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Abstract. We investigate the reaction dynamics of diffusive molecules with immobile
binding partners. The fixed reactants build clusters that comprise just a few tens
of molecules, which leads to small cluster sizes. These molecules participate in the
reaction only if they are activated. The dynamics of activation is mapped to a time-
dependent size of an active region within the cluster. We focus on the deterministic
description of the dynamics of a single cluster. The spatial setup accounts for one
of the most important determinants of the dynamics of a cluster, i.e. diffusional
transport of reaction partners toward or away from the active region of the cluster.
We provide numerical and analytical evidence that diffusion influences decisively the
dynamic regimes of the reactions. The application of our methods to intracellular
Ca2+ dynamics shows that large local concentrations saturate the Ca2+ feedback to
the channel state control. That eliminates oscillations depending on this feedback.

1. Introduction

A basic task of cells is to respond to inner and outer stimuli, which involves sequences

of chemical reactions that form the signaling pathway. While numerous reactions take

place between dissolved binding partners in the cytosol, others occur in the plasma or

organelle membranes. A third class of reactions happens between cytosolic molecules

and membrane-bound reaction partners. Often, these reactions involve only a small

region of the membrane at a time because the cell does not only interpret the total

amount of additional substances, but also the precise location of its production. A well-

known example of this type of reaction is in the formation of the second messenger cyclic

adenosine monophosphate (cAMP). Dissolved adenosine triphosphate (ATP) binds to

adenylyl cylcase, which is fixed in the plasma membrane, to synthesize cAMP. Depending

on where this reaction occurs, it may trigger a break down of glycogen to glycose or

gene expression [1].

The fixed membrane-bound reaction partners are often concentrated in a small

membrane area, which we call cluster. We will refer to the molecules in the cluster as

fixed elements. Generally, not all molecules in the membrane patch participate in the

reaction. Just activated elements join in. Although the activating mechanism varies
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among membrane-bound processes, this principle is ubiquitous in biology. A single

cluster with several tens of fixed elements is the focus of the present work.

The small number of fixed elements in a cluster entails small cluster areas. This

strong localization of the reactions causes large spatial gradients of diffusing species. The

cluster diameters are much smaller than the diffusion length of the species in solution.

That imposes limits on the reactions due to diffusion of dissolved reaction partners

toward or away from the cluster. Here, we will model the dynamics of an active cluster

accounting explicitly for the diffusion of dissolved reaction partners.

Beside cAMP, cells employ other second messengers in the above mentioned

signaling tasks. Ca2+ is another prominent representative of a second messenger that

participates in numerous processes [2]. It communicates the fertilization through an

egg cell [3], controls apoptosis [4], and is vital for the excitation-contraction coupling

in cardiac myocytes [5]. The mechanism by which a cell regulates the concentration

of cytosolic Ca2+ involves receptors on the membrane of intracellular compartments.

Here, the inositol-1,4,5 trisphosphate (IP3) receptor channel (IP3R ) on the membrane

of the endoplasmic reticulum (ER) serves as an illustrative example. Upon activation,

the channel opens, which in turn results in a transient flux of Ca2+ from the ER to the

cytosol. Importantly, the open probability of the channel depends sensitively on the

concentration of free cytosolic Ca2+. A moderate increase raises the tendency to release

calcium, whereas a high concentration of Ca2+ causes inhibition and closes the channel.

Thus, the channel releases the species that controls its state.

The feedback of Ca2+ on the channel dynamics becomes even more relevant when

we take the spatial organization of IP3 receptor channels into account. Generically,

the receptor channels form clusters that are randomly distributed on the membrane of

the ER. The typical inter-cluster distance is 2–7µm [6]. The number of IP3Rs within

a cluster has not yet been established experimentally. However, it is estimated that a

cluster comprises 1–40 channels. Using the size of 18nm for a single IP3R with all four

subunits [7], we arrive at a cluster diameter of 18–100nm. Thus, IP3 receptor channels

are tightly coupled by diffusion within a cluster because the Ca2+ concentration decays

on length scales of about 1µm [8].

We see that intracellular Ca2+ dynamics is another example of a reaction between

partners fixed in a small membrane area and diffusing species. The channels are the

fixed elements, Ca2+ is the diffusing species and the reactions are production (here as

release) and binding to and dissociation from the binding sites on the channel.

To date, modeling of intracellular Ca2+ dynamics has proceeded along two distinct

paths. In the first approach, deterministic models and spatially averaged concentrations

have been used. [9, 10]. Since this approach neglects any spatial information such

as gradients, the Ca2+ concentration changes by only one order of magnitude during

oscillations. However, simulations show that large gradients occur and that the Ca2+

concentration changes by 3-4 orders of magnitude at an open cluster [8]. Hence, these

models do not span the necessary range of Ca2+ concentrations. In the second approach,

stochastic methods have been applied taking the small number of fixed elements per
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cluster seriously [11, 12, 13, 14, 15]. For a review on intracellular calcium models, see

[16]. The stochastic simulations have been performed with discrete sources, thereby

incorporating gradients. They exhibit oscillations in regions of the parameter space

where the deterministic behavior was non-oscillatory. To understand the loss of the

oscillatory regime was one motivation of this study. However, our results will apply to

many reactions with spatially localized reaction partners which create large gradients

of diffusing species. Therefore we present a general formulation of the model in the

following section and apply it to intracellular Ca2+ dynamics in the 3rd section.

