
To Appear in Conference Volumn of the 9th informs Computing Society

Conference. Kluwer Academic Publishers. Jan 2005

HYBRID GRAPH HEURISTICS WITHIN A
HYPER-HEURISTIC APPROACH TO EXAM
TIMETABLING PROBLEMS

Edmund Burke1, Moshe Dror2, Sanja Petrovic1 and Rong Qu1
1Automated Scheduling Optimization & Planning Group, School of CSiT, University of Nottingham, Nottingham, NG8 1BB, UK;

2Department of Management Information Systems Eller College of Business and Public Administration, University of Arizona, Arizona

85721

Abstract: This paper is concerned with the hybridization of two graph coloring heuristics
(Saturation Degree and Largest Degree), and their application within a hyper-
heuristic for exam timetabling problems. Hyper-heuristics can be seen as
algorithms which intelligently select appropriate algorithms/heuristics for
solving a problem. We developed a Tabu Search based hyper-heuristic to
search for heuristic lists (of graph heuristics) for solving problems and
investigated the heuristic lists found by employing knowledge discovery
techniques. Two hybrid approaches (involving Saturation Degree and Largest
Degree) including one which employs Case Based Reasoning are presented
and discussed. Both the Tabu Search based hyper-heuristic and the hybrid
approaches are tested on random and real-world exam timetabling problems.
Experimental results are comparable with the best state-of-the-art approaches
(as measured against established benchmark problems). The results also
demonstrate an increased level of generality in our approach.

Key words: case based reasoning, exam timetabling problems, graph heuristics, hyper-
heuristics, knowledge discovery, tabu search.

2 Edmund Burke, Moshe Dror, Sanja Petrovic and Rong Qu

1. INTRODUCTION

1.1 Timetabling Problems

Timetabling problems have been attracting the attention of the scientific
research community across Artificial Intelligence and Operational Research
for more than 40 years1-10.

A general timetabling problem includes assigning a set of events (exams,
courses, sports matches, meetings, etc) into a limited number of timeslots
(time periods), while satisfying a set of constraints. These constraints are
usually grouped into two types, which are described below:
• Hard constraints which cannot be violated under any circumstances. For

example, a person cannot be assigned to two different events at the same
time. Solutions which do not violate any of the hard constraints are called
feasible solutions.

• Soft constraints are desirable but not essential. In most real world
situations no solutions can be found which satisfy all of stipulated soft
constraints.
In the early days of timetabling research, graph heuristics11, 12, 13 were

widely studied. They represent simple techniques but tend to be impractical
for complex problems (at least when implemented on their own). Integer
linear programming14 is an exact solution method which tends to be
computationally very expensive when solving large timetabling problems.
Over the years, constraint programming methods have also been investigated
at some length15, 16, 17. Meta-heuristics18 have been shown to be very
successful on a variety of timetabling problems. Examples include Tabu
Search19, 20, Simulated Annealing21, 22 and Evolutionary Algorithms23, 24.
Other new methods studied for timetabling problems include Case Based
Reasoning25 (for educational timetabling26, 27, 28 and nurse scheduling29).

The work presented in this paper investigates the benefits of hybridizing
two well-studied graph heuristics11, 12, 13 by using a hyper-heuristic on
timetabling. The term hyper-heuristic can be taken as a ‘heuristic that
searches for heuristics’30. A hyper-heuristic searches a space of heuristics
rather than problem solutions. Our hyper-heuristic approach searches from a
set of lower level heuristics according to different problem solving situations
that might occur, and then applies those heuristics to the particular problem
in hand. Different higher level heuristics/techniques employed within a
hyper-heuristic framework include Case Based Reasoning25, choice
functions31 and meta-heuristic methods32, 33.

Many of the current state of the art approaches in exam timetabling
employ specially tailored heuristic/meta-heuristics methods20, 22, 34-39. This
kind of approach is also typical for other scheduling problems. The purpose

Hybrid Graph Heuristics Applied to Exam Timetabling Problems 3

of this paper is to describe our initial attempts at developing an approach
which is fundamentally more general than the above methods. The goal is
not necessarily to ‘beat’ those methods but to obtain comparable results by
only employing general methods that can ‘pick’ appropriate heuristics and
which would be applicable to a broader range of problems.

