
Enhancing composite Digital Documents
 Using XML-based Standof f Markup

Peter L. Thomas
Document Engineering Laboratory

School of Computer Science
University of Nottingham

Nottingham, NG8 1BB, UK

plt@cs.nott.ac.uk

David F. Brailsford
Document Engineering Laboratory

School of Computer Science
University of Nottingham

Nottingham, NG8 1BB, UK

dfb@cs.nott.ac.uk

ABSTRACT
Document representations can rapidly become unwieldy if they
try to encapsulate all possible document properties, ranging
from abstract structure to detailed rendering and layout.

We present a composite document approach wherein an XML-
based document representation is linked via a ‘shadow tree’ of
bi-directional pointers to a PDF representation of the same
document. Using a two-window viewer any material selected
in the PDF can be related back to the corresponding material in
the XML, and vice versa. In this way the treatment of specialist
material such as mathematics, music or chemistry (e.g. via ‘read
aloud’ or ‘play aloud’) can be activated via standard tools
working within the XML representation, rather than requiring
that application-specific structures be embedded in the PDF
itself.

The problems of textual recognition and tree pattern matching
between the two representations are discussed in detail.

Comparisons are drawn between our use of a shadow tree of
pointers to map between document representations and the use
of a code-replacement shadow tree in technologies such as
XBL.

Categories and Subject Descriptors
E.1 [Data]: Data Structures — Trees; I.7.2 [Document and Text
Processing]: Document Preparation — Markup Languages;
I.7.4 [Document and Text Processing]: Electronic Publishing.

General Terms
Algorithms, Documentation.

Keywords
XML, PDF, standoff markup, composite documents, MathML,
MusicXML, XBL

FINAL DRAFT of paper accepted for:

DocEng’05 November 2–4, 2005, Bristol, UK
Copyright 2005 Thomas and Brailsford

1. INTRODUCTION
In two previous papers [1, 2] we have set out techniques for
using XML templates as a guide for embedding customised
structure into PDF files. A Structured PDF file usually marks
up its PDF content with the Adobe Standard Structured Tagset
(SST). The SST Tags (see [3]) are roughly equivalent to those
in HTML in that they denote document components such as
paragraphs, titles, headings etc. Unlike XML, it is not possible
to directly intermix SST tags and PDF content. Instead, the
tags comprise the nodes of a separate structure tree and each of
these nodes contains a pointer to a linked list of marked
content within the PDF itself. Some basic facilities exist for
creating PDF Structure trees where the nodes are custom tags,
rather than tags from the SST. By using a system of role
mapping one can indicate within the structure tree that a
custom tag such as PARAGRAPH equates, say, to the P tag in
the SST.

The addition of either the SST, or customised structure, to a
PDF file does, of course, involve creating a new version of that
file. In some circumstances this is not allowable — the file may
have been saved in such a way that alterations to it are not
permitted. Such a ‘read only’ property might, for example, be
associated with the document having been digitally signed for
authentication purposes.

It had always been our intention to develop structure insertion
methods for ‘read only’ PDF documents by externalising the
PDF structure tree and using it to point into the PDF content.
This technique is often called standoff markup .and we hoped
to enhance our Acrobat plugin to read in an externalised
representation of the PDF structure tree and have it be
displayed in the Acrobat document bookmarks, exactly as if it
were a conventional internal PDF Structure tree.

It soon became apparent that much of what would be needed in
the external structure tree was already present in the XML
representation of the document as used in our two-window
viewer and so, rather than replicating this structure in yet
another tree, it seemed logical to investigate whether a hidden
‘shadow tree’ of pointers could be used as an intermediate
between the XML and PDF representations of the same
document. In effect this leads to a composite document format,
where XML and PDF versions of the same document co-exist,
and where the shadow tree of pointers, in conjunction with the
XML, acts as standoff markup into the PDF.

One of the principal aims of our research has always been to
invest Acrobat documents with structure so that ‘added value’
could be achieved in terms of enhanced accessibility for
visually-impaired users and also in the areas of intelligent
structural searching of PDF files and the flexible reuse of PDF
documents. All of these aims are aided by knowing exactly

what each PDF object represents in structural terms. However,
placing customised structure trees inside PDF files is an
awkward process and, even when it has been completed, further
work might still be necessary if document accessibility is to be
enhanced. To take a specific example let us consider the reading
aloud of mathematical material rendered via PDF. Recent
releases of Acrobat incorporate a read aloud facility but it
comes badly unstuck when faced with ‘difficult’ material such
as mathematics, chemical formulae or music. In all of these cases
the placement of symbols requires many horizontal and vertical
movements, interspersed with line drawing commands to
render staves, fraction bars, chemical bonds etc. The process of
reading aloud may then degenerate into the almost random
recitation of the few isolated characters that can be recognised.
Moreover, there is no guarantee that these characters will be
emitted in anything remotely corresponding to a correct
reading order.

These varieties of ‘difficult’ material cry out for a read aloud
facility that can revert back to some more abstract, and yet more
recognisable, representation. At the end of a previous paper [2]
we showed a mathematics example in which we embedded
customised structure — roughly corresponding to a MathML
description of a typeset formula — into the PDF file.
Unfortunately there are no standardised facilities in PDF to
divert read aloud into reading out the tags within the structure
tree whenever difficult material is encountered. Instead a
subject-specific “alternate reading” has to be provided and our
previous work forced us to embed that also.

