Fundamenta Informaticae XX (2005) 1-14 1
I0S Press

Proof M ethods for Corecursive Programs

Jeremy Gibbons
Oxford University Computing Laboratory, UK

Graham Hutton
School of Computer Science aligd University of Nottingham, UK

Abstract. Recursion isawell-known and powerful programming technique, with awide variety of
applications. The dual technique of corecursionis lesswell-known, but isincreasingly provingto be
just asuseful. Thisarticleisatutorial on the four main methodsfor proving propertiesof corecursive
programs: fixpoint induction, the approximation (or take) lemma, coinduction, and fusion.

1. Introduction

Recursion is a central concept in computing, with applications ranging from the theoretical foundations
of computation [34] to practical programming techniques [8]. In recent years, it has become increasingly
clear that the dual but less well-known concept of corecursionisjust as useful [1, 4, 20, 27].

Following the work of Moss and Danner [28] on the foundations of corecursion, we use the term
corecursive progranfor a function whose range is atype defined recursively as the greatest solution of
some equation. Dually, we use the term recursive progranfor afunction whose domain is type defined
recursively as the least solution of some equation. These definitions are rather general — in particular,
they require neither self-reference, nor patterns of definition that ensure properties such as productivity
or termination — but they will suffice for our expository purposes here.

Asan example, if types are modelled as sets, then atype of infinite lists of integers can be defined as
the greatest set X for which there isabijection X = Z x X, and hence any function that produces such
an infinite list is (according to our definition) a corecursive program. Similarly, atype of finite lists can
be defined as the least set X for which X = 1+ (Z x X), where 1 is asingleton set and + is digoint
union of sets, and hence any function that consumes such afinitelist is arecursive program.

For programming examples we use Haskell [32], a pure functional language with non-strict seman-
tics. Purity (or referentia transparency) and non-strictness together permit substitution of equals for
equals, and hence proofs by simple egquational reasoning. In addition, a semantic basis in terms of com-
plete partial orders has the convenient property that there is no distinction between least and greatest
solutions to type equations, as these notions coincide [12, 39]. For example, in this setting the equation
X = 1+ (Z x X) hasaunique solution for X, given by the type of finite, partial (undefined after a certain
point) and infinite lists of integers. Hence, inthis article recursive programs and corecursive programs are
simply functional programs that have recursively-defined types as their domain and range, respectively.

2 J. Gibbons, G. Hutton/Proof Methods for Corecursive Programs

Historically, the basic method for proving properties of corecursive programsisfixpoint induction2],
which is derived from the domain-theoretic approach to programming language semantics. Applying
fixpoint induction is rather tedious, but for many applications we can use the higher-level approximation
lemma[5], arecent improvement of the well-known take lemmd7]. Alternatively, we can reason directly
in terms of the structure of programs themselves and use coinduction[18]. However, the use of inductive
or coinductive methods can often be avoided altogether by using fusion[25], an algebraic law derived
from the basic pattern of corecursive definition.

This article is atutoria on the above methods for proving properties of corecursive programs. Each
method is presented, proved to be correct, and illustrated with an example. We conclude with a com-
parison of the four methods and references to further reading. For ssimplicity, we restrict our attention to
corecursive programs that produce lists, but none of the four methods are specific to this type. The reader
is assumed to be familiar with the basics of recursive programming and proof (for example, see [5]), but
no prior knowledge of corecursive programming and proof is assumed.

2. Themap-iterate property

Consider a recursive type of lists in which the empty list is denoted by [], and non-empty lists are
constructed using an infix operator (:) that prepends avalue to alist. For example, 0:1: 2: [] isafinite
list, while the equation ones= 1: onesdefinestheinfinitelistones=1:1:1:---.