2. General Model

The aim of this section is to introduce a general formulation of a model that incorporates

the areally restricted binding dynamics. As motivated in the introduction, we refer to

the immobile molecules in the reacting region as fixed elements.

Each element occupies a non-negligible spatial fraction of a cluster because only

several tens of closely packed elements reside therein. Therefore, the state of a cluster

is well characterized by the area that is occupied by the activated elements. We term

this region the active area of a cluster. It usually decomposes into unconnected parts.

Nevertheless, we merge the area of all activated elements to one concentric patch. Its

size equals the sum of the areas of all activated elements, and its radius is denoted by

a. A change in the number of activated elements is translated into an alteration of

the radius. If all elements are deactivated, a equals zero. a takes its maximum value

a0 when all elements are in the activated state. This mapping can be applied if the

diffusion length of the diffusing species is larger than the cluster size. The procedure

follows results by Swillens and Dupont [17].

We represent the cluster of fixed elements as a sphere with radius a. A typical value

of the maximal radius a0 is tens of nanometers. A second sphere surrounds the cluster

concentrically. It has a radius b=5–100 µm and depicts the environment of the cluster.

The system contains m diffusive species . They are described by the concentration

fields c(r, t) := {c1(r, t), . . . , cm(r, t)}. Their dynamics are of the general form

ċ = D∇2
rc + f1(c)Θ (a− r) + f2(c)Θ (r − a) . (1)

∇2
r denotes the radial part of the Laplacian in three dimensions. Θ(x) with Θ(x) = 1

for x ≥ 0, Θ(x) = 0 otherwise represents the Heaviside step function. The functions f1

and f2 subsume the details of the dynamics for r < a and r > a, respectively. Most

commonly, f1 is dominated by production and f2 by consumption.

The state of a fixed element is controlled by binding of the diffusive species to

binding sites. The occupation of these binding sites determines the state. Usually, there

are several binding sites per element. We denote with pi, i = 1, . . . , n the fraction of

elements in the state i and refer to the pi as gating variables. The dynamics of the

gating variables are governed by the general equation

ṗi = gi(c, p1, . . . , pn) , i = 1, . . . , n . (2)
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Some of the n states correspond to the activated state of the elements, so that the

fraction of activated elements is determined by the sum of the corresponding gating

variables. Consequently, the gating variables determine the radius a of the active area

by some function f as

a = f(c(a), p1(a), . . . , pn(a)) . (3)

We include a dependence on the diffusive species and on all n gating variables in f to

account for the most general case. The values of the concentration fields and of the

gating variables do not vary significantly within a cluster because the diffusion lengths

are larger than a0. Therefore, we can pick a typical value to compute c and pi. We

have chosen the value at the boundary of the cluster, which turns equation (3) into an

implicit expression.

The behavior of the equations (1)–(3) can be investigated by a bifurcation analysis,

which determines the stationary states and their stability. We begin with the stationary

states, i.e. the solutions of the equations

0 = D∇2
r c̄ + f1(c̄)Θ (ā− r) + f2(c̄)Θ (r − ā) , (4a)

0 = gi(c̄, p̄1, . . . , p̄n) , i = 1, . . . , n . (4b)

The dash indicates the stationary states of the Ca2+ concentration profile and of the

gating variables, respectively. The constant ā denotes the stationary value of the active

area. Equation (4a) can be treated separately for r < ā and r > ā due to the Heaviside

step function. Since we demand the concentration profiles to be C1 functions with

respect to r, the matching conditions for the stationary solutions read c̄i(ā) = c̄o(ā) and

∂c̄i/∂r(ā) = ∂c̄o/∂r(ā). The subscripts i and o indicate the inner and outer solution,

respectively. The computation of ā proceeds in two steps. Firstly, we solve equation (4a)

with a fixed, but arbitrary value of ā. That results in a solution for c̄, which includes

ā as a still undetermined parameter. Secondly, we determine ā self-consistently from

equation (3) after inserting the solutions for c̄ and for p̄i.

Figure 2 shows a graphical method to determine ā. The dotted line is the bisection

line, whereas the full lines represent the rhs of equation (3) for a specific model (see

below). The stationary states are given by the intersections. Upon changing one

parameter, the curve of f is shifted. It results in a change of the values or the number

of fixed points. The existence of a saddle node bifurcation is easily deduced from such

a plot. It occurs when f touches the bisection line. That is equivalent to the condition

f ′(a) = 1.