 These examples we have just cited made us increasingly
convinced, as our work progressed, that instead of building
customised structure into a PDF file it might be a much better
strategy to have an accurate method of two-way cross
correlation between XML and PDF versions of a document and
to then rely on the ever-increasing number of XML tools to add
value to the PDF. Thus, for example if our piece of mathematics
were highlighted in the PDF and if this could be matched to
equivalent MathML markup in the XML source file then it
would be possible to deploy a MathML ‘read aloud’ tool to
interpret the mathematics rather than relying on the embedding
of structure-based ‘alternate readings’ in the PDF itself.

2. COMPOSITE DOCUMENT FORMATS
The idea of having two or more representations of a document
(XML/DocBook and PDF in our case) co-existing in a single
notional container, harks back to the days of Apple’s
OpenDoc framework [4]. OpenDoc envisaged a document
being composed of material contributed from a variety of
sources such as MacWrite, Adobe Photoshop, Adobe
Illustrator and so on. Each piece of material in the OpenDoc
document would be rendered by calling on the appropriate
application at the appropriate time. If the document were sent
to a remote machine, not having all of the required application
programs, then a system of lower-quality rendering via bitmap
approximations came into play to ensure that the document
could at least be read. In many ways OpenDoc was well ahead
of its time but it floundered because of the need to have a wide
variety of authoring applications available and the effort
needed to make each of these applications be ‘OpenDoc
aware’ in order for them to fully participate in the framework.
Even so, it is worth noting that OpenDoc documents were
composite in an ‘intra-document’ sense of a sequence of
fragments — there was never any idea of having two or more

complete and consistent representations of the same document,
but in different formats, cross-linked to one another.

Another application of composite document formats was ODA
(Office/Open Document Architecture). The aim of ODA was to
allows for blind exchange of office documents, containing both
structural and layout information within the same file. ODA
proved to be limited since the all layout and logical structures
were explicitly specified by the standard, which limited the
number of possible valid document structures. The logical
stucture was limited to a ‘numbered sections’ approach, which
included footnotes but excluded common elements such as lists
and tables. Layouts were also limited, for example overlapping
frames were not permitted. Finally, it was implemented at the
syntactic level in ASN.1, a binary notation which was widely
regarded as being difficult to read, which further hindered
ODA’s uptake [5].

In many ways the work that is closer in spirit to what we want
to achieve is seen in Phelps and Wilensky’s ingenious
Multivalent Browser [6] This single browser allows a wide
variety of document formats to be interpreted and it achieves
this by extracting and characterising a set of ‘behaviours’
which are independent of any particular document format. The
software is driven by extracting the essence of an abstract
document tree from a supplied document in any of the 10 or so
supported formats. Once this has been done a range of extra
generic annotations and links can be added and displayed.
Although the multivalent browser does not directly support
cross-representational linking in quite the manner we are
about to describe there seems little doubt that such support
could be retro-fitted without too much effort.

3. STANDOFF MARKUP
Our approach will be to use the XML source of our document
in conjunction with a shadow tree of pointers, as a form of
standoff markup into the PDF content. The principle behind
standoff markup is the maintenance of a rigid separation
between markup and content instead of mixing the two
together as in a conventional XML document. The idea is
certainly not new because its origins can be traced back to the
separation of program code from data that is imposed by modern
operating systems in conjunction with the computer hardware.
In the world of hypertext and hyperlinking, systems such as
XLink provide a means of separating hyperlinks into
linkbases, which are separate from the material to which they
refer [7].

More generally, standoff markup is finding favour within the
XML community [8] because:

1. it enables multiple different markups to be applied to the
same base material, and

2. (related to 1.) it enables ‘overlapping hierarchies’ to be
handled.

These characteristics are vitally important in areas such as
biomedicine where different structures need to be imposed on
highly complex basic data [9] and also in biblical text studies
where items such as quoted speech (which is normally
contained entirely within a single verse) can sometimes break
the hierarchical rules completely and stretch over several
verses [10]. Multiple standoff markup trees can handle both of
these situations and we foresee a similar advantage, in our
work, of eventually being able to impose multiple
interpretations onto the same given PDF material.

4. RELATIONSHIP TO XBL
It is useful at this stage to point out also the resemblance that
our shadow tree of pointers and ‘landmarks’ (see later
sections) bears to the XML Binding Language (XBL) [11,12].
The idea of XBL is that a given XML source document can have
alongside it a shadow code-generation tree which represents
the details of the translation of the source tree into some other
format (e.g. HTML or SVG). Now, it might validly be objected
that an XSLT script can achieve exactly this sort of
transformation but the problem is that the emitted code appears
as a monolitihic stream with no indication of which part of the
XSLT internal DOM generated which part of the output code.
By externalising the code-generation templates one can adjust
details of the code generation process without needing to re-
run an entire XSLT transformation The drawback,
unfortunately, is that the XBL sub-tree is just a simplistic set
of code generation templates and it is not possible to invoke
these templates in a context-sensitive way. If the source tree is
traversed in the normal depth-first, left-to-right way, then its
nodes can invoke code bindings in the code templates which
create a shadow tree representing the result of translating the
source tree into some output format such as HTML or SVG. A
variant of XBL has been used to control rendering in the
Mozilla/Firefox browsers and an SVG-specific version of XBL
(s-XBL) is under active development [13].