1.2 Case Based Reasoning (CBR)

CBR25 is a knowledge-based technology that solves the problems in hand
(target cases) by using knowledge obtained by solving previous similar
problems. In a CBR system, a case base stores a set of previously solved
problems with their good solutions or problem solving strategies (called
source cases). A similarity measure, usually defined as a formula, is used to
assess the similarities between the target case and source cases. The good
solutions or problem solving strategies of the most similar source case are
reused to tackle the target case.

The basic idea of CBR is to avoid solving new problems from scratch
when the knowledge of solving similar problems is available. Our previous
work using CBR on course and exam timetabling has presented successful
results, either by reusing good partial solutions of problems whose
constraints are structurally similar with current problems26, 27, or by reusing
good heuristics in similar problem solving situations28. This has provided the
foundation for the research presented in this paper.

The next section presents our Tabu Search based hyper-heuristic (TSHH)
on two graph heuristics. The results obtained by TSHH are utilized to
propose two hybrid graph heuristics (including one which employs CBR).
This is followed by experiments on both random and real-world problems.
We conclude by briefly discussing the impact of the work and potential
future research directions.

2. A TABU SEARCH BASED HYPER-HEURISTIC

In our previous work CBR was studied as the higher level searching
technique to suggest different constructive heuristics during the exam
timetabling problem solving process28. At each step of the solution
construction, we select the heuristic (stored in the case base) that made the
least penalty schedule in a previous similar situation. Employing this
knowledge can help in finding good heuristics in new similar situations and
in generating better quality solutions compared with those generated using
single heuristics.

4 Edmund Burke, Moshe Dror, Sanja Petrovic and Rong Qu

2.1 Tabu Search in a Hyper-heuristic Framework

In this paper we will employ Tabu Search as the higher level searching
algorithm within a hyper-heuristic methodology that searches for the best
combinations of heuristics (heuristic lists) for constructing the solutions for
exam timetabling problems. This means that the heuristic list found not only
represents good heuristics at each particular step (as before28 where the least
penalty schedules are made), but also it represents problem solving context
(heuristics used and costs occurred before the current step, etc). A Tabu
Search methodology within a hyper-heuristic framework has already been
demonstrated as a successful, general methodology across very different
problems (for course timetabling and nurse rostering32).

The search space of the TSHH consists of all of the possible permutations
of the Saturation Degree (SD) and Largest Degree (LD), as shown below.
Starting from an initial list of heuristics, a move within the TSHH is to
change one of the heuristics in the heuristic list. The heuristics in the list are
then employed, one by one, to construct the solution for the problem. The
objective of TSHH is to find the heuristic list that generates the best quality
solutions. TSHH stops after a certain number of iterations (5 times the
number of the exams in the problem being considered).

SD and LD are two widely studied graph heuristics for applications to
timetabling problems11, 12, 13. They are sequential methods that order the
exams to be scheduled according to the difficulty of scheduling them. They
then assign them one by one into feasible timeslots without violating any
hard constraint and with the lowest penalty (i.e. the lowest total number of
violations of soft constraints). They can be described as follows:
• Largest Degree (LD): Exams are ordered decreasingly by the number of

conflicts they have with other exams. This heuristic aims to schedule the
most conflicting exams first.

• Saturation Degree (SD): Exams that are not yet scheduled are ordered
increasingly by the number of feasible timeslots available at that time.
The priorities of the exams thus change dynamically according to the
situations encountered at each step of the solution construction.
The heuristic lists selected to construct the solutions may not generate

feasible solutions once they are performed, because the moves in the TSHH
concern the changes of heuristics in the heuristic list, not the actual
assignment of each exam. The search space of the TSHH is thus very large,
containing a large number of non-valid heuristic lists. We add three
mechanisms into the TSHH to reduce the size of the search space. They are
described below:
• The parts of heuristic lists that generate infeasible assignment are stored

in the searching process of the TSHH. At each move, the heuristic list

Hybrid Graph Heuristics Applied to Exam Timetabling Problems 5

selected will be checked before it is applied to see if it contains any
stored infeasible heuristic lists. For example, if a heuristic list with the
part ‘SD LD ..’ is stored because LD make an infeasible schedule at that
step, all the heuristic lists selected later such as ‘SD LD SD ..’ or ‘SD LD
LD ..’ will be ignored in the searching process. This mechanism
significantly cuts the size of the search space by ignoring non-valid
sections.