Knowing the stationary points (c̄, ā), we investigate their stability. A linearization

of the reaction-diffusion dynamics in (1) and the gating dynamics in (2) results in the
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equations

ẏ =D∇2
ry + {f1(c̄)− f2(c̄)} δD(ā− r)δa (y, z)

+

{
∂f1i

∂cj

(c̄)Θ(ā− r) +
∂f2i

∂cj

(c̄)Θ(r − ā)

}
· y

(5a)

żi =
m∑

j=0

∂gi

∂cj

(c̄, p̄1, . . . , p̄n)yj +
n∑

j=0

∂gi

∂pj

(c̄, p̄1, . . . , p̄n)zj (5b)

We define y as the perturbations δc of the diffusing species, and zi as the

perturbations δpi of the gating variables. δD denotes Dirac’s delta function. Although a

is not a dynamical variable in our model, it still changes in time. That is a consequence

of equation (3) because a is computed from the evolving concentration fields and gating

variables. a can be written as a = ā + δa with δa = δa(y, z). To evaluate δa from

equation (3), we expand the expression

ā + δa = f (c̄(r) + y(r), p̄(r) + z(r))
∣∣∣
r=ā+δa

(6)

to linear order:

δa =

m∑
i=1

∂f
∂ci

y(ā) +
n∑

i=1

∂f
∂pi

zi(ā)

1−
m∑

i=1

∂f
∂ci

∂c̄i

∂r
(ā)−

n∑
i=1

∂f
∂pi

∂p̄i

∂r
(ā)

. (7)

The derivatives of f have to be taken at (c̄(ā), p̄(ā)). The denominator only arises

because of the evaluation of f at r = a in equation (3).

When we combine y and z to an n+m dimensional vector x = (y, z)t, the linearized

equations take the matrix form ẋ = Mx. If M can be diagonalized, the general solution

for x is given by a linear combination of terms vi exp(ωi). vi represents an eigenvector

of M and ωi the corresponding eigenvalue. Consequently, the linear stability is uniquely

determined by the eigenvalues of M . As shown in the appendix, M can be diagonalized.

The eigenvalues λi that originate from the gating variables constitute a subset {λi} of all

eigenvalues {ωi} and are all non-positive, i.e. λi ≤ 0∀i, if the gating variable dynamics

are rate equations derived from a master equation. Moreover, the eigenvectors vi of

M that correspond to the eigenvalues λi possess the structure vi = (0, . . . , 0, qi)
t with

dim qi = n. That has two important consequences. Firstly, the eigenvalues from the

gating dynamics do not contribute to any linear instability. Secondly, the solution for

y does not depend on exp(λit). Therefore, the time dependence of y is solely governed

by the eigenvalues that originate from equations (8) and (5a).

Equation (5a) can be solved separately for r < ā and r > ā because of the Heaviside

step function. The matching conditions are now yi(ā) = yo(ā), and the first derivative

jumps according to [
dyo

dr
− dyi

dr
+

f1(c̄)− f2(c̄)

D
δa (y, z)

]
ā

= 0 , (8)
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due to Dirac’s delta function in equation (5a). The continuity at ā and equation

(8) fix the still undetermined coefficients of y. The resulting system of equations is

homogeneous. It has a non-trivial solution only if the determinant vanishes. That yields

an implicit equation for the eigenvalues of the concentration fields and thus determines

their linear stability.

3. Calcium dynamics

We now apply the method of section 2 to the dynamics of cytosolic calcium as a

prototypic model system. The cytosolic Ca2+ concentration c is governed by

ċ = D∇2c + kl(E − c)− kpc + kc(E − c)Θ(a− r) . (9)

The constants D and E denote the diffusion coefficient of Ca2+ in the cytosol and

the Ca2+ concentration in the ER, respectively. The term kl(E − c) refers to a leak

current, whereas kpc describes the calcium uptake by the ER through sarco-endoplasmic

reticulum calcium ATPase (SERCA) pumps. Although it would be more realistic to

model SERCAs by a Hill equation with coefficient 2, we approximate them by a linear

expression for the sake of an analytical treatment. The last term in equation (9)

describes the flux of Ca2+ through IP3 receptor channels. They represent the fixed

elements, and the radius a of the active area is determined by the fraction of open IP3

receptor channels.

The state of a single IP3R is controlled by the state of its four subunits [18]. Each

subunit expresses binding sites for Ca2+ and IP3. Their occupation determines the state

of the subunit. De Young and Keizer introduced a model to describe the dynamics

of one subunit [9]. It consists of three binding sites: an activating Ca2+ binding site,

an inhibitory Ca2+ binding site and an IP3 binding site. Therefore, the state of a

subunit can be specified by a binary triplet ijk. The first index represents the IP3

binding site, the second the activating Ca2+ binding site and the last the inhibiting

Ca2+ binding site. An index equals 1 when a site is occupied and 0 otherwise. The 8

states that originate from the three binding sites are depicted in figure 1. Each state

corresponds to one corner of the cube. The transition rates between the different states

are indicated at the arrows. Binding of Ca2+ and IP3 is always proportional to the

Ca2+ and IP3 concentration, respectively, whereas unbinding is independent from these

concentrations.