A standard corecursive function for lists is iterate f, which produces an infinite list by successively
applying afunction f to a seed value, and is defined by the following equation:

iterate f x = x:iterate f (f x)

(For simplicity, we avoid explicitly specifying types in this article, but they can easily be inferred from
the definitions if required.) Unwinding this definition afew steps, we see that:

iteratef x = x:fx:f({fx):f({f{fx):--

For example, if inc is the increment function on natural numbers, then nats = iterate incO defines the
infinite list nats= 0:1:2:---. Another standard corecursive (and also recursive) function is map f,
which produces alist by applying afunction f to each value in alist, and is defined as follows:

map f[] = |l
mapf(x:xs) = fx:mapf xs

Unwinding this definition afew steps shows that:
mapf(Xo:X1:Xe:xg:---) = fxo:fxg:fxp:fxg:--

For example, map inc natgproduces the infinite list 1:2:3:---. This same list can aso be produced
by the expression iterate inc (inc 0). Whereas the former expression increments each number in the
infinite list of naturals, the latter successively applies the increment function starting with the number
one. Generalising from this example yields the map-iterate property7]:

map f (iterate f X = iterate f (f X)

J. Gibbons, G. Hutton/ Proof Methods for Corecursive Programs 3

This equation states that iterating a function and then mapping it gives the same result as applying the
function and then iterating it, namely an infinite list of the form:

fx:f@Ex):f(f@Fx):fEFEX))) -

But how can the mapiterate property be proved? Note that the standard method of structural induction
on lists is not applicable, because there is no list argument over which induction can be performed. In
the remainder of the article we review and compare the four main methods that can be used to prove
properties of corecursive functions, using the mapiterate property as our running example.

3. Fixpoint induction

Fixpoint induction is derived from the domain-theoretic approach to programming language seman-
tics [38]. The bhasic idea in this approach is that types are complete partial ordergcpos), that is, sets
with a partial-ordering C, aleast element L, and limits of al non-empty chains. In turn, programs are
continuous functionghat is, functions between cpos that preserve the partial-order and limit structure.

Now consider an equation x = f x that defines a value x in terms of itself and some continuous
function f. A well-known fixpoint theorem [38] states that this equation has a least solution for X,
denoted by fix f and caled the least fixpointof f, which is adopted as the semantics of the definition.
Moreover, fix f is constructed as the limit of the following infinite chain:

LEfLCffL) Cff(FL)C -

As a smple example of this approach, consider again the equation ones= 1: onesthat defines the
infinitelist1:1:1:---. Thisdefinition can be rewritten asones= f ones wheref isthe function defined
by f xs=1: xs (Verifying that afunction such asf iscontinuous is normally just amatter of appealing to
the fact that any function definable in a programming language is necessarily continuous [38].) Hence,
the semantics of the definition is given by ones= fix f, and by the fixpoint theorem is constructed as the
limit of the infinite chain of partial lists containing increasing numbers of 1s:

lc1i1:1. c1:1:1 Cc1:1:1:1L & --.

The basic method for proving properties of programs defined using fix is Scott and de Bakker's
fixpoint induction[2]. Suppose that f is a continuous function on a cpo and that P is a chain-complete
predicate on the same cpo, that is, whenever P holds of al elements in a chain then it aso holds of the
limit. Then fixpoint induction is given by the following inference rule;

PL VX.Px= P (f x)
P (fix)

Thisrule states that if the predicate holds of the least element L of the cpo, and whenever it holds of an
element x in the cpo then it aso holds for f x, then the predicate also holds for fix f. Fixpoint induction
can be verified by the following simple calculation, in which the limit operator on chains is denoted by
| | and the n-fold repeated application of afunction f is denoted by f":

4 J. Gibbons, G. Hutton/ Proof Methods for Corecursive Programs

P (fix)

& { definition of fix f }
P (Un{f"L})

= { Pischain-complete }
vn. P (f"L1)

= { inductiononn }

P{fOL) AVnP(f"1)=P({"™l1)
& { definition of f" }

PLAVNP("L)=P(f(f"1))
= { generdising f" L tox }

PL A VWXPx=P(fx)

Asan application of fixpoint induction, let us see how it can be used to prove the map-iterate property
from the previous section: map f (iterate f ¥ = iterate f (f x). First of all, we abstract from the use of
iterate and define a predicate P on functions by the following equivalence:

Pg & Vi,x mapf(gfx) = gf(fx)

Verifying that a predicate is chain-complete is normally just a matter of appealing to standard recipes for
constructing such predicates [38]. For example, chain-completeness of P follows from the fact that any
equation between continuous functions is chain-complete, which is easy to verify.