We now recognise that our shadow tree of landmarks and
pointers, to be described in detail in subsequent sections, is in
some ways similar to the result of an XBL mapping. The
difference is that instead of the shadow tree containing
templates to generate PDF it now contains pointers into a
PDF file that has been produced and rendered independently of
the XML source document. But with an appropriate choice of
pointer representation a flexible two-way correlation becomes
possible between major corresponding features of two entirely
different representations of the same document.

5. PREPARING THE TEST DOCUMENTS
In what follows we assume that a document in some popular
authoring application such as MS-Word or LATEX, can be
processed in two distinct ways: firstly to produce an
equivalent version of the document in an XML-based markup
(this may often be XHTML but for our examples here we shall
be using DocBook tags) and secondly, via tools such as
PDFMaker or PDFTeX, to produce an ‘appearance based ’
paginated version in PDF. The existence of the two
representations in a single compound container allows us to
use the XML version of the document, where the textual
content will almost always be in the correct ‘reading order’, as
a source of information in helping to determine the reading
order in the corresponding PDF. (The reasons why reading
order will generally differ from rendering order, in both
PostScript and PDF, are set out in section 1 of reference [2]).
Once reading order has been established this is a major step
along the way of setting up our system of landmarks and
pointers.

6. TREE MATCHING AND STANDOFF
MARKUP POINTERS

To demonstrate stand-off markup for PDF documents we
developed a new Acrobat plugin. Some of the principles used
are similar to those in the structure insertion plugin described
in [2] but it was soon found that the more integrated composite
document we were developing —with its two-way shadow

tree of pointers —demanded a thorough re-engineering of our
approach. An Acrobat plug-in gives access to the currently
loaded PDF documents via an API [14]. This allows the plug-
in to manipulate the contents of the PDF and to provide
enhanced functionality of some sort. To a limited extent it is
also possible to modify the Acrobat interface itself.

6.1.1. Referencing content in an unstructured PDF
By definition we wish to correlate a relatively abstract XML
document with an equivalent unstructured PDF document,
with the constraint that the PDF document may not be
modified in any way. Perversely, if our read-only document
just happened to be a Structured PDF we could simplify the
correlation process quite considerably. Structured PDF
documents do not explicitly embed their tags within the PDF
content but, instead, they use a system of embedded Marked
Content Identifiers (MCIDs) [3] and a separate structure tree.
The structure tree references these MCIDs in order to demarcate
content in the PDF. In some ways this could be regarded as
being similar to standoff markup since the structure tree is
separate from the content itself; it does however require
appropriate MCIDs to be inserted so that ‘back pointers’ can
be created and this contravenes the spirit of standoff markup i.e.
that it should leave the content it points to unaltered. Since a
well-formed structured PDF tree is guaranteed to give a correct
reading order for the PDF file, it follows that these MCIDs
could be utilised by a stand-off markup engine as a foundation
for referencing content within the PDF. Unfortunately the real
strength of standoff markup is precisely for those documents
which are already unstructured and to which internal structure
cannot be added.

6.2. Nature of shadow tree pointers
An immediately obvious solution to the nature of shadow tree
pointers would be to refer to the material via a content stream
and a series of byte offsets into that stream which encompass
the desired material. This would have the advantage of being
totally accurate when applied to the exactly correct PDF
document. Unfortunately, this detailed exactitude leads to a
loss of flexibility because it ties us down to precisely one PDF
document that produces the given appearance in a certain way.
Now, the visual appearance of PDF documents can be
considered as being the result of a graphics state which is built
up by the operators and operands contained within the content
stream. There are a multitude of ways in PDF for generating any
one particular graphics state but provided this final state truly
is identical then all of the PDF documents, produced in all
these different ways, should deliver an identically rendered
appearance

If we now imagine generating a set of byte offsets to bind an
XML document to a particular PDF document then it is clear
that modifying the way in which the graphics state was
achieved would result in these byte offsets being completely
invalid. Worse still, there would be no way to even partially
recover from this calamity because the byte offsets would be all
that one had to work with. There are many operations in
Acrobat which can cause the content-streams to be re-written,
the most fundamental of which is the automatic optimisation
that takes place on a PDF file when the ‘Save As’ operation is
performed by the user. Likewise, any use of the Acrobat
TouchUp tool would cause the content streams to be re-
written, thereby invalidating the offsets.

6.3. Document Landmarks
In what follows we shall investigate the use of ‘document
landmarks’ as points of reference within the PDF document.
These landmarks attempt to reflect the human perception of the
significant features in the document layout and our system
attempts to recognise precisely these features. Once a set of
landmarks has been computed for a particular document the rest
of the content can be described in relation to them, thereby
creating a layered method of addressing content in an arbitrary
PDF document (Figure 1). One of the most critical properties of
these landmarks is that for any document with a given
appearance the same landmarks should always be calculated
regardless of how that appearance was actually achieved.

6.4. Landmark Calculation
As a pre-requisite to the binding process, a set of ‘document
landmarks’ has to be computed. In order to determine these
landmarks, we need to perform document analysis on the PDF
file.

Figure 1: The layering model of document landmarks

The application of document analysis and understanding
techniques to PDF files was begun by Lovegrove and
Brailsford [15] in 1995. References 4 – 9 in that paper refer to
previous research, in which many useful techniques were
developed as a result of performing document recognition on
bitmap files.

It might seem bizarre that document analysis is needed for the
understanding of properly typeset, PDF Normal, files given
that the entirety of the text will be present in the file. The
problem is that PDF (often as a result of the PostScript from
which it is generated) will often have a rendering order that is
very different from the desired reading order. This makes
extraction of material very difficult from PDF document sets
such as newspaper archives, where complex layouts will
probably have been used [16].