Since a subunit is activated when IP3 and activating Ca2+ are bound, p110 denotes the

fraction of open subunits. The probability to find a conducting IP3R is 4p3
110 − 3p4

110

because a channel is open when at least three out of four subunits are activated. The

size of the active area is set to a fraction of its maximal value corresponding to the

above probability, so that

a = a0p110
3
√

4− 3p110 . (10)
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Figure 1. Transition scheme of the De Young Keizer model. The dissociation
constants di are defined as di := bi/ai.

That is the specification of the function f (see equation (3)) for the Ca2+ dynamics of

the De Young Keizer (DK) model. Our investigations of the Ca2+ dynamics start with

the stationary solution of (9) for an arbitrary value of ā:

c̄(r)=

{
B̄(ā)

exp(−k̄2r)

r
+

klE

kl + kp

}
Θ(r − ā)

+

{
Ā(ā)

sinh(k̄1r)

r
+

(kl + kc)E

kl + kp + kc

}
Θ(ā− r)

(11)

with

Ā(a) =
k(k̄2a + 1)

cosh(k̄1a)k̄1 + sinh(k̄1a)k̄2

,

B̄(a) =
k(sinh(k̄1a)− cosh(k̄1a)k̄1a)

exp(−k̄2a)(cosh(k̄1a)k̄1 + sinh(k̄1a)k̄2)
,

k =
−kckpE

(kl + kp + kc)(kl + kp)

and

k̄1 =

√
kl + kp + kc

D
, k̄2 =

√
kl + kp

D
. (12)

We applied ∂c̄/∂r(0) = 0 and c(b) = klE/(kl + kp) as boundary conditions. The latter

complies with the base level of the system. The stationary value of p110 in dependence

on c̄ and the IP3 concentration I reads

p̄110 =
d2I

(c̄ + d5)(d1d2 + c̄d3 + c̄I + d2I)
. (13)

Here, d1 and d3 denote the dissociation constants for IP3 when no Ca2+ and when Ca2+

is bound to the inhibiting site, respectively. The parameters d2 and d4 refer to the
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dissociation constants for the inhibiting Ca2+ processes dependent on IP3 binding. d5

represents the dissociation constant for the activating Ca2+ site [9].

Inserting p̄110 with c̄ = c̄(a) into equation (10) determines the stationary values of

a. They correspond to the intersections of the dotted bisection line and the curve of f

depicted as solid lines in figure 2. When we increase the IP3 concentration I, the curve

of f is shifted upwards. Although ∂f/∂I ≥ 0 always holds, the effect on the number of

stationary points depends on the parameter values. There is one fixed point at low I for

the parameter values chosen in figure 2. Three stationary values exist at an intermediate

regime, and one stationary point is present at high IP3 concentrations. Thus, two saddle

node bifurcations occur upon increasing I. For other parameter values, we find only

one fixed point for the whole range of the IP3 concentration or just a single saddle node

bifurcation (see below).

0 0.02 0.04 0.06 0.08 0.1
a (µm)

0

0.02

0.04

0.06

0.08

0.1

a,
f(

a)
 (

µm
)

Figure 2. Stationary values of a given by the intersections of the bisection line (dotted)
and the curve of f (solid). For f , I increases from bottom to top. Parameters values
are d1 = 0.13µM, d2 = 3µM, d3 = 0.9434µM, d4 = 0.4133µM, d5 = 0.8234µM, kp =
80s−1, kl = 0.002s−1, kc = 34500s−1, E = 750µM, a0 = 0.03µm, D = 40µm2s−1

The DK model assumes that the IP3 dynamics is much faster than calcium binding

and unbinding. That entails a fast equilibration between states with IP3 bound and

not bound. We eliminate the IP3 dynamics adiabatically in the following and use the

stationary values of the states with IP3 bound and not bound. As shown in the appendix,

the value of p̄110 is not changed by this approximation. Thus, the above analysis remains

valid and we proceed to the stability of the fixed points.

The linearization of equation (9) results in

ẏ = D∇2
ry − (kl + kp)y −Θ(ā− r)kcy + fcδD(r − ā) . (14)

We define fc := kc(E−c̄)δa. Note that the inner concentration field yi is still restricted to

r ≤ ā. In linear order, the varying value of a is translated into an additional flux density

fc at the rim of the stationary active area. The solution of (14) is y(r, t) = exp(ωt)u(r)

with

u(r) = A
sinh(k1r)

r
Θ(ā− r) + B

exp(−k2r)

r
Θ(r − ā) (15)
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and

k1 =

√
kl + kp + kc + ω

D
, k2 =

√
kl + kp + ω

D
. (16)

We used the boundary conditions ∂u/∂r(0) = 0 and u(b) = 0. The still unknown

coefficients A and B are fixed by the continuity of u and the discontinuity of ∂u/∂r at

ā (see also equation (8)). The latter is a direct consequence of the last term in equation

(14). The homogeneous system of equations for A and B possesses a non-trivial solution

only if its determinant equals zero. This leads to the equation

k2 + k1 coth(k1ā)− kc(E − c̄(ā))

