
To Appear in Conference Volumn of the 9th informs Computing Society 

Conference. Kluwer Academic Publishers. Jan 2005 

HYBRID GRAPH HEURISTICS WITHIN A 
HYPER-HEURISTIC APPROACH TO EXAM 
TIMETABLING PROBLEMS 

Edmund Burke1, Moshe Dror2, Sanja Petrovic1 and Rong Qu1 
1Automated Scheduling Optimization & Planning Group, School of CSiT, University of Nottingham, Nottingham, NG8 1BB, UK; 

2Department of Management Information Systems Eller College of Business and Public Administration, University of Arizona, Arizona

85721 

Abstract: This paper is concerned with the hybridization of two graph coloring heuristics 
(Saturation Degree and Largest Degree), and their application within a hyper-
heuristic for exam timetabling problems. Hyper-heuristics can be seen as 
algorithms which intelligently select appropriate algorithms/heuristics for 
solving a problem. We developed a Tabu Search based hyper-heuristic to 
search for heuristic lists (of graph heuristics) for solving problems and 
investigated the heuristic lists found by employing knowledge discovery 
techniques. Two hybrid approaches (involving Saturation Degree and Largest 
Degree) including one which employs Case Based Reasoning are presented 
and discussed. Both the Tabu Search based hyper-heuristic and the hybrid 
approaches are tested on random and real-world exam timetabling problems. 
Experimental results are comparable with the best state-of-the-art approaches 
(as measured against established benchmark problems). The results also 
demonstrate an increased level of generality in our approach. 

Key words: case based reasoning, exam timetabling problems, graph heuristics, hyper-
heuristics, knowledge discovery, tabu search. 
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1. INTRODUCTION 

1.1 Timetabling Problems 

Timetabling problems have been attracting the attention of the scientific 
research community across Artificial Intelligence and Operational Research 
for more than 40 years1-10. 

A general timetabling problem includes assigning a set of events (exams, 
courses, sports matches, meetings, etc) into a limited number of timeslots 
(time periods), while satisfying a set of constraints. These constraints are 
usually grouped into two types, which are described below: 
•  Hard constraints which cannot be violated under any circumstances. For 

example, a person cannot be assigned to two different events at the same 
time. Solutions which do not violate any of the hard constraints are called 
feasible solutions. 

•  Soft constraints are desirable but not essential. In most real world 
situations no solutions can be found which satisfy all of stipulated soft 
constraints. 
In the early days of timetabling research, graph heuristics11, 12, 13 were 

widely studied. They represent simple techniques but tend to be impractical 
for complex problems (at least when implemented on their own). Integer 
linear programming14 is an exact solution method which tends to be 
computationally very expensive when solving large timetabling problems. 
Over the years, constraint programming methods have also been investigated 
at some length15, 16, 17. Meta-heuristics18 have been shown to be very 
successful on a variety of timetabling problems. Examples include Tabu 
Search19, 20, Simulated Annealing21, 22 and Evolutionary Algorithms23, 24. 
Other new methods studied for timetabling problems include Case Based 
Reasoning25 (for educational timetabling26, 27, 28 and nurse scheduling29). 

The work presented in this paper investigates the benefits of hybridizing 
two well-studied graph heuristics11, 12, 13 by using a hyper-heuristic on 
timetabling. The term hyper-heuristic can be taken as a ‘heuristic that 
searches for heuristics’30. A hyper-heuristic searches a space of heuristics 
rather than problem solutions. Our hyper-heuristic approach searches from a 
set of lower level heuristics according to different problem solving situations 
that might occur, and then applies those heuristics to the particular problem 
in hand. Different higher level heuristics/techniques employed within a 
hyper-heuristic framework include Case Based Reasoning25, choice 
functions31 and meta-heuristic methods32, 33. 

Many of the current state of the art approaches in exam timetabling 
employ specially tailored heuristic/meta-heuristics methods20, 22, 34-39. This 
kind of approach is also typical for other scheduling problems. The purpose 
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of this paper is to describe our initial attempts at developing an approach 
which is fundamentally more general than the above methods. The goal is 
not necessarily to ‘beat’ those methods but to obtain comparable results by 
only employing general methods that can ‘pick’ appropriate heuristics and 
which would be applicable to a broader range of problems. 

1.2 Case Based Reasoning (CBR) 

CBR25 is a knowledge-based technology that solves the problems in hand 
(target cases) by using knowledge obtained by solving previous similar 
problems. In a CBR system, a case base stores a set of previously solved 
problems with their good solutions or problem solving strategies (called 
source cases). A similarity measure, usually defined as a formula, is used to 
assess the similarities between the target case and source cases. The good 
solutions or problem solving strategies of the most similar source case are 
reused to tackle the target case. 