Using the above predicate, the mapiterate property can be written as P iterate In turn, the seman-
tics of the function iterate is given by iterate = fix h, where h is the continuous function defined by
h g f x=x: g f (f x). Hence, the mapiterate property can now be written as P (fix h), which by fixpoint
induction follows from the assumptions P L and Vg. P g= P (h g), which are verified as follows (the
hint “substitutivity” refersto the fact that functions give equal results for equal arguments):

PL
& { definition of P }
vi,x. mapf(Lfx) = Lf(fx)

& { definition of L }
vi,x. mapfl = |

& { map fisstrict }
true

and

J. Gibbons, G. Hutton/ Proof Methods for Corecursive Programs 5

P(hg)
& { definition of P }
vi,x. mapf(hgfx = hgf(fx)
& { definition of h }
vi,x. mapf(x:gf(fx)) = fx:gf(f(fx))

& { definition of map}

vi,x. fx:mapf(gf(fx)) = fx:gf(f(fx))
= { substitutivity }

vi,x. map f(gf(fx))) = gf(f(fx))
= { generdlising f xtoy }

viy. mapf(gfy) = gf(fy)
& { definition of P }
Pg

Note that by virtue of being an implication rather than an equivalence, fixpoint induction provides a
sufficient condition for establishing a certain form of property, but not a necessary one, and hence may
not always be applicable. For example, if P is the chain-complete predicate “is an infinite list” and f is
the continuous function f xs=1: xs then P (fix f) expresses the true statement that 1:1:1:--- isan
infinite list, but this true statement cannot be proved using fixpoint induction because L is not an infinite
list and hence the base case P L isfalse. However, for such examples one can always resort to reasoning
explicitly using the definition of fix f asthe limit of an infinite chain of approximations.

Fixpoint induction is not specific to the type of lists, but isindependent of the details of the underlying
type, requiring only the fact that the type forms a cpo. However, it is clear that fixpoint induction is a
rather low-level proof method. In particular, it is tedious to have to return to first principles and perform
proofs at the level of the fixpoint semantics of programs. It is also important to note that proofs using
fixpoint induction require careful consideration of the underlying cpos and their properties, particularly
when reasoning in the presence of partial and infinite values [10].

4. Approximation lemma

A higher-level method for proving properties of corecursive programs is the approximation lemma5],
a recent improvement of the well-known take lemma [7]. Recall the standard function take n which
returns the first n elements of alist, and is defined as follows:

takeO XS =]

take(n+1) [] =]

take(n+1) (x:xs) = x:take nxs

For example, take 3 onesreturns the finite list 1: 1: 1: []. The approximation lemma s based upon a
function approx ndefined in the same way as take n except that the case for n = 0 is removed:

approx(n+1) [] =]
approx(n—+1) (x:Xs) = X:approx nxs

6 J. Gibbons, G. Hutton/ Proof Methods for Corecursive Programs

Because (n+ 1) patterns only match strictly positive integers, removing the n = 0 case means that, by
case exhaustion, approx0 xs= 1 for al lists xs For example, approx 3 onesreturns the partial list
1:1:1: L. Theapproximation lemmaitself is given by the following equivalence:

XS = YyS < Vn. approx n Xxs= approx nys

This equivalence states that two lists are equal precisely when all their approximations are equal. The
left-to-right direction istrivialy true by substitutivity. For the other direction, it is easy to show that

approx0 C approx1l C approx2 C approx3 C ---

isachain that has the identity function id on lists asits limit (by induction on natural numbers and lists,
respectively), using which result the right-to-left direction can be verified as follows:

XS = ys
& { definition of id }
idxs = idys
& { aboveresult }
(Lnfapprox nt) xs = (Ll,{approx i}) ys
& { continuity of application }
Lin{approx nx$ = [l,{approx nys
= { substitutivity }

VN. approx N Xs= approx nys

The utility of the approximation lemmais that it allows us to prove two lists equal using the simple
technique of induction on natural numbers. For example, by the approximation lemma the map-iterate
property is equivalent to the following property:

vn. approx n(map f (iterate f X) = approx n(iterate f (f x))