D
η = 0 , (17)

that determines the eigenvalue ω. η is given by āδa/ sinh(k1ā), which can be cast into

the form

η =
κ(ω)

1− κ(0) ∂c̄
∂r

(ā)
(18)

with

κ(ω) =

[
a0

4(1− p̄110)
3
√

(4− 3p̄110)2

p̄110

c̄

{
d5

ω
a5

+ d5 + c̄
− c̄

ω
a6

+ d6 + c̄

}]
ā

(19)

and a6 = (a2I + d1a4)/(I + d1). If the system exhibits a zero eigenvalue bifurcation for

a given pair (ā, I), then ω = 0 should solve equation (17). Indeed, using the identity

kc

D

E − c̄(ā)

k̄2 + k̄1 coth(k̄1ā)
=

∂Ā

∂a
(ā)

sinh(k̄1ā)

ā
, (20)

equation (17) can be transformed to 1 = f ′(ā). That is one of the conditions for a saddle

node bifurcation.

4. Results and discussion

Some results obtained with the model concerning Ca2+ dynamics have already been

reported in [19]. Here, we consider parameter values beyond the range relevant for

intracellular Ca2+ release by IP3Rs to demonstrate model behavior which might be

significant for other membrane-bound reactions.

Diffusion of calcium plays a central role for the selection of dynamic regimes of the

Ca2+ dynamics besides the dynamics of the IP3 receptor channel. Hence, we present

results for D = 40µm2s−1 and D = 220µm2s−1. Diffusion of Ca2+ can be easily changed

in experiments by application of Ca2+-binding proteins (buffers).

The original DK model is based on a continuous distribution of IP3 receptor

channels. Two Hopf bifurcations bounding an oscillatory regime are the most prominent

features of the Ca2+ dynamics. We test whether this property is conserved when going

from spatially continuous source terms in equation (9) to a discrete model. To this aim,

we rescale the flux density with a typical cluster spacing R and a representative cluster
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radius a0 while keeping the total flux constant, i.e. kc = kDK
c R3/a3

0. The resulting kc

of 3 105s−1, which agrees well with realistic values [8], leads to a loss of the oscillatory

regime. We find a single stationary state for all IP3 concentrations, which is linearly

stable. Decreasing the flux density by several orders of magnitude and thus approaching

the Ca2+ concentration values of the DK model does not restore oscillations. That holds

because gradients still prevail.

These results do not mean that a model like equations (1)–(3) does not exhibit

oscillations for some parameter values. In the following, we investigate oscillations of

the model. In order to obtain oscillations, we choose parameter values supported by

experiments, but a value of the activating Ca2+ dissociation constant d5 such that we

obtain an oscillatory regime. We use d2 = 3µM for the inhibitory process in agreement

with recent measurements [20] (Mak et. al found dissociation constants up to 45 µM, but

based on a specific model [21]). According to the experiments in [20], the coefficients for

binding to the inhibiting site, a2 and a4, are both set to 0.2 (µMs)−1. The binding rate

constant to the activating site can be evaluated from puff frequencies [22]. That implies

a5 ≥ 1 (µMs)−1. Assays of the dissociation constant for Ca2+ activation yield values

from 77nM to 309nM [23, 24, 25]. We chose d5 = 0.823µM, which is motivated by the

results depicted in figure 3. It shows the dynamic regimes of the model in dependence

on d5 and I. Oscillations occur only for larger values of d5.

0.4 0.5 0.6 0.7 0.8
d

5
 (µM

-1
s

-1
)

0

0.05

0.1

IP
3(µ

M
)

Figure 3. IP3 concentration of the saddle node bifurcations (solid and chain dotted
lines) and the Hopf bifurcation (dashed line) in dependence on d5. Upper group
D = 220µm2s−1, lower group D = 40µm2s−1. Parameter values are d1 = 0.13µM, d2 =
3µM, d3 = 0.9434µM, d4 = 0.4133µM, kp = 80s−1, kl = 0.002s−1, kc = 34500s−1, E =
750µM, a0 = 0.03µm, a2 = a4 = 0.2(µMs)−1, a5 = 1(µMs)−1.

Two saddle node bifurcations and a Hopf bifurcation terminate in a cusp. The

oscillations arising at the Hopf bifurcation vanish via a bifurcation close to the lower

saddle node bifurcation, which involves an increase in period. We assume it to be a

homoclinic bifurcation. Typical oscillations are shown in figure 4 and in ref. [19] for

smaller values of a5. The pattern is the same for all examples. Upon increasing the IP3

concentration, the system responds with a huge spike of Ca2+ release and finally settles
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Figure 4. Oscillations of the Ca2+ concentration at r = 0µm (left) and r=1.588µm
(right). Note the difference in the order of magnitude for the amplitude. Parameter
values as in Fig 3 and D = 40µm2s−1, a5 = 10(µMs)−1.
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Figure 5. Stationary values of the Ca2+ concentration for D = 40µm2s−1. Solid
lines denote linearly stable fixed points, dotted lines linearly unstable fixed points.
Parameter values as in Fig 3 and d5 = 1.6468µM.

into small amplitude oscillations in the range of the inhibiting dissociation constants.