The basic idea of CBR is to avoid solving new problems from scratch 
when the knowledge of solving similar problems is available. Our previous 
work using CBR on course and exam timetabling has presented successful 
results, either by reusing good partial solutions of problems whose 
constraints are structurally similar with current problems26, 27, or by reusing 
good heuristics in similar problem solving situations28. This has provided the 
foundation for the research presented in this paper. 

The next section presents our Tabu Search based hyper-heuristic (TSHH) 
on two graph heuristics. The results obtained by TSHH are utilized to 
propose two hybrid graph heuristics (including one which employs CBR). 
This is followed by experiments on both random and real-world problems. 
We conclude by briefly discussing the impact of the work and potential 
future research directions. 

2. A TABU SEARCH BASED HYPER-HEURISTIC 

In our previous work CBR was studied as the higher level searching 
technique to suggest different constructive heuristics during the exam 
timetabling problem solving process28. At each step of the solution 
construction, we select the heuristic (stored in the case base) that made the 
least penalty schedule in a previous similar situation. Employing this 
knowledge can help in finding good heuristics in new similar situations and 
in generating better quality solutions compared with those generated using 
single heuristics. 
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2.1 Tabu Search in a Hyper-heuristic Framework 

In this paper we will employ Tabu Search as the higher level searching 
algorithm within a hyper-heuristic methodology that searches for the best 
combinations of heuristics (heuristic lists) for constructing the solutions for 
exam timetabling problems. This means that the heuristic list found not only 
represents good heuristics at each particular step (as before28 where the least 
penalty schedules are made), but also it represents problem solving context 
(heuristics used and costs occurred before the current step, etc). A Tabu 
Search methodology within a hyper-heuristic framework has already been 
demonstrated as a successful, general methodology across very different 
problems (for course timetabling and nurse rostering32). 

The search space of the TSHH consists of all of the possible permutations 
of the Saturation Degree (SD) and Largest Degree (LD), as shown below. 
Starting from an initial list of heuristics, a move within the TSHH is to 
change one of the heuristics in the heuristic list. The heuristics in the list are 
then employed, one by one, to construct the solution for the problem. The 
objective of TSHH is to find the heuristic list that generates the best quality 
solutions. TSHH stops after a certain number of iterations (5 times the 
number of the exams in the problem being considered). 

SD and LD are two widely studied graph heuristics for applications to 
timetabling problems11, 12, 13. They are sequential methods that order the 
exams to be scheduled according to the difficulty of scheduling them. They 
then assign them one by one into feasible timeslots without violating any 
hard constraint and with the lowest penalty (i.e. the lowest total number of 
violations of soft constraints). They can be described as follows: 
•  Largest Degree (LD): Exams are ordered decreasingly by the number of 

conflicts they have with other exams. This heuristic aims to schedule the 
most conflicting exams first. 

•  Saturation Degree (SD): Exams that are not yet scheduled are ordered 
increasingly by the number of feasible timeslots available at that time. 
The priorities of the exams thus change dynamically according to the 
situations encountered at each step of the solution construction. 
The heuristic lists selected to construct the solutions may not generate 

feasible solutions once they are performed, because the moves in the TSHH 
concern the changes of heuristics in the heuristic list, not the actual 
assignment of each exam. The search space of the TSHH is thus very large, 
containing a large number of non-valid heuristic lists. We add three 
mechanisms into the TSHH to reduce the size of the search space. They are 
described below: 
•  The parts of heuristic lists that generate infeasible assignment are stored 

in the searching process of the TSHH. At each move, the heuristic list 
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selected will be checked before it is applied to see if it contains any 
stored infeasible heuristic lists. For example, if a heuristic list with the 
part ‘SD LD ..’ is stored because LD make an infeasible schedule at that 
step, all the heuristic lists selected later such as ‘SD LD SD ..’ or ‘SD LD 
LD ..’ will be ignored in the searching process. This mechanism 
significantly cuts the size of the search space by ignoring non-valid 
sections. 

•  At each step of the solution construction, we schedule a number of exams 
at once (we choose 3 here) by the given heuristic in the heuristic list. This 
is motivated by the observation28 that the heuristics in the best heuristic 
lists tend to switch to others after a number of events have been 
scheduled. This mechanism also significantly reduces the size of the 
search space of TSHH. 

•  The initial heuristic list of TSHH is set as a list of SD only. We observe 
that in most cases SD is superior to LD, thus it is expected that the 
appearance of SD will be higher than that of LD in the best heuristic lists. 