• At each step of the solution construction, we schedule a number of exams
at once (we choose 3 here) by the given heuristic in the heuristic list. This
is motivated by the observation28 that the heuristics in the best heuristic
lists tend to switch to others after a number of events have been
scheduled. This mechanism also significantly reduces the size of the
search space of TSHH.

• The initial heuristic list of TSHH is set as a list of SD only. We observe
that in most cases SD is superior to LD, thus it is expected that the
appearance of SD will be higher than that of LD in the best heuristic lists.

2.2 Experiments on Random Data Sets

The data sets we use are generated by using the same process as that of
Carter et al38 which simulates real-world exam timetabling problems. Each
time a student is created and r exams are assigned (following a discrete
uniform distribution in [2, 6]). This process is repeated until the defined
density of conflict matrix is met, which is calculated as the number of
conflicts among exams to the total number of exams. This generates 6 types
of problems of 200 to 400 exams with density of 0.05, 0.15 and 0.25, namely
‘200-5’, ‘200-15’, ‘200-25’, ‘400-5’, ‘400-15’ and ‘400-25’.

The hard constraints consider the ‘conflict’ between exams with students
in common. The soft constraints under consideration concern spreading out
the students’ exams evenly. The cost function that evaluates the solutions is
the same as that of Carter et al38. The objective is to minimize the cost per
student. For each problem type, 20 distinct problems are tested on using the
SD and LD heuristics alone, and the TSHH. The average costs and time
spent by these approaches are presented in Table 1.

Table 1. SD, LD alone, two hybrid approaches and TSHH on random problems
SD LD SD+23%LD SD+CBR TSHH

problem
cost time cost time cost time cost time cost time density

200-5 10.07 1.25 10.21 0.02 9.97 0.97 10.01 2.39 9.63 195 0.24
200-15 9.47 4.48 9.42(18) 0.05 9.46 3.35 9.40 7.32 9.21 604 0.23
200-25 5.92 12.49 6.13(14) 0.08 5.90 10.00 5.88 28.31 5.81 3881 0.23
400-5 9.33 12.41 9.32(16) 0.06 9.30 9.66 9.28 22.62 9.05 5011 0.26
400-15 4.72 76.7 4.70(16) 0.31 4.67 57.08 4.68 73.26 4.52 20074 0.24
400-25 3.70 185.84 n/f(20) 0.59 3.70 158.16 3.70 204.27 3.68 73462 0.26

6 Edmund Burke, Moshe Dror, Sanja Petrovic and Rong Qu

The best results in the table are presented in bold. For all the problems,

the TSHH works much better than using SD and LD alone. The values in ‘()’
represents the number of times infeasible solutions are obtained by the
corresponding approach. Compared with SD or LD alone, TSHH takes a
much longer time, especially for larger problems with higher densities. Note
that in real world situations, exam timetables are usually generated weeks (or
months) in advance and thus the time does not usually have much impact on
the usefulness of the methodology.

The column under the title of ‘density’ in Table 1 presents the average
densities of the LD in the best heuristic lists obtained by TSHH. We can see
that for all of the problem types, the densities of LD in the best heuristic lists
are almost the same, ranging from 0.23-0.26. This motivated us to build one
of the hybrid approaches, whose details are presented in the next section.

3. HYBRID GRAPH BASED APPROACHES

By investigating the TSHH, we propose two hybrid approaches. They are
SD injected with LD by 23%, and by a CBR system built using knowledge
discovery techniques that extract the knowledge of TSHH. They are
presented in the following two sub-sections.

3.1 SD Injected with 23% LD

In the first hybrid approach, LD is randomly injected into the heuristic
list (of SD) to form 23% of it. This hybridization is proposed by using the
density of LD that appears in the best heuristic lists. Our aim is to investigate
whether such a heuristic list is good for all of the problem instances.

The results of this approach on all types of problems are presented in the
column entitled SD+23%LD in Table 1. They are compared with the results
obtained by using SD and LD heuristics alone. Please note that it presents
the cost per student thus small differences from different approaches may
indicate large differences in costs.