So, given that an unstructured PDF document may have no
explicit reading order, except for that perceived by the user, a

reading order has to be imposed on the document. This process
can be roughly broken down into three sub-processes:
blocking, block classification and block ordering. For our
present purposes a block is defined as a visually contiguous
piece of semantically similar material, e.g. a paragraph or a title.

The blocking process is a form of connected component
analysis that attempts to group adjacent, semantically identical
material in the document. Previously [2] we used a relatively
simple, clustered X-Y sort algorithm, over each page, to reduce
the page content to a set of lines, which in turn were a set of
words. This was highly effective on relatively simple
documents but when applied to more complex documents
certain shortcomings became apparent. Chief among these was a
tendency for ‘gutter-hopping’ when applied to a multi-column
document. In other words if the inter-column gutter was rather
narrow it might not be recognised as a page feature and the
inferred reading order would then be left-to-right across the
whole page rather than going down each column in turn.
Clearly a more sophisticated method of content clustering was
necessary.

6.4.1. Caching & Abstraction of Content
When analyzing the PDF document it was necessary to pass
over the content of the document many times. In order to
optimize performance by minimising the number of potentially
expensive calls to the PDF document API, we decided to cache
results in our own content model. This resulted in the creation
of an abstract model in which to wrap up the Acrobat API
methods and function calls.

The first stage of the landmark setup process was to construct
the content model. The PDF was iterated over using the PDE
layer of the Acrobat API. By iterating over the PDEContent
and PDEElements, we can extract all the text-runs from the
document. Text runs are represented as PDEText structures
under the Acrobat API and they have a 1:1 mapping with the
Tj [3] operators in the content stream of the document.

Each text-run is examined, and the following data is extracted:

1. Bounding box co-ordinates

2. Typographical information

3. Textual content

A virtual text-run is then created in the cache system, which
wraps the PDEText object and stores all the extracted data for
future rapid access.

Text runs in PDF are not guaranteed to contain entire words,
neither are they guaranteed to contain explicit space
demarcation, since a text-run maps directly to a Tj operator
(analogous to PostScript’s show operator) in the content
stream

Each text-run in the PDF document may be represented by more
than one virtual text-run in our content model. Text runs are
examined for white space content. If a run contains white space,
it is represented by a single virtual text-run for each
contiguous span of non-white space content.

It is necessary to discard inter-word spacing information
altogether given that there are so many ways in which word-
spacing can be achieved in PDF. For example, explicit space
characters can be used but, equally, word positioning can be
achieved by a translation of co-ordinates completely external

to the text-runs. This means that explicit white space
information may or may not be present, and even if it is present,
it cannot be relied upon. Instead of trying to interpret the
spacing from the PDF, we used the XML file as our canonical
reference for inter-word white space by modifying the approach
already described in [1].

6.4.2. Statistics Gathering
As each virtual text-run is constructed, statistics are built up
from the document. This information is later used by the
classification engine to classify the content blocks. Examples
of statistics that are gathered include:

1. Font-size – (min, max, mode, mean)

2. Typeface – (mode)

6.4.3. Page Segmentation
The pages of the document must be segmented into blocks, this
is achieved by performing structure analysis upon each page.
Document structure analysis is an established field, mainly
with respect to raster graphics, however efforts have been made
to perform structural analysis on symbolic layout such as PDF
[15,16].

Two features were identified as being critical to this work; the
algorithm must cope with multi-column layouts and must also
be relatively fast. We chose to use a modified Run Length
Smoothing Algorithm (RLSA) [17]. The original purpose of
RLSA was to separate text from graphics in bitmap images. This
was then adapted to obtain a bitmap consisting of black and
white areas, which represented different types of data. In
essence, this algorithm transforms an input bitmap X into an
output bitmap Y by evaluating the following rules:

1. 1 bits represent the presence of data. 0 bits represent the
absence of data.

2. 0 bits are transformed into 1 bits in Y when there are
fewer than C adjacent 0s (C is a predefined constant).

3. 1 bits in bitmap X are also 1 bits in bitmap Y

This process is often known as a blur and it has the effect of
linking black areas that are separated by a gap which is less
than C. This blurring process is performed in both the X and Y
directions, the results of which are logically ANDed together.
A further horizontal blur is then performed upon this resultant
bitmap. Different values of C are applied in different directions.
The result of this process is a bitmap representing a set of
distinct blocks of content.

To adapt this clustering method for use with PDF documents
we generate a small bitmap representing the page being
blocked. This bitmap has the RLSA process performed upon it
and the results are then mapped back to the PDF content. This
procedure is fundamental to the blocking process; it is critical
that it is as efficient as possible since it will be run on each
page of the document.

It was determined that plotting the bounding box of each text-
run on a given page gave sufficient accuracy for the blocking
process, while maintaining the desired performance.

Notice that there is indeed a potential performance impact,
because document structure analysis is relatively costly. In a
production system it might be performed in a just-in-time
fashion, or in the background as the user performs other tasks.

6.4.4. Separation of Blocks
After the RLSA process is completed for a page, we can use the
resultant bitmap to partition the page content into separate
blocks. The first step in this procedure is identifying each
block in the bitmap. This is achieved by the use of a fast-fill
algorithm which assigns each disjoint area a different integer
value. This integer value becomes the block’s id with respect
to the page. The cached page content can then be quickly
iterated over and the block id determined by relating the co-
ordinates to a bitmap block. The page content is then grouped
by block id. Within each block, an X-Y sort is performed to
produce a reading order.