2.2 Experiments on Random Data Sets 

The data sets we use are generated by using the same process as that of 
Carter et al38 which simulates real-world exam timetabling problems. Each 
time a student is created and r exams are assigned (following a discrete 
uniform distribution in [2, 6]). This process is repeated until the defined 
density of conflict matrix is met, which is calculated as the number of 
conflicts among exams to the total number of exams. This generates 6 types 
of problems of 200 to 400 exams with density of 0.05, 0.15 and 0.25, namely 
‘200-5’, ‘200-15’, ‘200-25’, ‘400-5’, ‘400-15’ and ‘400-25’. 

The hard constraints consider the ‘conflict’ between exams with students 
in common. The soft constraints under consideration concern spreading out 
the students’ exams evenly. The cost function that evaluates the solutions is 
the same as that of Carter et al38. The objective is to minimize the cost per 
student. For each problem type, 20 distinct problems are tested on using the 
SD and LD heuristics alone, and the TSHH. The average costs and time 
spent by these approaches are presented in Table 1. 

Table 1. SD, LD alone, two hybrid approaches and TSHH on random problems 
SD LD SD+23%LD SD+CBR TSHH 

problem 
cost time cost time cost time cost time cost time density 

200-5 10.07 1.25 10.21 0.02 9.97 0.97 10.01 2.39 9.63 195 0.24 
200-15 9.47 4.48 9.42(18) 0.05 9.46 3.35 9.40 7.32 9.21 604 0.23 
200-25 5.92 12.49 6.13(14) 0.08 5.90 10.00 5.88 28.31 5.81 3881 0.23 
400-5 9.33 12.41 9.32(16) 0.06 9.30 9.66 9.28 22.62 9.05 5011 0.26 
400-15 4.72 76.7 4.70(16) 0.31 4.67 57.08 4.68 73.26 4.52 20074 0.24 
400-25 3.70 185.84 n/f(20) 0.59 3.70 158.16 3.70 204.27 3.68 73462 0.26 
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The best results in the table are presented in bold. For all the problems, 

the TSHH works much better than using SD and LD alone. The values in ‘()’ 
represents the number of times infeasible solutions are obtained by the 
corresponding approach. Compared with SD or LD alone, TSHH takes a 
much longer time, especially for larger problems with higher densities. Note 
that in real world situations, exam timetables are usually generated weeks (or 
months) in advance and thus the time does not usually have much impact on 
the usefulness of the methodology. 

The column under the title of ‘density’ in Table 1 presents the average 
densities of the LD in the best heuristic lists obtained by TSHH. We can see 
that for all of the problem types, the densities of LD in the best heuristic lists 
are almost the same, ranging from 0.23-0.26. This motivated us to build one 
of the hybrid approaches, whose details are presented in the next section. 

3. HYBRID GRAPH BASED APPROACHES 

By investigating the TSHH, we propose two hybrid approaches. They are 
SD injected with LD by 23%, and by a CBR system built using knowledge 
discovery techniques that extract the knowledge of TSHH. They are 
presented in the following two sub-sections. 

3.1 SD Injected with 23% LD 

In the first hybrid approach, LD is randomly injected into the heuristic 
list (of SD) to form 23% of it. This hybridization is proposed by using the 
density of LD that appears in the best heuristic lists. Our aim is to investigate 
whether such a heuristic list is good for all of the problem instances. 

The results of this approach on all types of problems are presented in the 
column entitled SD+23%LD in Table 1. They are compared with the results 
obtained by using SD and LD heuristics alone. Please note that it presents 
the cost per student thus small differences from different approaches may 
indicate large differences in costs. 

Compared with the results obtained by using SD and LD alone, the 
hybrid approaches perform on all of the problems, except for ‘400-25’, 
where the same results (3.70) are obtained by SD+23%LD and SD+CBR. 
For problem type ‘400-25’, LD failed to obtain feasible solutions for any pf 
the problem instances (indicated by ‘n/f’ in the table). The values in Table 1 
present the average penalties for only the feasible solutions obtained. 

Among the approaches, LD takes the least amount of time as the ordering 
of exams will not change during the problem solving process. The time spent 
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by SD+23%LD is less than that of SD, which orders the exams that are not 
yet scheduled at each step of the problem solving process. This hybrid 
approach is superior to SD on both the solution quality and the problem 
solving time. 