Compared with the results obtained by using SD and LD alone, the
hybrid approaches perform on all of the problems, except for ‘400-25’,
where the same results (3.70) are obtained by SD+23%LD and SD+CBR.
For problem type ‘400-25’, LD failed to obtain feasible solutions for any pf
the problem instances (indicated by ‘n/f’ in the table). The values in Table 1
present the average penalties for only the feasible solutions obtained.

Among the approaches, LD takes the least amount of time as the ordering
of exams will not change during the problem solving process. The time spent

Hybrid Graph Heuristics Applied to Exam Timetabling Problems 7

by SD+23%LD is less than that of SD, which orders the exams that are not
yet scheduled at each step of the problem solving process. This hybrid
approach is superior to SD on both the solution quality and the problem
solving time.

3.2 SD Injected with LD by CBR

We present another hybrid approach using a CBR system developed by
investigating the heuristic lists obtained from the TSHH described above.
The idea is to inject the LD by the suggestions from the CBR system which
stores the appropriate heuristics in different problem solving situations. At
each step of the scheduling process, the current problem solving situation is
input into the CBR system as the target case, and the most similar source
case is retrieved. The heuristic of this retrieved source case is employed to
select and schedule the exams in the next step of solution construction.

In the CBR system, we use a list of feature-value pairs to represent the
cases. The similarity measure employs a nearest neighborhood approach to
sum up the differences of values for each pair of features in the target and
source cases. The most similar source cases will be retrieved and the
corresponding heuristics will be suggested for use in the next step of
scheduling.

Knowledge discovery is carried out by using the best heuristic lists
obtained from the TSHH. The objective is to discover the most relevant
features to be used in the list of features to represent cases so that the correct
heuristic can be selected by CBR. We collected a set of initial training
features that describe the problem solving situations. They can be grouped
into two types, which are presented below.
1. Simple features: this can also be grouped into two types:

• Features that describe the problems. These include: the no. of exams,
students, timeslots, the total no. of conflicts among all the exams, the
density of the conflict matrix, the no. of the conflicts for the most
conflicting exams and the no. of the most conflicting exams.

• Features with values that are changeable during problem solving. These
include: the no. of exams that have been scheduled in a particular
timeslot, the heuristic employed before the current step, the increased
penalty occurred by the last step schedule, and the cost of the partial
solution concerning the violations of only the soft constraints.

2. A Combination of the simple features: the ratios between each pair of the
simple features.
At each particular scheduling step during the TSHH, the problem solving

situations (values of all of the training features presented above) are recorded
for each problem solved. These situations along with the best heuristics at

8 Edmund Burke, Moshe Dror, Sanja Petrovic and Rong Qu

that step in the process form the cases to be used in the knowledge discovery
process. All of the cases obtained are randomly divided into two groups: one
group is stored as source cases in the case base and the other will be the
training cases used just in the knowledge discovery process for training
purposes.

A Tabu Search (not the same one used in TSHH but just for knowledge
discovery) is used to discover the best feature list for the case representation.
All of the possible feature lists form the search space of Tabu Search. An
initial feature list is randomly selected and a move is a change of a feature
and its weight. All of the training cases (whose heuristic is already obtained
beforehand by TSHH) are input one by one into the system. If the heuristic
of the most similar source case retrieved (by similarity measure upon the set
of features for the training) is the same as that of the training case obtained
beforehand, it will be seen as a successful retrieval. The total number of the
successful retrievals indicates the system performance. The objective of the
Tabu Search is to find the feature list upon which the highest system
performance is obtained for all of the training cases. The most relevant
features found by the first stage of knowledge discovery are: ‘the increase in
penalty in the previous step of scheduling’ with weight 100, and ‘the number
of exams already scheduled at that step’ with weight 1.

The second stage of knowledge discovery aims to refine the case base.
The best feature list is obtained from the first stage each time a source case is
removed from the case base. If the system performance is decreased, the
removed source case will be added back into the case base as it contains
useful information for the heuristic selection in that particular problem
solving situation; otherwise the source case will be removed permanently as
it contains either redundant or wrong information that is harmful for the
heuristic selection.

The column entitled SD+CBR in Table 1 presents the results obtained by
the hybrid SD with CBR on the same problems tested using other
approaches. We can see that it outperforms SD and LD alone on all
problems except on problem ‘400-25’, where the same result is obtained by
SD alone. Compared with SD+23%LD, it obtained slightly better solutions
but with longer time occurred on searching the case base. On all of the
problem types except ‘400-25’, both of the two hybrid approaches
outperform the SD and LD alone. Among all of the approaches tested TSHH
works the best. Note, though, that the two hybrid approaches are much
quicker than the TSHH although (as we already mentioned) time is not
usually a critical issue in exam timetabling.