The amplitude decays in space to negligible values within 1.6µm (figure 4, right panel).

Such oscillations had to be expected, since a feedback of Ca2+ to a control process is only

given in a range where the process is sensitive to changes of c. This range is around the

dissociation constant d5 for Ca2+ activation and d2 and d4 for Ca2+ inhibition. Changes

of concentrations far above or below the dissociation constants do not exert a feedback

on the dynamics [26]. Hence, the large difference between dissociation constants and

concentration values occurring at the releasing channel lead to saturation of the control

mechanisms of the IP3R by Ca2+. That is the reason for the small oscillatory regimes

and amplitudes.

Figure 5 shows that the structure of the bifurcation diagram does not change with

a higher value of the activating dissociation constant. There is a single fixed point

for almost all IP3 concentrations. Stable limit cycles exist close to the bistable area.

They only extend to IP3 concentrations where the upper branch is unstable. Thus, we

again find a very small band of IP3 concentrations in which the system oscillates. The

oscillations behave in the same way as described above.

The existence of oscillations does not solely depend on dissociation constants. It

depends on rate constants as well. Therefore, we test the influence of the binding rate

constant a5 for Ca2+ activation and of the binding rate constants a2 and a4 for Ca2+
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inhibition on the stationary states. The concentration values of the stationary states

are conserved, since we do not change the dissociation constants.

The Hopf bifurcation moves toward the left saddle node bifurcation when we

increase the rates for the inhibitory processes. Figure 6 displays the difference between

the IP3 concentration values of the Hopf bifurcation and those of the left saddle node

bifurcation. This difference decreases monotonically to zero with higher values of a2.

Hence, the oscillatory regime shrinks for stronger inhibition. The opposite effect occurs

for Ca2+ activation. An increment of a5 (while keeping d5 constant) shifts the Hopf

bifurcation to higher IP3 concentrations.

0 0.05 0.1 0.15 0.2
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2
(µM

-1
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-1
)
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∆I
P 3 (
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)

Figure 6. Difference between the IP3 concentration of the Hopf bifurcation and the
left saddle node bifurcation in dependence on a2. Parameter values as in Fig. 8 and
D = 40µm2s−1, a2 = a4.

Oscillations do not always disappear in a (putative) homoclinic bifurcation. The

results in figure 7 illustrate a period doubling sequence while approaching the lower

saddle node bifurcation. The left panel shows a period-2 example; the right panel

depicts a period-4 example. Higher periods occur, too. Oscillations appear only when

the upper branch is unstable for these parameter values, too, which leads to a small

oscillatory regime. The oscillations are again considerably damped at a distance of

1.6µm.
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Figure 7. Oscillations of the Ca2+ concentration at r=0µm for different values of the
IP3 concentration. At t = 100s, we decreased I from 0.22µM to 0.218µM (left panel),
whereas I = 0.215µM for all times in the right panel. Parameter values as in Fig 8
and D = 50µm2s−1.

We find a different structure of the bifurcation diagram for parameter values like

those in figure 8. For D = 40µm2s−1, there are two saddle node bifurcations and a
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Figure 8. Stationary values of the Ca2+ concentration for D = 40µm2s−1 (left) and
D = 220µm2s−1 (right). Solid lines denote linearly stable fixed points, dotted linearly
unstable fixed points. Parameter values are d1 = 0.13µM, d2 = 12.588µM, d3 =
0.9434µM, d4 = 1.7346µM, d5 = 2.4702µM, kp = 80s−1, kl = 0.002s−1, kc =
700s−1, E = 750µM, a0 = 0.11µm, a2 = a4 = 0.0167(µMs)−1, a5 = 0.667(µMs)−1.

Hopf bifurcation. That is similar to the results obtained above. However, increasing

the diffusion coefficient changes the topology of the bifurcation diagram. A value of

D = 220µm2s−1 yields only one saddle node bifurcation. It leads to a bistable regime

that extends infinitely toward high IP3 concentration values.

These two examples illustrate that diffusion influences essentially the dynamical

behavior. Generally, the impact of diffusion on the fixed points can be deduced from

∂c̄/∂D. The derivative simplifies to

1

ζ

∂c̄

∂D
(a) =

∂k̄1

∂D
(k̄2a + 1)

{
k̄1 −

sinh(2k̄1a)

2a

}
+

∂k̄2

∂D

{
sinh(2k̄1a)

2
k̄1 −

sin2(k̄1a)

a

}
(21)

with

ζ =
k(

cosh(k̄1a)k̄1 + sinh(k̄1a)k̄2

)2 . (22)

Since ∂k̄i/∂D = −k̄i/(2D) , i = 1, 2, we immediately arrive at ∂c̄/∂D(a) < 0, i.e. c(a)

decreases when D is increased. The dependence of c(a) on a is a monotonously increasing

one with increasing a. Hence, if we increase a, we can increase D to such an extent

that c(a) does not change. That entails that for any ∆ > 0, there exists an α > 0 so

that fD+∆(a + α) = fD(a). The statement implies a stretching of f to the right upon

increasing the diffusion coefficient. The exact effect on the stationary points depends on

their properties. A continuous increment of D leads first to a higher value of ā and then

to the disappearance of the fixed point, when ∂f(ā)/∂a < 0 . In the case of figure 8, f

is stretched to such an extent that an increment of I does not shift f upwards enough

to cause a second saddle node bifurcation (see figure 2).