3.2 SD Injected with LD by CBR 

We present another hybrid approach using a CBR system developed by 
investigating the heuristic lists obtained from the TSHH described above. 
The idea is to inject the LD by the suggestions from the CBR system which 
stores the appropriate heuristics in different problem solving situations. At 
each step of the scheduling process, the current problem solving situation is 
input into the CBR system as the target case, and the most similar source 
case is retrieved. The heuristic of this retrieved source case is employed to 
select and schedule the exams in the next step of solution construction. 

In the CBR system, we use a list of feature-value pairs to represent the 
cases. The similarity measure employs a nearest neighborhood approach to 
sum up the differences of values for each pair of features in the target and 
source cases. The most similar source cases will be retrieved and the 
corresponding heuristics will be suggested for use in the next step of 
scheduling. 

Knowledge discovery is carried out by using the best heuristic lists 
obtained from the TSHH. The objective is to discover the most relevant 
features to be used in the list of features to represent cases so that the correct 
heuristic can be selected by CBR. We collected a set of initial training 
features that describe the problem solving situations. They can be grouped 
into two types, which are presented below. 
1. Simple features: this can also be grouped into two types: 

•  Features that describe the problems. These include: the no. of exams, 
students, timeslots, the total no. of conflicts among all the exams, the 
density of the conflict matrix, the no. of the conflicts for the most 
conflicting exams and the no. of the most conflicting exams. 

•  Features with values that are changeable during problem solving. These 
include: the no. of exams that have been scheduled in a particular 
timeslot, the heuristic employed before the current step, the increased 
penalty occurred by the last step schedule, and the cost of the partial 
solution concerning the violations of only the soft constraints. 

2. A Combination of the simple features: the ratios between each pair of the 
simple features. 
At each particular scheduling step during the TSHH, the problem solving 

situations (values of all of the training features presented above) are recorded 
for each problem solved. These situations along with the best heuristics at 
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that step in the process form the cases to be used in the knowledge discovery 
process. All of the cases obtained are randomly divided into two groups: one 
group is stored as source cases in the case base and the other will be the 
training cases used just in the knowledge discovery process for training 
purposes. 

A Tabu Search (not the same one used in TSHH but just for knowledge 
discovery) is used to discover the best feature list for the case representation. 
All of the possible feature lists form the search space of Tabu Search. An 
initial feature list is randomly selected and a move is a change of a feature 
and its weight. All of the training cases (whose heuristic is already obtained 
beforehand by TSHH) are input one by one into the system. If the heuristic 
of the most similar source case retrieved (by similarity measure upon the set 
of features for the training) is the same as that of the training case obtained 
beforehand, it will be seen as a successful retrieval. The total number of the 
successful retrievals indicates the system performance. The objective of the 
Tabu Search is to find the feature list upon which the highest system 
performance is obtained for all of the training cases. The most relevant 
features found by the first stage of knowledge discovery are: ‘the increase in 
penalty in the previous step of scheduling’ with weight 100, and ‘the number 
of exams already scheduled at that step’ with weight 1. 

The second stage of knowledge discovery aims to refine the case base. 
The best feature list is obtained from the first stage each time a source case is 
removed from the case base. If the system performance is decreased, the 
removed source case will be added back into the case base as it contains 
useful information for the heuristic selection in that particular problem 
solving situation; otherwise the source case will be removed permanently as 
it contains either redundant or wrong information that is harmful for the 
heuristic selection. 

The column entitled SD+CBR in Table 1 presents the results obtained by 
the hybrid SD with CBR on the same problems tested using other 
approaches. We can see that it outperforms SD and LD alone on all 
problems except on problem ‘400-25’, where the same result is obtained by 
SD alone. Compared with SD+23%LD, it obtained slightly better solutions 
but with longer time occurred on searching the case base. On all of the 
problem types except ‘400-25’, both of the two hybrid approaches 
outperform the SD and LD alone. Among all of the approaches tested TSHH 
works the best. Note, though, that the two hybrid approaches are much 
quicker than the TSHH although (as we already mentioned) time is not 
usually a critical issue in exam timetabling. 

These results show that by embedding knowledge of employing different 
heuristics during problem solving, the hybrid approaches work better than 
those of the single heuristics. The hybrid approaches have the ability to 
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choose appropriate heuristics in different situations thus have significant 
potential for being more generally applicable than the current state of the art. 

4. EXPERIMENTS ON REAL-WORLD PROBLEMS 

We carried out another set of experiments on 4 real-world benchmark 
exam timetabling problems presented by Carter et al38. These problems 
cover a range of characteristics (i.e. on number of exams and conflict matrix 
density). Table 2 presents the best results for these 4 problems by all of the 
approaches presented above, except LD which failed to generate feasible 
solutions for all of the problems. 