These results show that by embedding knowledge of employing different
heuristics during problem solving, the hybrid approaches work better than
those of the single heuristics. The hybrid approaches have the ability to

Hybrid Graph Heuristics Applied to Exam Timetabling Problems 9

choose appropriate heuristics in different situations thus have significant
potential for being more generally applicable than the current state of the art.

4. EXPERIMENTS ON REAL-WORLD PROBLEMS

We carried out another set of experiments on 4 real-world benchmark
exam timetabling problems presented by Carter et al38. These problems
cover a range of characteristics (i.e. on number of exams and conflict matrix
density). Table 2 presents the best results for these 4 problems by all of the
approaches presented above, except LD which failed to generate feasible
solutions for all of the problems.

Table 2. SD, two hybrid approaches, TSHH and state-of-the-art on real-world problems
problem ute92 uta93 sta83 ear83
SD 37.63 n/f 191.93 n/f
SD+23% LD 38.37 5.09 n/f n/f
SD+CBR 37.53 5.06 173.82 47.42
TSHH 35.40 (0.37) 4.52 (0.12) 158.2 (0.07) 45.60 (0.48)
Asmuni et al34 27.78 3.57 160.42 37.02
Burke et al35 25.7 3.4 159.1 35.4
Burke & Newall36 25.83 3.20 168.73 37.05
Caramia et al37 24.4 3.5 158.2 29.3
Carter et al38 25.8 3.5 161.5 36.4
Casey & Thompson22 25.4 n/f 134.9 34.8
Di Gaspero & Schaerf20 31.3 4.5 166.8 46.7
Merlot et al39 25.1 3.5 157.3 35.1

We can observe that for real-world problems, the results obtained from

the hybrid approaches show different characteristics compared with those on
random data sets. The reason may be that the knowledge discovered from the
random data sets may not cover enough problem solving situations of real
world problems with different characteristics.

SD+CBR shows promising results and is reasonably reliable over both
random and real-world problems, as the injection of LD is made by using
knowledge concerning different problem solving situations and thus can help
to solve more types of problems. However, to be able to solve more types of
problems, the CBR system needs to be trained to store more knowledge of
problem solving over a wider range of problems (including both the random
and real-world problems) with a variety of problem features.

One observation is that the densities of LD (presented in ‘()’ in Table 2)
in the best heuristic lists found are different for different problems, and none
of them has a value that is within 0.23-0.26. Thus SD+23%LD will not be
the appropriate approach for solving the real-world problems presented here.

10 Edmund Burke, Moshe Dror, Sanja Petrovic and Rong Qu

The TSHH shown in Table 2 outperforms all of the other approaches
described in this paper on real problems. Table 2 also presents the current
best published results on these benchmarks by 8 other approaches reported in
the literature20, 22, 34-39. The best results are presented in bold. Note that TSHH
gets into the same region as these sophisticated approaches which are ‘tailor
made’ for exam timetabling.

Also note that except Carter et al38 and Asmuni et al34 all the other
approaches are improving approaches that are based on initial solutions
obtained beforehand. Our approaches are simple constructive methods that
are independent of the initialization process and obtained comparable results
from the reported approaches on the benchmark problems, for which most
simple constructive methods failed to obtain feasible solutions. Moreover,
this approach is far simpler and more generic than those approaches. It
selects appropriate simple heuristics during the search process. These simple
heuristics can be employed in many other timetabling and scheduling
problems.

5. CONCLUSIONS AND FUTURE WORK

The overall goal of this paper is to investigate the development of
approaches/systems which can operate at a higher level of generality than
current approaches/systems. The TSHH uses only very simple heuristics (SD
and LD) and clearly outperforms the heuristics on their own and the other
two hybrid approaches we have described in this paper.