So far we have examined only the geometric properties of the
page content. These properties are enough to determine
paragraphs and columns but will often fail to pick out in-line
features, such as in-line emboldening etc. At this stage, we
needed to split the blocks further using typographic analysis.
Each block was examined and split into sub-blocks consisting
of adjacent content with matching typographic properties.
These sub-blocks became child blocks of the parent block.

6.4.5. Block Classification
The next stage in the landmarking process was to assign a type
to each block of page content. We use the statistics generated
during the caching of the text-runs to determine the most likely
candidates for each type of block, based upon the typefaces in
use and their frequency of occurrence in the document. During
the initial phase we recognise the following types of block,
which are analogous to their HTML namesakes: H1, H2, H3, P

The final stage of block preparation is for certain blocks to be
classified as possible artefacts. By this we mean that certain
characters may appear fewer times (or not at all) in the XML file
compared to the PDF. Examples include auto-generated
numbers in listings, page numbers and running header/footer
material. At present, two forms of artefact reduction are
employed. Numbers are removed from the start of lists by
iterating through the blocks. When adjacent, non-inline,
blocks are traversed which begin with numbering, the number
is removed. Secondly the first and last blocks of each page are
evaluated to determine whether they are either a page number
or a running header, by comparing them to the first and last
blocks of other pages. These artefact blocks are marked as such
to aid the landmark identification process.

6.4.6. Selection of Landmarks
After the blocks have been finalised, we can decide upon the
landmarks for a given document. It is at this stage we need to
decide on the granularity of the landmarks. What level of
granularity is acceptable for an accurate binding of the XML to
the PDF? At one extreme, we could bind each and every
character (and even the white space) in the PDF using
document landmarks for each individual glyph. At the other
extreme we could simply bind the XML and PDF documents at
the level of their root nodes.

A sensible middle ground between these two extremes needs to
be established. Binding every character is clearly over
elaborate: the matching would be highly accurate but very
inefficient in terms of the amount of space taken by the link file.
Secondly it would not be an elegant or a robust matching
strategy in the face of small document alterations. The resulting
link file would also be very difficult to manipulate for use in
different contexts.

The blocks that are created can be split into two categories;
inline and non-inline. For our initial investigations we have
taken non-inline blocks as our set of landmarks.

6.5. Anatomy of a Landmark Reference
Although we are attempting to make this work as tagset-
agnostic as possible, we do assume certain things about the
nature of the input XML document: the document content is
assumed to be in reading order and stored as #PCDATA inside
elements, rather than as attribute values.

With this in mind, we set out to produce a method of linking
from our application-specific markup (the XML file) and the
document landmarks to the underlying content in the PDF.

The basic premise of this method is that a structurally similar
duplicate tree of the XML document is created, analogous to a
shadow tree created by using XBL. This duplicate tree
contains references to the document landmarks, rather than the
original #PCDATA content. A similar method was proposed by
the TEI Workgroup on Stand-Off Markup for implementing
stand-off markup within TEI documents. TEI Standoff markup
[18] uses the XInclude syntax for encoding references [19].

XInclude, in its standard form, was not suitable for our
purposes because of its relative verbosity and the sheer number
of references that will be included in an average PDF file. The
referencing system we employ has similar semantics to those of
XInclude, but it is significantly less verbose.

Examples of XInclude and our own LandMarkInclude might be
(respectively):

<xi:include href=”b.xml” xpointer=”/p[2]”
parse=”pdf”/>

<land:inc ref=”/p[2]”/>

We use a simplified XPointer-like syntax for referencing the
content in the document via the landmarks.

To avoid ambiguity, ref and endref must both be a
location-set consisting of a single location. Landmark
references are always inserted in the Landmark namespace to
differentiate them from the markup of the document.

Attribute Purpose
ref The ref attribute of the include element

contains a child sequence with an optional
predicate. (Compulsory)

offset Specifies an offset for the selection in
characters from the start. (Optional)

endref Specifies a child sequence which terminates
the selection. (Optional)

endoffset Specifies an offset into the terminating node
in characters. (Optional)

chars Number of characters in the XML that this
rule maps to in the PDF (Optional)

Table 1: Landmark Reference attributes

Recall that space characters are discarded and offsets are
measured in characters (excluding white space) from the node
specified, with white space excluded. In some cases, the
mapping between the characters in the XML and the PDF may
not be exactly 1:1. For example ligatures are widely used in
high-quality typesetting and they do exist in Unicode [20]
and so can be represented in XML. Unfortunately, it is very
uncommon to see ligatures handled correctly in this way

Instead, ligatures are generally inserted automatically by the
text-processing package, rather than existing in ligature form in
the source XML. Additionally, they may well be inserted into
the typeset output using non-Unicode positions in some older
font encoding such as Adobe Standard or Macintosh. Using
the chars offset to specify the number of characters in the
XML file allows us to represent these non-1:1 mappings.

Figures 2 through 5 show a simple example of an XML file, its
corresponding PDF, the identified landmarks in the PDF and
the representation of those landmarks in the shadow tree. It
should be noted that Figure 4 is a notional representation of
the Landmarks tree established within the Acrobat plugin — it
is never actually externalised in the form shown.