5. Conclusion and outlook

We have presented an extended study of a new modeling concept for diffusive species

that react with immobile reaction partners. The fixed reactants are confined to small

clusters. Our approach to describe the cluster dynamics is always applicable when the

diffusion length is much larger than the cluster size. We applied the above method to
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the dynamics of intracellular calcium mediated by IP3 receptor channels. The spatial

restriction of the Ca2+ flux to small membrane areas led to the disappearance of Ca2+

oscillations computed in spatially continuous models. The enlarged values of the Ca2+

concentration at the cluster resulted in a single linearly stable stationary state. Choosing

smaller values of the channel flux constant kc did not restore Ca2+ oscillations. Hence,

the strong impact of spatial gradients on dynamic regimes will most likely apply as well

to localized reactions generating much smaller gradients than the gradients around a

releasing Ca2+ channel.

The flux constants we have used and which entail the large concentrations occurring

at releasing clusters are based on recent simulation results. These simulations of Ca2+

liberation close to experimental conditions show that Ca2+ concentrations span the

range of 25–170µM in the center of an open cluster [8]. That is 3–4 orders of magnitude

larger than the base level. At the same time, the concentration increases only 1–2 times

base level at neighboring clusters. The existence of propagating waves proofs that the

activation process is sensitive to these small concentration changes. Since the channel

control processes experience concentration changes of several orders of magnitude and

react to small changes already, the possibility to eliminate large concentrations from the

dynamics by rescaling of binding constants must be ruled out.

Even if the Ca2+ concentration oscillated according to a deterministic model, these

oscillations are not the oscillations observed in experiments [19]. Two observations led

to this conclusion. Firstly, the range of IP3 concentrations providing oscillations is too

small. Secondly, the amplitude as well as the mean of the oscillations are already

considerably damped in a distance of 1.6µm from the cluster. Thus, they cannot

represent the global Ca2+ oscillations seen in experiments. The spatial damping of

the oscillations applies to each reaction that produces a diffusing species.

Our findings support earlier results that deterministic models, including only

activation by IP3, activation by Ca2+ and inhibition by Ca2+, do not capture intracellular

Ca2+ oscillations [19]. Oscillations are driven by fluctuations in channel opening. The

stochasticity of intracellular Ca2+ dynamics is caused by the stochastic binding and

unbinding of IP3 and Ca2+ to the small number of receptor molecules. Fluctuations

cause spontaneous release in a single cluster. That leads to a release spike like the

initial spikes in figures 4 and 7. Such a large amplitude event can lead to the opening

of neighboring clusters and finally, via a nucleation process, to a wave traveling through

the whole cell. If that occurs repeatedly, oscillation-like processes follow [13]. Thus,

the amplitude of the initial spike is responsible for the amplitude of the oscillations.

Nucleation may occur at different spots in the cell essentially at the same time when

the IP3 concentration is high [13], leading to almost regular periods.

Oscillations might as well be introduced by additional feedback, e.g. a Ca2+

feedback on IP3 production or the filling state of the endoplasmic reticulum. Our

findings suggest that the initiation of global Ca2+ release would still occur by wave

nucleation, since the Ca2+ dynamics would not undergo a local instability. The

additional feedbacks would just modulate the nucleation probability periodically.
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The present study sheds new light on the interplay between localization and

fluctuations. This feature does not hold exclusively for IP3 mediated Ca2+ liberation, but

other intracellular pathways should exhibit it, too. The involvement of a small number

of proteins in cell signaling has already been established, see [27] for instance. It will

be interesting to apply the current method to networks of strongly localized reaction

sites. That will expand our knowledge on fluctuation induced phenomena, which have

been mostly studied by stochastic simulations. In addition, our results reveal that the

deterministic limit still has surprises in store, as the period doubling (see figure 7) shows.

Whether this sequence leads to chaos, is the subject of ongoing investigations.
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7. Appendix A: Linearization

Linearizing the dynamics of m diffusing species and n gating variables for r < ā results

in ẋ = Mx with

x =

(
y

z

)
, M =

(
A1 0

B A2

)
. (23)

A1 is an m dimensional quadratic matrix and B ∈ Rn×m . The quadratic matrix

A2 has the dimension dim A2 = n. It originates from the gating dynamics. Since

they are described by rate equations, which are derived form master equations, the

Frobenius Perron theorem assures that A2 can be diagonalized. Additionally, all

eigenvalues λi of A2 are real with max λi = 0. The structure of M then entails that the

eigenvalues of M include those of A2. The eigenvector corresponding to λi is of the form

(0, . . . , 0, qi)
t with dim qi = n. Therefore, the general solution for y does not depend on

exp(λit), i = 1, . . . , n.