This property can now be verified by induction on n. The base case n = 0 is trivially true because
approx0 xs= 1 for al lists xs, while the inductive case n = m+ 1 is verified as follows:

J. Gibbons, G. Hutton/ Proof Methods for Corecursive Programs 7

approx(m+ 1) (map f (iterate f X))
= { definition of iterate }

approx(m+1) (map f(x: iterate f (f x)))
= { definition of map}

approx(m+1) (f x: map f (iterate f (f x)))
= { definition of approx}

f x: approx m(map f (iterate f (f x)))
= { induction hypothesis }

f x: approx m(iterate f (f (f x)))
= { definition of approx}

approx(m+1) (f x: iterate f (f (f x)))
= { definition of iterate }

approx(m+ 1) (iterate f (f x))

Unlikefixpoint induction, the approximation lemmais an equivalence and hence provides anecessary
and sufficient condition, athough only for the specia (but very common) case of an equality between
two lists. For such cases, using the approximation lemma has the advantage that proofs are performed at
the level of the syntax of programs, without reference to their underlying fixpoint semantics.

Replacing the use approxin the approximation lemma by take gives the take lemma, which was
popularised by Bird and Wadler’s textbook on functional programming [7]:

XS = ysS <« Vn. take n xs= take nys

The take lemma can be used to prove the same properties as the approximation lemma, but the latter
is simpler to prove and to apply. More importantly, however, the approximation lemma naturally gen-
eralises from lists to a large class of types (all polynomia types, which generalise the sum-of-product
types supported by most functional languages), whereas the take lemma does not [21].

5. Coinduction

Another high-level method for proving properties of corecursive programs is coinduction[18]. The
principle of coinduction is based upon the general notion of a bisimulation[22], which in the context of
thisarticleisarelation R on lists that has the following property:

Xs=ys= 1
Vv
XxSRys = Xs=ys=]
Vv
JV,VSWS XS=V:VS A yS=V:WS A VS Rws

This property states that two liststhat are related by abisimulation are either both undefined, both empty,
or both non-empty with heads (first elements) that are equal and tails (remaining lists of elements) that

8 J. Gibbons, G. Hutton/ Proof Methods for Corecursive Programs
are themselves related by the bisimulation. Two lists xs and ys are called bisimilar, written xs~ ys if
they are related by such abisimulation. That is, we have the following definition:

XS ~ ys < dR Risabisimulation A xs Rys

Coinduction itself is given by the following equivalence:

XS=YS & XS~ YS

This equivalence states that two lists are equal precisely when they are bisimilar. The left-to-right di-
rection is trivially true, because the equality relation on lists is a bisimulation, as is easily verified.
Conversely, by the approximation lemma the right-to-left direction is equivalent to:

XS ~ yS = Vn.approx n Xs= approx nys

In turn, by making the implicit quantification over xsand ysexplicit, and moving the quantification over
n to the outermost level, the above implication is equivalent to:

Vn. (VXSys XS ~ yS = approx n xs= approx nys

This property can now be verified by induction on the natural number n. (The rearrangement of quanti-
fiersis necessary to strengthen the induction hypothesis for this proof.) The base case n = 0 istrivialy
true, because approx0 xs= L for al lists xs For the inductive case n = m+ 1 there are three cases to
consider, derived from the premise xs~ ys Thefirst two cases, xs=ys= L and xs=ys= [], aretrivialy
true because approx(m+1) L = 1 and approx(m+1) [| =[] for al natural numbers m. The third case,
xs=V:vsand ys= v:wswith vs~ ws is verified as follows:

approx(m+1) (v:vs)
= { definition of approx }
V . approx mvs
= { induction hypothesis with vs~ ws }
V . approx mws
= { definition of approx }
approx(m+1) (v:ws)
The utility of coinduction is that it reduces the problem of proving that two lists are equa to the
problem of finding a bisimulation that relates the two lists. For example, by coinduction the mapiterate

property is equivalent to finding abisimulation R that relates map f (iterate f ¥ and iterate f (f x). The
latter condition is easily satisfied by defining the relation R as follows:

R = {(map f(iterate f X,iterate f (f x)) | f,x of appropriate types}

To verify that Ris a bismulation, suppose that xs R yswhich means that xs= map f (iterate f X and
ys= iterate f (f x) for some f and x. Unfolding these expressions using the definitions for iterate and
map weseethat xs=f x : map f (iterate f (f x)) andys="f x : iterate f (f (f x)). Because both resulting

J. Gibbons, G. Hutton/ Proof Methods for Corecursive Programs 9

expressions have the same head (f x), and their tails are related by R (with f X as the seed value rather
than x), we have shown that R is a bisimulation, which completes the proof.

Like the approximation lemma, coinduction gives a necessary and sufficient condition for the equal-
ity of two lists, and naturally generalises from lists to alarge class of types [22]. However, coinduction
has the advantage that proofs directly exploit the structure of programs themselves, whereas the approx-
imation lemmarelies on an auxiliary structure, namely natural numbers.

6. Fusion

The use of inductive or coinductive methods when proving properties of corecursive programs can of-
ten be avoided atogether by using fusion[25]. This method is derived from the use of the standard
corecursive function unfold p h t defined by the following equation:

unfold phtx = if pxthen [] elseh x: unfold p h t(t X)

The function unfold encapsulates asimple pattern of corecursion for producing alist from aseed value x,
by means of three argument functions p, h, and t. If the predicate p istrue for the seed, then the empty list
is produced. Otherwise the result is a non-empty list, whose head is produced by applying the function
h to the seed, and whose tail is produced by applying the function t to the seed to generate a new seed,
which isthen itself unfolded in the same way. The function unfold encapsulates the natural basic pattern
of corecursive definition (technically, it is the witness to the finality of the list type [25].)

Many familiar corecursive functions on lists can be defined using unfold For example, the functions
iterate f and map f can be defined by the following two equations, in which falseis the constant predicate
that holds of no argument, and null isthe predicate on lists that holds only of the empty list:

iterate f = unfold false id f

mapf = unfold null(f - head tail

The basic method for proving properties of programs defined using unfold is its universal prop-
erty [25], which is given by the following equivalence:

f =unfoldpht & Vx fx = if pxthen[]esehx: f (tx)

This equivalence states that unfold p h tis not just a solution to its defining equation, but isin fact the
uniquesolution. The left-to-right direction istrivially true, because substituting f = unfold p h tinto the
right-hand side gives the definition for unfold. Conversely, for the other direction, by substitutivity and
the approximation lemma the equation f = unfold p h tis equivalent to:

Vx,n. approx n(f x) = approx n(unfold phtx
This property can now be verified by induction on the natural number n, using the right-hand side of the

universal property of unfold as an assumption. The base case n = Q istrivially true because approx0 xs
is_L for al lists xs, while the inductive case n = m+ 1 is verified as follows:

10 J. Gibbons, G. Hutton/Proof Methods for Corecursive Programs

approx(m+1) (f x)
= { assumption }
approx(m+1) (if p xthen [] elseh x: f (t x))
= { distribution over if }
if p xthen approx(m-+1) [] else approx(m+1) (h x: f (t x))
= { definition of approx }
if p xthen approx(m+1) [] else h x: approx m(f (t x))
= { induction hypothesis }
if p xthen approx(m-+1) [] else h x: approx m(unfold p h t(t x))
= { definition of approx }
if p xthen approx(m- 1) [] else approx(m+ 1) (h x: unfold p h t(t x))
= { distribution over if }
approx(m+ 1) (if p xthen [] elseh x: unfold p h t(t x))
= { definition of unfold }
approx(m+1) (unfold phtx

The utility of the universal property of unfoldis that it makes explicit the assumption required for a
certain pattern of proof. For specific cases, by verifying this assumption (which can typically be done
without the need for inductive or coinductive methods) we can then appeal to the universal property to
complete the proof. In this manner, the universal property of unfold encapsulates a smple pattern of
proof concerning corecursive programs, just as the function unfold itself encapsulates a simple pattern of
definition for such programs. In practice, however, a corollary of the universal property called fusion is
often preferable, which is given by the following inference rule:

p-g=p hg=H tg=gt
unfold pht- g = unfold gh' t/

This rule states three conditions that together ensure that the composition of an unfold and a function
can be fused together to give a single unfold, and can be derived (without using any form of induction or
coinduction) from the universal property as follows:

J. Gibbons, G. Hutton/ Proof Methods for Corecursive Programs 11

unfold pht- g = unfold g h' t/
& { universal property }
VX. (unfold pht-g)x =
if p xthen [] else x: (unfold p ht- g) (t' x)
& { definition of composition }
vx. unfold pht(gx) =
if o xthen [] else i x: unfold p h t(g (t' x))
& { definition of unfold }
vx. if p(gx) then [] elseh (g x) :unfold pht(t (gx) =
if p’ xthen [] elseh’ x: unfold p h t(g (t' x))
& { definition of composition }
vx. if (p-g) xthen [] else (h-g) x: unfold p ht((t-g) x) =
if p’ xthen [] elseh’ x: unfold p ht((g-t') x)
= { substitutivity }
pg=p Ahg=hAtg=gt
For example, using fusion it is easy to show that the composition of an unfold and the function used
to generate the new seed value can always be fused together,
unfoldpht-t = unfold(p-t) (h-t)t Q)
and that the composition of amapand an unfold can aways be fused:
mapf- unfoldpht = unfold p(f-h)t (2

Using these general fusion laws, the mapiterate property can be proved at a higher level than using the
other three proof methods that we have discussed in previous sections. First of al, by substitutivity and
the definition of compoasition, the mapiterate property is equivalent to the following equation:

iterate f- f = map f- iterate f
This equation can now be verified as follows:

iterate f - f
= { definition of iterate }
unfold false id f- f
= {fusion (1) }
unfold (false- f) (id - f) f
= { constant functions, composition }
unfold false(f -id) f
= {fusion (2) }
map f- unfold false id f
= { definition of iterate }
map f- iterate f

12 J. Gibbons, G. Hutton/Proof Methods for Corecursive Programs

Being an implication, fusion is not always applicable as a proof method. However, in such cases one
can often resort to reasoning explicitly using the universal property of unfold Moreover, both fusion and
the universal property naturally generalise from lists to alarge class of types [25].

Using fusion has the advantage that proofs are performed purely algebraicaly, without reference
to the underlying semantics of programs and without necessitating the use of any form of induction or
coinduction. On the other hand, using fusion requires that corecursive programs are defined using unfold,
which for more complicated examples can be unnatural, or impossible [16].

7. Conclusion

We have reviewed the four main methods for proving properties of corecursive programs, namely fixpoint
induction, the approximation lemma, coinduction, and fusion. In this concluding section we compare the
four methods, and provide some references to further reading.

Fixpoint induction.Using this method, proofs proceed by induction on the chain of approximations
underlying theleast fixpoint semantics of programs. It isthe lowest-level of the four methods, resulting in
proofs that can be viewed as being from “first principles’. For this reason, fixpoint induction is primarily
used as a foundational tool. For example, our proofs of the other three methods presented in this article
are al founded, directly or indirectly, upon fixpoint induction. For further reading, see[11, 26, 29].

Approximation lemmalJsing this method, proofs proceed by induction on the depth of the structures
being compared, which is governed by the use of an auxiliary function approx The main appeal of the
approximation lemmaisthat it allows proofs to be performed using the simple technique of induction on
natural numbers. For further reading, see [5, 13, 21, 30].

Coinduction.This method directly exploits the structure of programs themselves, rather than relying
on auxiliary structures such as cpos or natural numbers. Proofs proceed by finding a bisimulation that
relates the two programs being compared. Coinduction is widely used for reasoning about concurrent
processes, and is rapidly gaining popularity for reasoning about corecursive functional programs, with a
range of variants being studied. For further reading, see[9, 18, 19, 22, 24, 31, 35, 36, 37, 40].