<article>
 <title>Enhancing Composite Documents</title>

 <section>
 <title>Abstract</title>
 <para>Document representations can rapidly
 become unwieldy if they try to
 encapsulate all possible document
 properties, ranging from abstract
 structure to detailed rendering and
 layout.</para>

 <para>We present a composite document
 approach wherein an XML based
 document</para>

 </section>

</article>

Figure 2: XML input file

Enhancing Composite Documents
Abstract

Document representations can rapidly become unwieldy if they try to
encapsulate all possible document properties, ranging from abstract structure
to detailed rendering and layout.

We present a composite document approach wherein an XML-based
document

Figure 3: Resultant PDF output

<h1>Enhancing Composite Documents</h1>

<h2>Abstract</h2>

<p>Document representations can rapidly become
unwieldy if they try to encapsulate all possible
document properties, ranging from abstract
structure to detailed rendering and
layout.</p>

<p>We present a composite document approach
wherein an XML based document</p>

Figure 4: Landmarks calculated from the PDF in Figure 3

<article>
 <title><land:inc ref=”/h1[1]”/></title>

 <section>
 <title><land:inc ref=”/h2[1]”/></title>
 <para><land:inc ref=”/p[1]”/></para>
 <para><land:inc ref=”/h1[2]”/></para>
 </section>
</article>

Figure 5: Landmark references

Figure 6: Tree representation of landmark references

6.6. Comparison of PDF & XML

6.6.1. Landmark Reference Authoring
The first stage in the process of using standoff markup with the
LandMark system is to relate the XML document to the PDF
document and to generate the relationships between the
landmarks and the application-specific XML markup. This is a
procedure performed just once for any particular
document/XML pair and the results are serialised to a landmark
references file.

To perform this task, the PDF file is loaded into Acrobat and
the user selects the menu option: ‘Generate LandMark
References’. This brings up a file requester that allows the user
to select the appropriate XML file for the comparison. This
XML file is then loaded into a DOM using Apache Xerces.

The DOM tree is traversed with a pre-order traversal, using a
recursive depth-first tree-descent algorithm. This causes each
node to be processed in the same order that it would appear in
its serialised XML form.

A recursive function is called which processes the children of
the root DOM node. As each node is visited in the DOM tree,
its type is evaluated and, dependent on the outcome, various
different processes are performed. XML elements cause the
function to recursively call itself for that element. In the case of
text, the content is processed further. In the same manner as
previous work [2] string matching is performed upon the XML
content to match it with the normalised, cached PDF content.
When the best match is found, a landmark reference is created.
When there is no more remaining material to be correlated, the
landmark references tree is serialised to a file.

6.7. Binding the documents
Binding is the procedure that occurs when users require
structural enhancement for their PDF document. Essentially
this loads the XML document and Landmark References. A
shadow tree of landmark references is then built up in
conjunction with the XML document. The landmarks of the
PDF document are calculated and the final step is to traverse

the landmark references shadow tree to set up back pointers
from the virtual text-runs to the landmark references.

6.8. Using the Landmarks

6.8.1. Looking up PDF from XML
A common use case which requires structure in PDF
documents is the use of a screen-reader. The term ‘screen-
reader’ is something of a misnomer, since the screen reader does
not actually interpret the contents of the screen; it typically
hooks into the parent application using an Accessibility
Interface API such as MSAA (Microsoft Active Accessibility)
under Windows. It is not possible to replace the interface
between Acrobat and the screen-reader using the plug-in API
but we can simulate some of the functionality that might be
required.

The logical XML representation is generally more useful to the
screen reader, since it is semantically richer than low-level
PDF. The visual representation of a document (in this case the
PDF content) is, to a blind user, merely a side-effect of the
logical representation. In order to read the document aloud, the
most efficient method would be to traverse the XML tree of the
document.

Retrieving the PDF content that corresponds to a given part of
the XML document is relatively straightforward. The sub-set of
the Landmark tree that is equivalent to the selected content in
the XML tree is iterated over to discover <land:inc>
elements. Each of these elements is then used to retrieve the
virtual text-runs from the page content cache. The bounding
boxes of these virtual runs are extracted and used to construct a
text-selection, using the PDTextSelect methods. Equally,
instead of creating a text-select, other operations could be
performed upon the PDF content.

6.8.2. Looking up XML from PDF
Users may want to export a selection of a document as its XML
equivalent, for example they may want to extract the MathML
[21] for an equation or play some music which has been
encoded as MusicXML[22]. This requires a facility for relating
PDF content to the equivalent XML content.

The first task is to calculate the set of landmarks that
correspond to the selected content. The cache of text-runs is
used to look up the appropriate landmark references that were
calculated in the initial binding process. This set of landmarks
is then trimmed appropriately to correspond to the content
which is selected. It is important that the landmark references
are as simple as possible, so that landmarks which can usefully
be merged are indeed merged at this point.

We can then relate this to the XML by traversing the binding
tree and following the back pointers from the landmarks to the
referencing node in the stand-off markup and thence to the
corresponding node in the XML document.

6.9. Specialised Markup
While the Landmark system is, in general, tagset-agnostic, that
is to say it is not optimised for any one tagset in particular,
there is a mechanism for feeding tag-hints into the system.
Certain more abstract tag-sets are almost impossible to infer
from a PDF document without detailed knowledge of their
semantics – a prime example of this would be MathML.