8. Appendix B: Stationary states

We here provide the analytical expressions for the stationary points of the gating

variables. In the DK model, the eight states are given by

p̄000 = d1d2d5γ1 , p̄100 = d2d5Iγ1 , (24a)

p̄010 = d1d2c̄γ1 , p̄001 = d3d5c̄γ1 , (24b)

p̄011 = d3c̄
2γ1 , p̄101 = d5c̄Iγ1 , (24c)

p̄110 = d2c̄Iγ1 , p̄111 = c̄2Iγ1 , (24d)

with γ−1
1 = (c̄ + d5)(d1d2 + c̄d3 + c̄I + d2I). De Young and Keizer assume that binding

and unbinding happens more quickly for IP3 than for Ca2+ . We therefore approximate
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the IP3 dynamics by their equilibria i.e. p1ij = βijp0ij. Thus, we reduce the DK model

to four lumped states pij := p0ij + p1ij [12]. The corresponding stationary points read

p̄00 = d5d6γ2 , p̄01 = d5c̄γ2 , (25a)

p̄10 = d6c̄γ2 , p̄11 = c̄2γ2 , (25b)

with γ−1
2 = (c̄+d5)(c̄+d6) and d6 = d2(I+d1)/(I+d3). Evaluating the βij and using the

lumped state definition directly entails that equations (25) lead to the same stationary

values p̄ijk as the DK model e.g. p̄110 = I/(I + d5)p̄10.

A widely used simplification of the DK model is the Li Rinzel (LR) model [10].

Therefore, we derive the function κ(ω) (equation (19)) for this model, too. The

LR model uses a time scale separation between Ca2+ activation and Ca2+ inhibition.

Experiments show that the inhibitory processes are much slower than activation. Thus,

it is possible to eliminate Ca2+ activation by using the corresponding equilibrium value.

It results in a single gating variable ph, which denotes the fraction of states that are not

yet inhibited. Its stationary value is

p̄h =
d6

d6 + c̄
. (26)

As for the lumped states, the stationary values p̄ikj calculated from the LR model equal

those of De Young and Keizer. For instance, we arrive at

p̄LR
110 =

I

I + d1

c̄

c̄ + d5

p̄h = p̄DK
110 (27)

for the fraction of open subunits. This identity is directly reflected in the calculation of

κ(ω) for the LR model. It can be cast into the form

κ(ω) =

[
a0

4(1− p̄110)
3
√

(4− 3p̄110)2

p̄110

c̄

{
d5

d5 + c̄
− c̄

ω
a2

+ d6 + c̄

}]
ā

(28)

that is very similar to equation (19).

9. Appendix C: Numerical methods

The geometry of the IP3R cluster imposes considerations on the discretization. As stated

above, the radius of the active area measures only tens of nanometers, but the outer

boundary is 5-100 µm away. A constant grid size that sufficiently resolves the dynamics

in the cluster would lead to an enormous calculational effort. To reduce computation

time, we use a grid with non uniform spacing. The mesh size is sufficiently small for

r ≤ a0 and saturates at a larger value in the bulk. It entails that the usual discretization

of the radial Laplacian

∇2
r =

1

r2

∂

∂r

(
r2 ∂

∂r

)
=

∂2

∂r2
+

2

r

∂

∂r
. (29)
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cannot be applied. Let {ri} denote the set of grid points, dri := ri − ri−1 the spacing,

and ui an approximation to the concentration profile. Then a second order scheme for

equation (29) reads

L(ui) =
1

r2
i

{(
ri +

dri+1

2

)2
ui+1 − ui

dri+1

−
(

ri −
dri

2

)2
ui − ui−1

dri

}
2

dri+1 + dri

. (30)

Moreover, we adopt a first order scheme for the time integration and 50% of the stability

criterion [28].

Glossary

Fixed element Any reactive substance that is restricted to small spatial regions and

that possesses two distinct states: activated and deactivated. A fixed element

participates only in a reaction when it is activated.

Bistability Existence of two linearly stable solutions of a nonlinear system.

Cytosol The fluid portion of the cell in which all other internal compartments, e.g. the

endoplasmic reticulum, are embedded.

Endoplasmic reticulum An extensive membranous network within the cell, which serves

as a major intracellular Ca2+ store.

Hopf bifurcation Emergence or disappearance of an oscillatory solution upon variation

of a parameter in a nonlinear system.

Linear stability Property of a stationary solution of a nonlinear system. The system

relaxes back to this stationary state upon any infinitesimal perturbation from this

state, if it is linearly stable, and amplifies any infinitesimal perturbation, if it is

linearly unstable.

Receptor A specialized protein on a cell’s membrane that binds to substances that effect

the activities of the cell.

Saddle node bifurcation Emergence or disappearance of two stationary states upon

variation of a parameter in a nonlinear system.

Second messenger A chemical signal that relays a hormonal message from a cell’s surface

to its interior.
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