Fusion. Thisisthe highest-level of the four methods, with proofs proceeding using properties of the
higher-order function unfold The main appeal of fusion isthat it allows proofs to be performed purely
equationally, without the need for induction or coinduction. Due to the need to define programs in a
stylised form using unfold, fusion isasomewhat specialist method, but iswidely used in the mathematics
of program construction community. For further reading, see[3, 6, 15, 17].

Of course, the above methods do not constitute the end of the story, and new proof methods for
corecursive programs will continue to be devel oped and explored. For example, Pitts' work on exploiting
parametricity to reason about types in non-strict languages such as Haskell [33] has recently been used
to give the first formal proof of correctness of short cutfusion [23], and a categorical approach based
upon universal properties has subsegquently produced a simpler account [14].

Acknowledgements

We would like to thank David Sands, the anonymous referees and the guest editors of this specia issue
(Alberto Pettorossi and Maurizio Proietti) for many useful comments and suggestions.

J. Gibbons, G. Hutton/ Proof Methods for Corecursive Programs 13

References

(1]
(2]
(3]
(4]

(5]
(6]
[7]
(8]
(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Aczel, P: Non-Well-Founded Setdlumber 14 in CSLI Lecture Notes, Stanford: CSLI Publications, 1988.
de Bakker, J.: Mathematical Theory of Program Correctne$sentice-Hall, 1980.
Bartels, F.: Generalised Coinduction, Mathematical Structures in Computer Scientg 2003, 321-348.

Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded Phenopié¢aaber 60 in
CSLI Lecture Notes, Stanford: CSLI Publications, 1996.

Bird, R.: Introduction to Functional Programming using Haskell (second editi®mntice Hall, 1998.
Bird, R., de Moor, O.: Algebra of ProgrammingPrentice Hall, 1997.

Bird, R., Wadler, P: An Introduction to Functional ProgrammindpPrentice Hall, 1988.

Burge, W.: Recursive Programming Techniquésddison-Wesley, 1975.

Coquand, T.: Infinite Objectsin Type Theory, in: Types for Proofs and Progran(lsl. Barendregt, T. Nipkow,
Eds.), vol. 806 of Lecture Notes in Computer Scien&pringer-Verlag, Berlin, 1994, 62—78.

Danielsson, N., Jansson, P Chasing Bottoms: A Case Study in Program Verification in the Presense of
Partial and Infinite Values, in: Proceedings of the 7th Internationab@ference on Mathematics of Program
Constructionvol. 3125 of Lecture Notes in Computer Scien&pringer, Stirling, Scotland, July 2004.

Davey, B., Priestley, H.: Introduction to Lattices and OrdeiCambridge University Press, 1990.

Fokkinga, M. M., Meijer, E.: Program Calculation Properties of Continuous AlgehraBechnical Report
CS-R9104, CWI, Amsterdam, January 1991, Available online at http://wwwhome.cs.utwente.nl/
“fokkinga/#detail_0000003528.

Ghani, N., Luth, C., deMarchi, F,, Power, J.: Algebras, Coalgebras, Monadsand Comonads, in: Proceedings
of the 4th International Workshop on Coalgebraic Methods in Computer Sciemober 44.1 in Electronic
Notesin Theoretical Computer Science, Elsevier Science, April 2001.

Ghani, N., Uustalu, T., Vene, V.: Build, Augment, Destroy. Universally, Proceedings of Programming
Languages and Systems: Second Asian SymppsN@S 3302, Springer Verlag, 2004.

Gibbons, J.: Calculating Functional Programs, in: Algebraic and Coalgebraic Methods in the Mathematics
of Program Constructionvol. 2297 of Lecture Notes in Computer Scien&pringer-Verlag, January 2002,
148-203.

Gibbons, J., Hutton, G., Altenkirch, T.: When is a Function a Fold or an Unfold?, in: Proceedings of the 4th
International Workshop on Coalgebraic Methods in Computer Scieneaber 44.1 in Electronic Notes in
Theoretical Computer Science, Elsevier Science, April 2001.

Gibbons, J., Jones, G.: The Under-Appreciated Unfold, in: Proceedings of the Third ACM SIGPLAN Inter-
national Conference on Functional Programmji&altimore, Maryland, September 1998, 273-279.

