1 
 

Search process showing reasons for exclusion of studies 
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FIGURE 2a 
 

Total lesion volume by different NOS inhibitor types for permanent models of ischaemia 

 

 



FIGURE 2b 
 

Cortical CBF by different NOS inhibitor types for transient models of ischaemia 

 

 
 

 

 

 

 

 

 

 

 



Figure 3. Effect of delay until first dose (minutes) on total infarct volume (SMD) in transient 

ischaemia. Size of circle proportional to size of study. 
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