Figure 7: Enhanced functionality gained from stand-off markup

Without customised, tagset-specific, behaviour the
mathematics seen in Figures 8 and 9 would be incorrectly
structured. The x, =, 4, c and a characters would be correctly
structured, but the ⁢ would fail to be
recognised because it is only implicitly manifest in the PDF
document by virtue of character adjacency.

In order to add structure to MathML typeset articles at the
finest granularity, we would need to recognise the actual
semantics of the mathematics from the PDF document alone and
then bind it to the XML. Mathematics is notoriously difficult
to recognise from typesetting information alone, as
demonstrated by Suzuki et al. [23].

Since, in the initial instance, we are trying to avoid tagset-
specific behaviour, we need some way for the system to be able
to cope with ‘problem’ tagsets such as MathML. In this case,
we would want our system to be able to identify the content
within a certain bounding box of the PDF as being
‘mathematics’ and hence a suitable candidate for matching to
MathML However if we look aside at the XML tree and see
that blocks of material that we have already identified, in the
PDF, lie before and after a MathML node in the XML tree then
we can be reasonably sure we have found a correct match.
However, we would then not expect any detailed matching of
the complex PDF mathematical typesetting effects we see i.e. we
would not expect the markup matching to descend any further
than the top level <math> element in the XML file.). This still
allows us to take advantage of standoff markup to provide
added value to the document, such as export of the MathML to
a separate file, a custom read-aloud or — in the case of
MusicXML — the associated music could be played aloud.

In order to cope with these special cases, we have a separate
configuration file that allows us to specify the specialised
tagsets. These are identified by namespace. For instance, in the
case of MathML, the configuration file specifies that references
which bind MathML to PDF should not be any more granular
than the <math> element but that the child #PCDATA under it
can be used to produce a match with the PDF document.

In addition to (optionally using) the #PCDATA, in the case of
specialised markup the Landmark Binding Engine can perform

look ahead to the next element. If this element is not a special
case, then the binding engine will bind that element and bind
the unassigned content between that element and the previous
element to the special case element.

In the case of multiple adjacent special case elements, some
disambiguation must take place to distinguish between them.
The configuration file also allows us to specify various
weighted hints which allow us to perform the disambiguation,
one such ‘hint’ allows us to disambiguate based on the
typeface in use. Although, taken on its own this is not enough
to differentiate between two elements of the same type it is
certainly effective when the elements are of different types.
Combining these weighting rules with the partial match from
the #PCDATA allows us to disambiguate between elements of
two different types as shown for MathML and MusicXML in
figures 8 and 9.

Differentiation between elements of the same type must be
based on the #PCDATA content and on clues from the
boundaries with adjacent ‘easy’ material.

Figure 8: A sample document created from specialised markup

7. CONCLUSIONS
When we first contemplated completing our PDF structure
insertion work by tackling standoff markup (see section 5.3 of
reference [2]) we saw it as little more than a tidying-up exercise
and a ‘back door’ method of emulating a Structured PDF file
(via an external PDF structure tree) for base material that was
actually unstructured and ‘read only’. As a result of
considering what form the ‘externalised PDF structure tree’
should actually take, it gradually dawned upon us that there
were real advantages in using the XML tree itself as the
repository of external structure coupled with an XBL-like
shadow tree of pointers and landmarks to reference the
corresponding PDF material.

We are now firmly convinced that the time is right to revisit
the advantages of standoff markup and composite, multi-
representational documents. The size overheads of carrying
around two or more representations of a document are not too
severe these days (especially if .zip containers are used). The
gains are that each of the document representations can play to
its major strengths — for example digital signatures and MD5
hashes make far more sense in a binary format such as PDF,
whereas software to exploit structural markup is far easier to
develop for XML than for Structured PDF.

<?xml version="1.0"?>

<article>
 <section role="section">
 <title>The Mathematics of Music</title>
 <para>Mathematics and music share some
 common properties. Let us examine the
 quadratic function and a piece of musical
 notation</para>
 <para>
 <inlineequation role="inline">
 <math
xmlns="http://www.w3.org/1998/Math/MathML">
 <mi>x</mi><mo>=</mo>
 <mfrac>
 <mrow><mo>−</mo><mi>b</mi><mo>±</m
o>
 <msqrt><mrow><msup><mrow><mi>b</mi></mrow><mrow>
<mn>2</mn></mrow></msup>
 <mo>−</mo><mn>4</mn><mo>⁢
</mo><<mi>a</mi><mo>⁢</mo><mi>c
</mi></mrow>
 </msqrt></mrow>

 <mrow><mn>2</mn><mo>⁢</mo><mi>a</
mi></mrow>
 </mfrac>
 </math>
 </inlineequation>
 </para>
 <para>
 <score-partwise>

 <!-- MusicXML omitted for brevity -->

 </score-partwise>

 </para>
 <para>What are the common properties?</para>
 </section>
</article>

Figure 9: Specialised markup for mathematics and music

Our investigations so far have shown the feasibility of
identifying blocks of `difficult ’ material such as mathematics
and music by using simple document recognition techniques
based largely on identifying landmarks in the easy-to-
recognise text which precedes or succeeds the specialist
material. As we have shown this strategy succeeds very well in
matching features seen on the PDF display with the
appropriate nodes in a structured XML representation.