Table 2. SD, two hybrid approaches, TSHH and state-of-the-art on real-world problems 
problem ute92 uta93 sta83 ear83 
SD 37.63 n/f 191.93 n/f 
SD+23% LD 38.37 5.09 n/f n/f 
SD+CBR 37.53 5.06 173.82 47.42 
TSHH 35.40 (0.37) 4.52 (0.12) 158.2 (0.07) 45.60 (0.48) 
Asmuni et al34 27.78 3.57 160.42 37.02 
Burke et al35 25.7 3.4 159.1 35.4 
Burke & Newall36  25.83 3.20 168.73 37.05 
Caramia et al37 24.4 3.5 158.2 29.3 
Carter et al38 25.8 3.5 161.5 36.4 
Casey & Thompson22 25.4 n/f 134.9 34.8 
Di Gaspero & Schaerf20 31.3 4.5 166.8 46.7 
Merlot et al39 25.1 3.5 157.3 35.1 

 
We can observe that for real-world problems, the results obtained from 

the hybrid approaches show different characteristics compared with those on 
random data sets. The reason may be that the knowledge discovered from the 
random data sets may not cover enough problem solving situations of real 
world problems with different characteristics. 

SD+CBR shows promising results and is reasonably reliable over both 
random and real-world problems, as the injection of LD is made by using 
knowledge concerning different problem solving situations and thus can help 
to solve more types of problems. However, to be able to solve more types of 
problems, the CBR system needs to be trained to store more knowledge of 
problem solving over a wider range of problems (including both the random 
and real-world problems) with a variety of problem features. 

One observation is that the densities of LD (presented in ‘( )’ in Table 2) 
in the best heuristic lists found are different for different problems, and none 
of them has a value that is within 0.23-0.26. Thus SD+23%LD will not be 
the appropriate approach for solving the real-world problems presented here. 
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The TSHH shown in Table 2 outperforms all of the other approaches 
described in this paper on real problems. Table 2 also presents the current 
best published results on these benchmarks by 8 other approaches reported in 
the literature20, 22, 34-39. The best results are presented in bold. Note that TSHH 
gets into the same region as these sophisticated approaches which are ‘tailor 
made’ for exam timetabling. 

Also note that except Carter et al38 and Asmuni et al34 all the other 
approaches are improving approaches that are based on initial solutions 
obtained beforehand. Our approaches are simple constructive methods that 
are independent of the initialization process and obtained comparable results 
from the reported approaches on the benchmark problems, for which most 
simple constructive methods failed to obtain feasible solutions. Moreover, 
this approach is far simpler and more generic than those approaches. It 
selects appropriate simple heuristics during the search process. These simple 
heuristics can be employed in many other timetabling and scheduling 
problems. 

5. CONCLUSIONS AND FUTURE WORK 

The overall goal of this paper is to investigate the development of 
approaches/systems which can operate at a higher level of generality than 
current approaches/systems. The TSHH uses only very simple heuristics (SD 
and LD) and clearly outperforms the heuristics on their own and the other 
two hybrid approaches we have described in this paper.  

The heuristic selection methods described here represent a framework 
which can easily be applied to other timetabling and scheduling problems. 
They take simple heuristics and we demonstrated that those heuristics can be 
better employed by intelligent selection at appropriate points in the solution 
construction process. These methods are comparable to the bespoke methods 
even though the overall goal of this approach is to be more generally 
applicable rather than to produce the ‘best’ results on benchmark problems. 
Note also that the methods employed here use only the generally applicable 
graph coloring heuristics that can be easily employed for many timetabling 
and scheduling problems. The work can be extended in two ways: 1) extra 
graph heuristics can be added to the framework to give more choices; and 2) 
the same framework can be extended to other scheduling problems as little 
domain specific knowledge is employed. The searching time of TSHH needs 
further improvement upon larger problems with a higher number of 
constraints. This may be investigated and compared on other meta-heuristics 
such as Simulated Annealing and evolutionary approaches, etc. 
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For the randomly generated data sets, the two hybrid approaches produce 
better results than those obtained by using the graph heuristics alone, 
meaning that the knowledge extracted from the TSHH on random data helps 
in solving problems, avoiding the time and effort required for development 
of problem specific algorithms for timetabling problems. SD+CBR is able to 
provide appropriate heuristics within particular problem solving situations 
using the knowledge discovered beforehand, enabling it to underpin a more 
general approach for a wider range of problem types. More dedicated 
knowledge discovery techniques and machine learning methods can be 
investigated to discover more accurate knowledge within the critical area of 
learning in hyper-heuristic methodology for solving general timetabling 
problems. 
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