The heuristic selection methods described here represent a framework
which can easily be applied to other timetabling and scheduling problems.
They take simple heuristics and we demonstrated that those heuristics can be
better employed by intelligent selection at appropriate points in the solution
construction process. These methods are comparable to the bespoke methods
even though the overall goal of this approach is to be more generally
applicable rather than to produce the ‘best’ results on benchmark problems.
Note also that the methods employed here use only the generally applicable
graph coloring heuristics that can be easily employed for many timetabling
and scheduling problems. The work can be extended in two ways: 1) extra
graph heuristics can be added to the framework to give more choices; and 2)
the same framework can be extended to other scheduling problems as little
domain specific knowledge is employed. The searching time of TSHH needs
further improvement upon larger problems with a higher number of
constraints. This may be investigated and compared on other meta-heuristics
such as Simulated Annealing and evolutionary approaches, etc.

Hybrid Graph Heuristics Applied to Exam Timetabling Problems 11

For the randomly generated data sets, the two hybrid approaches produce
better results than those obtained by using the graph heuristics alone,
meaning that the knowledge extracted from the TSHH on random data helps
in solving problems, avoiding the time and effort required for development
of problem specific algorithms for timetabling problems. SD+CBR is able to
provide appropriate heuristics within particular problem solving situations
using the knowledge discovered beforehand, enabling it to underpin a more
general approach for a wider range of problem types. More dedicated
knowledge discovery techniques and machine learning methods can be
investigated to discover more accurate knowledge within the critical area of
learning in hyper-heuristic methodology for solving general timetabling
problems.

REFERENCES

1. V. Bardadym. Computer-Aided School and University Timetabling: The New Wave. In: 2,
pp. 22-45. (1995).

2. E. Burke and P. Ross eds. Selected Papers from the 1st International Conference on the
Practice and Theory of Automated Timetabling, LNCS 1153, Springer-Verlag, 1996).

3. E. Burke and M. Carter eds. Selected Papers from the 2nd International Conference on the
Practice and Theory of Automated Timetabling, LNCS 1408. (Springer-Verlag, 1998).

4. E. Burke and W. Erben, W. eds. Selected Papers from the 3rd International Conference on
the Practice and Theory of Automated Timetabling, LNCS 2079, (Springer-Verlag, 2001).

5. E. Burke, K. Jackson, J Kingston and R. Weare. Automated Timetabling: The State of the
Art. The Computer Journal, 40(9): 565-571, (1997).

6. E. Burke and P. Causmaecker, eds. Selected Papers from the 4th International Conference
on the Practice and Theory of Automated Timetabling, LNCS 2740. (Springer-Verlag,
2003).

7. M. Carter and G. Laporte. Recent Developments in Practical Examination Timetabling. In:
2, pp. 3-21. (1995).

8. M. Carter and G. Laporte. Recent Developments in Practical Course Timetabling. In: 3, pp.
3-19.

9. A. Schaerf. A Survey of Automated Timetabling. Artificial Intelligence Review. 13(2): 87-
127. (1999).

10. E. Burke and S. Petrovic, Recent Research Directions in Automated Timetabling. EJOR,
140(2): 266-280. (2002).

11. D. Brelaz, New Methods to Color the Vertices of a Graph. Communications of the ACM,
22(4): 251-256. (1979).

12. de Werra, Graphs, Hypergraphs and Timetabling. Methods of Operations Research. 49:
201-213. (1985).

13. E. Burke, J. Kingston and D. de Werra, Applications to Timetabling, Handbook of Graph
Theory, (J. Gross and J. Yellen eds.), pp. 445-474, (Chapman Hall/CRC Press, 2003).

14. M. Carter, A Lagrangian Relaxation Approach to the Classroom Assignment Problem.
IFOR 27(2): 230-246. (1986).

15. B. Deris, S. Omatu, H. Ohta and D. Samat. University Timetabling by Constraint-based
Reasoning: A Case Study. JORS. 48(12): 1178-1190. (1997).

12 Edmund Burke, Moshe Dror, Sanja Petrovic and Rong Qu

16. K. Nonobe T. and Ibaraki. A Tabu Search Approach to the Constraint Satisfaction

Problem as a General Problem Solver. EJOR. 106: 599-623. (1998).
17. D. Banks, P. Beel and A. Meisles. A Heuristic Incremental Modelling Approach to Course

Timetabling. Proceedings of the Canadian Conference on Artificial Intelligence, pp. 16–
29. (1998).