We envisage a future where the simultaneous generation of an
XML and a PDF representation into a common zipped
container may well be commonplace. The advantages of the
dual representation we are proposing are then immediately
available. A far stiffer challenge lies in cases where only an
unstructured PDF is available, with no XML equivalent. Text
extraction followed by document recognition can establish a
moderately plausible DocBook equivalent to simple textual
material but as [23] indicates the inference of MathML from
typeset mathematics is distressingly difficult, if not impossible,
to achieve. Even so there is an argument which says that
already much work has to be done by hand in making
important documents more accessible for visually impaired
readers. Having accepted this, it would be far easier to create
tools to insert, by hand, into a DocBook tree, a MathML
equivalent to typeset mathematics seen in a PDF, than it ever

would be to insert that same custom structure into a Structured
PDF

8. ACKNOWLEDGEMENTS
Thanks are due to Adobe Systems Inc. for supporting Peter
Thomas during his Graduate Internship at Adobe in 2004 and
also during his graduate studies generally. In particular we
thank Bill McCoy, and Phil Levy of Adobe Systems Inc., for
much administrative and technical help, and Loretta Guarino
for technical information on PDF accessibility issues.

REFERENCES
[1] Matthew R B Hardy and David F Brailsford, ‘‘Mapping

and Displaying Structural Transformations between XML
and PDF,’’ in Proceedings of the ACM Symposium on
Document Engineering (DocEng’02), pp. 95–102, ACM
Press, 8–9 November 2002.

[2] Matthew Hardy, David Brailsford, and Peter Thomas,
‘ ‘Creating structured PDF files using XML templates,’ ’
in Proceedings of the ACM Symposium on Document
Engineering (DocEng’04), pp. 99–108, ACM Press, 27–
31 October 2004.

[3] Adobe Systems Inc, PDF Reference (Third Edition; PDF
1.4), Addison Wesley, 2002. ISBN 0201758393

[4] OpenDoc Programmers’ Guide, Addison Wesley
Publishing Company, 1995. ISBN 0-202-47954-0

[5] Heinz Fanderl, Kristian Fischer and Jurgen Kamper, “The
Open Document Architecture: from standardization to the
market — Technical” IBM Systems Journal December
1992.

[6] Thomas A. Phelps and Robert Wilensky, ‘‘The
Multivalent Browser: A Platform for New Ideas,’’ in
Proceedings of the ACM Symposium on Document
Engineering (DocEng’01), pp. 58–67, ACM Press, 9–10
November 2001. Atlanta, Georgia

[7] David F. Brailsford, ‘ ‘Separable Hyperstructure and
Delayed Link Binding,’’ ACM Computing Surveys, vol.
31, no. 4es, December 1999.

[8] Henry S. Thompson and David McKelvie, ‘ ‘Hyperlink
semantics for standoff markup of read-only documents,’’ in
Proceedings of SGML Europe 1997, May 1997.
Barcelona, Spain

[9] Jung Ding and Daniel Berleant, ‘ ‘Design of a Standoff
Object-Oriented Markup Language (SOOML) for
Annotating Biomedical Literature,’’ in Proceedings of
7th International Conference on Enterprise Information
Systems (ICEIS), May 24–28, 2005. Miami

[10] Steven DeRose, ‘ ‘Markup Overlap: A Review and a
Horse,’’ in Proceedings of Conference on Extreme
Markup Languages, 2004.

[11] XBL W3C Note.
http://www.w3.org/TR/2001/NOTE-xbl-
20010223/

[12] W3C Comment on XBL Submission.
http://www.w3.org/Submission/2001/05/Comm
ent

[13] S-XBL Working Draft.
http://www.w3.org/TR/sXBL/

[14] Adobe Systems Incorporated, Acrobat Core API
Reference., 2002. San Jose, CA: Adobe Systems
Incorporated

[15] W. S. Lovegrove and D. F. Brailsford, “ Document
analysis of PDF documents: methods, results and
implications.” Electronic Publishing, Origination,
Dissemination and Design. 1995, 8(2 and 3), pp. 207–
220.

[16] Karin Hadjar, Maurizio Rigamonte, Denis Lalanne and
Rolf Ingold “Xed: a new tool for eXtracting hidden
structures from Electronic Documents” Proceedings
Document Image Analysis for Libraries 2004, Palo Alto,
California, January 2004, pp. 212-221

[17] F. M. Wahl, K. Y. Wong, and R. G. Casey, ‘ ‘Block
segmentation and text extraction in mixed text/image
documents’’ Computer Graphics Image Processing,
vol. 20, pp. 375–390., 1982.

[18] Text Encoding Initiative Consortium, TEI Workgroup on
Stand-Off Markup, XLink and XPointer [online], October
2004. <http://www.tei-c.org/Activities/SO/>

[19] World Wide Web Consortium, XML Inclusions (XInclude)
Version 1.0 [online], December 2004.Available at:
<http://www.w3.org/TR/xinclude/>

[20] Unicode Consortium, The Unicode Standard:
Worldwide Character Encoding, Version 1.0., Addison
Wesley,, 1991. Vols. 1 & 2.

[21] World Wide Web Consortium, Mathematical Markup
Language (MathML) Version 2.0 (2nd ed.) [online].
Available at: <http://www.w3.org/TR/MathML2/>

[22] Recordare, MusicXML Definition [online]. Available at:
<http://www.recordare.com/xml.html>

[23] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T.
Kanahori, ‘ ‘INFTY—An Integrated OCR System for
Mathematics Documents,’ ’ in Proceedings of the ACM
Symposium on Document Engineering (DocEng’03), pp.
95–104, ACM Press, 20–22 November 2003.