Gordon, A.: A Tutorial on Co-induction and Functional Programming, in: Proceedings of the 1994 Glasgow
Workshop on Functional Programmingpringer Workshops in Computing, 1995, 78-95.

Gordon, A.: Bisimilarity as a Theory of Functional Programmin@®RICS Notes Series NS-95-3, Aarhus
University, 1995.

Gumm, H. P, Ed.: Proceedings of the Sixth International ¥shop on CoalgebraiMethods in Computer
ScienceElsevier Science, 2003, Electronic Notesin Theoretical Computer Science Volume 82.1.

14

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

J. Gibbons, G. Hutton/ Proof Methods for Corecursive Programs

Hutton, G., Gibbons, J.: The Generic Approximation Lemma, Information Processing Letterg9d(4), August
2001, 197-201.

Jacabs, B., Rutten, J.: A Tutorial on (Co)Algebras and (Co)lnduction, Bulletin of the European Association
for Theoretical Computer Sciend@®?, 1997, 222—259.

Johann, P.: Short Cut Fusion is Correct, Journal of Functional Programmind.3(4), 2003, 797-814.

Lassen, S.: Relational Reasoning About Contexts, in: Higher Order Operational Technigues in Semantics
(A. Gordon, A. Pitts, Eds.), Cambridge University Press, 1998, 91-135.

Malcolm, G.: Algebraic Data Types and Program Transformation, Science of Computer Programmirigl(2-
3), September 1990, 255-280.

Manna, Z., Ness, S., Vuillemin, J.: Inductive Methods for Proving Properties of Programs, Communications
of the ACM 16(8), August 1973, 491-502.

Moss, L., Ed.: Proceedings of the Fifth International Wohap on Coalgebraic Méibds in Computer Sci-
ence Elsevier Science, 2002, Electronic Notesin Theoretical Computer Science Volume 65.1.

Moss, L., Danner, N.: On the Foundations of Corecursion, Logic Journal of the Interest Group in Pure and
Applied Logics5(2), 1997, 231-257.
Park, D.: Fixpoint Induction and Proofs of Program Properties, Machine Intelligencge5, 1969, 59-78.

Paulson, L.: Mechanizing Coinduction and Corecursion in Higher-Order Logic, Journal of Logic and Com-
putation 7, 1997, 175-204.

Pavlovic, D.: Guarded Induction on Final Coalgebras, in: Coalgebraic Methods in Computer Scier{Be Ja-
cabs, L. Moss, H. Reichel, J. Rutten, Eds.), number 11 in Electronic Notes in Theoretical Computer Science,
Elsevier, 2000.

Peyton Jones, S.: Haskell 98 Language and Libraries: The Revised RepQambridge University Press,
2003.

Pitts, A. M.: Parametric Polymorphism and Operational Equivalence, Mathematical Structures in Computer
Sciencel0, 2000, 321-359.

Reynolds, J. C.: Theories of Programming LanguageZambridge University Press, 1998.

Sands, D.: Computing with Contexts: A Simple Approach, in: Second Workshop on Higher-Order Oper-
ational Techniques in Semantics (HOOTS(). D. Gordon, A. M. PFitts, C. L. Talcott, Eds.), vol. 10 of
Electronic Notes in Theoretical Computer Sciertelsevier Science Publishers B.V., 1998.

Sands, D.: Improvement Theory and Its Applications, in: Higher Order Operational Techniques in Semantics
(A. Gordon, A. Pitts, Eds.), Cambridge University Press, 1998, 275-306.

Sangiorgi, D.: On the Bisimulation Proof Method, Mathematical Structures in Computer Scienge1998,
447-479.

Schmidt, D. A.: Denotational Semantics: A Methodology for Language Developmg&Hyn and Bacon,
Inc., 1986.

Smyth, M. B., Plotkin, G. D.: The Category-Theoretic Solution of Recursive Domain Equations, SIAM
Journal on Computingl1(4), November 1982, 761—-783.

Turner, D. A.: Elementary Strong Functional Programming, in: Proceedings of the First International
Symposium on Functional Programming Languages in Educatinin 1022 of Lecture Notes in Computer
ScienceSpringer-Verlag, 1995, 1-13.