18. F. Glover, and G. Kochenberger, Handbook of Metaheuristics, Kluwer. 2003.
19. D. Costa. A Tabu Search for Computing an Operational Timetable. EJOR. 76: 98-110.

(1994).
20. L. Di Gaspero and A. Schaerf, Tabu Search Techniques for Examination Timetabling, In:

4, pp. 104-117. (2000).
21. K. Dowsland, Off the Peg or Made to Measure”, In: 3, 37-52. (1998).
22. S. Casey, J. Thompson, A Hybrid Algorithm for the Examination Timetabling Problem.

In: 6, pp. 205-230. (2002).
23. E. Burke, J. Newall and R. Weare, R. Initialization Strategies and Diversity in

Evolutionary Timetabling. Evolutionary Computation, 6(1): 81-103. (1998).
24. E. Burke and J. Newall. A Multi-Stage Evolutionary Algorithm for the Timetabling

Problem. The IEEE Transactions on Evolutionary Computation. 3(1): 63-74. (1999).
25. D. Leake ed. Case-based Reasoning: Experiences, Lessons and Future Directions. (AAAI

Press, Menlo Park, CA. 1996).
26. E. Burke, B., MacCarthy, S. Petrovic and R. Qu, Structured Cases in Case-Based

Reasoning - Re-using and Adapting Cases for Time-tabling Problems. Knowledge-Based
Systems, 13(2-3): 159-165. (2000).

27. E. Burke, B. MacCarthy, S. Petrovic and R. Qu, Multiple-Retrieval Case-Based Reasoning
for Course Timetabling Problems. Technical Report NOTTCS-TR-2004-3, School of
CSiT, University of Nottingham, U.K. (accepted by JORS, 2004).

28. E. Burke, S. Petrovic and R. Qu, Case Based Heuristic Selection for Examination
Timetabling. Technical Report NOTTCS-TR-2004-2, School of CSiT, University of
Nottingham, U.K. (To appear in Journal of Scheduling, 2005).

29. S. Petrovic, G. Beddoe and G. Vandem Berghe, Storing and Adapting Repair Experiences
in Employee Rostering. In: 6, pp. 148-165. (2003).

30. E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross and S. Schulenburg, Hyper-heuristics: an
Emerging Direction in Modern Search Technology. In: F. Glover and G. Kochenberger
eds., Handbook of Meta-Heuristics, (Kluwer, 2003), pp. 457-474.

31. G. Kendall, P. Cowling and E. Soubeiga, Choice Function and Random HyperHeuristics.
Proceedings of SEAL’02, pp. 667-671. (2002).

32. E. Burke, G. Kendall. G and E. Soubeiga, A Tabu Search Hyperheuristic for Timetabling
and Rostering. Journal of Heuristics. 9(6). (2003).

33. L. Han and G. Kendall. Investigation of a Tabu Assisted Hyper-Heuristic Genetic
Algorithm. Congress on Evolutionary Computation, Canberra, Australia, 2230-2237.
(2003).

34. H. Asmuni, E. Burke, and J. Garibaldi. Fuzzy Multiple Ordering Criteria For Examination
Timetabling. To appear in the 5th International Conference on the Practice and Theory of
Automated Timetabling. Pittsburgh, USA. Aug 2004.

35. E. Burke, Y. Bykov, J. Newall, and S. Petrovic. A Time-Predefined Local Search
Approach to Exam Timetabling Problems. IIE Transactions on Operations Engineering,
36(6), 509-528, (2004).

36. E. Burke and J. Newall, Enhancing Timetable Solutions with Local Search Methods. In: 6,
pp. 195-206. (2002).

37. M. Caramia P. Dell’Olmo and G. Italiano, New Algorithms for Examination Timetabling.
In: S. Naher and D. Wagner eds. LNCS 1982, pp. 230-241. (2001).

Hybrid Graph Heuristics Applied to Exam Timetabling Problems 13

38. M. Carter G. Laporte and S. Lee, Examination Timetabling: Algorithmic Strategies and

Applications, JORS, 47: 373-383. (1996).
39. L. Merlot, N. Boland, B. Hughes and P. Stuckey. A Hybrid Algorithm for the Examination

Timetabling Problem. In: E. Burke and P. De Causmaecker (eds.) Proceedings of the 4th
International Conference on Practice and Theory of Timetabling, pp. 348-371. (2002).

