
Fundamenta Informaticae XX (2005) 1–14 1

IOS Press

Proof Methods for Corecursive Programs

Jeremy Gibbons

Oxford University Computing Laboratory, UK

Graham Hutton

School of Computer Science andIT, University of Nottingham, UK

Abstract. Recursion is a well-known and powerful programming technique, with a wide variety of
applications. The dual technique of corecursion is less well-known, but is increasingly proving to be
just as useful. This article is a tutorial on the four main methods for proving properties of corecursive
programs: fixpoint induction, the approximation (or take) lemma, coinduction, and fusion.

1. Introduction

Recursion is a central concept in computing, with applications ranging from the theoretical foundations
of computation [34] to practical programming techniques [8]. In recent years, it has become increasingly
clear that the dual but less well-known concept of corecursionis just as useful [1, 4, 20, 27].

Following the work of Moss and Danner [28] on the foundations of corecursion, we use the term
corecursive programfor a function whose range is a type defined recursively as the greatest solution of
some equation. Dually, we use the term recursive programfor a function whose domain is type defined
recursively as the least solution of some equation. These definitions are rather general — in particular,
they require neither self-reference, nor patterns of definition that ensure properties such as productivity
or termination — but they will suffice for our expository purposes here.

As an example, if types are modelled as sets, then a type of infinite lists of integers can be defined as
the greatest set X for which there is a bijection X ∼= Z×X, and hence any function that produces such
an infinite list is (according to our definition) a corecursive program. Similarly, a type of finite lists can
be defined as the least set X for which X ∼= 1 + (Z×X), where 1 is a singleton set and + is disjoint
union of sets, and hence any function that consumes such a finite list is a recursive program.

For programming examples we use Haskell [32], a pure functional language with non-strict seman-
tics. Purity (or referential transparency) and non-strictness together permit substitution of equals for
equals, and hence proofs by simple equational reasoning. In addition, a semantic basis in terms of com-
plete partial orders has the convenient property that there is no distinction between least and greatest
solutions to type equations, as these notions coincide [12, 39]. For example, in this setting the equation
X ∼= 1+(Z×X) has a unique solution for X, given by the type of finite, partial (undefined after a certain
point) and infinite lists of integers. Hence, in this article recursive programs and corecursive programs are
simply functional programs that have recursively-defined types as their domain and range, respectively.

2 J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs

Historically, the basic method for proving properties of corecursive programs is fixpoint induction[2],
which is derived from the domain-theoretic approach to programming language semantics. Applying
fixpoint induction is rather tedious, but for many applications we can use the higher-level approximation
lemma[5], a recent improvement of the well-known take lemma[7]. Alternatively, we can reason directly
in terms of the structure of programs themselves and use coinduction[18]. However, the use of inductive
or coinductive methods can often be avoided altogether by using fusion [25], an algebraic law derived
from the basic pattern of corecursive definition.

This article is a tutorial on the above methods for proving properties of corecursive programs. Each
method is presented, proved to be correct, and illustrated with an example. We conclude with a com-
parison of the four methods and references to further reading. For simplicity, we restrict our attention to
corecursive programs that produce lists, but none of the four methods are specific to this type. The reader
is assumed to be familiar with the basics of recursive programming and proof (for example, see [5]), but
no prior knowledge of corecursive programming and proof is assumed.

2. The map-iterate property

Consider a recursive type of lists in which the empty list is denoted by [], and non-empty lists are
constructed using an infix operator (:) that prepends a value to a list. For example, 0 : 1 : 2 : [] is a finite
list, while the equation ones= 1 : onesdefines the infinite list ones= 1 : 1 : 1 : · · · .

A standard corecursive function for lists is iterate f, which produces an infinite list by successively
applying a function f to a seed value, and is defined by the following equation:

iterate f x = x : iterate f (f x)

(For simplicity, we avoid explicitly specifying types in this article, but they can easily be inferred from
the definitions if required.) Unwinding this definition a few steps, we see that:

iterate f x = x : f x : f (f x) : f (f (f x)) : · · ·
For example, if inc is the increment function on natural numbers, then nats = iterate inc0 defines the
infinite list nats = 0 : 1 : 2 : · · · . Another standard corecursive (and also recursive) function is map f,
which produces a list by applying a function f to each value in a list, and is defined as follows:

map f [] = []
map f (x : xs) = f x : map f xs

Unwinding this definition a few steps shows that:

map f (x0 : x1 : x2 : x3 : · · ·) = f x0 : f x1 : f x2 : f x3 : · · ·
For example, map inc natsproduces the infinite list 1 : 2 : 3 : · · · . This same list can also be produced
by the expression iterate inc (inc 0). Whereas the former expression increments each number in the
infinite list of naturals, the latter successively applies the increment function starting with the number
one. Generalising from this example yields the map-iterate property[7]:

map f (iterate f x) = iterate f (f x)

J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs 3

This equation states that iterating a function and then mapping it gives the same result as applying the
function and then iterating it, namely an infinite list of the form:

f x : f (f x) : f (f (f x)) : f (f (f (f x))) : · · ·

But how can the map-iterate property be proved? Note that the standard method of structural induction
on lists is not applicable, because there is no list argument over which induction can be performed. In
the remainder of the article we review and compare the four main methods that can be used to prove
properties of corecursive functions, using the map-iterateproperty as our running example.

3. Fixpoint induction

Fixpoint induction is derived from the domain-theoretic approach to programming language seman-
tics [38]. The basic idea in this approach is that types are complete partial orders(cpos), that is, sets
with a partial-ordering �, a least element ⊥, and limits of all non-empty chains. In turn, programs are
continuous functions, that is, functions between cpos that preserve the partial-order and limit structure.

Now consider an equation x = f x that defines a value x in terms of itself and some continuous
function f . A well-known fixpoint theorem [38] states that this equation has a least solution for x,
denoted by fix f and called the least fixpointof f , which is adopted as the semantics of the definition.
Moreover, fix f is constructed as the limit of the following infinite chain:

⊥ � f ⊥ � f (f ⊥) � f (f (f ⊥)) � ·· ·

As a simple example of this approach, consider again the equation ones= 1 : onesthat defines the
infinite list 1 : 1 : 1 : · · · . This definition can be rewritten as ones= f ones, where f is the function defined
by f xs= 1 : xs. (Verifying that a function such as f is continuous is normally just a matter of appealing to
the fact that any function definable in a programming language is necessarily continuous [38].) Hence,
the semantics of the definition is given by ones= fix f , and by the fixpoint theorem is constructed as the
limit of the infinite chain of partial lists containing increasing numbers of 1s:

⊥ � 1 : ⊥ � 1 : 1 : ⊥ � 1 : 1 : 1 : ⊥ � ·· ·

The basic method for proving properties of programs defined using fix is Scott and de Bakker’s
fixpoint induction[2]. Suppose that f is a continuous function on a cpo and that P is a chain-complete
predicate on the same cpo, that is, whenever P holds of all elements in a chain then it also holds of the
limit. Then fixpoint induction is given by the following inference rule:

P⊥ ∀x. P x ⇒ P (f x)

P (fix f)

This rule states that if the predicate holds of the least element ⊥ of the cpo, and whenever it holds of an
element x in the cpo then it also holds for f x, then the predicate also holds for fix f . Fixpoint induction
can be verified by the following simple calculation, in which the limit operator on chains is denoted by⊔

and the n-fold repeated application of a function f is denoted by f n:

4 J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs

P (fix f)
⇔ { definition of fix f }

P (
⊔

n{f n⊥})
⇐ { P is chain-complete }

∀n. P (f n⊥)
⇐ { induction on n }

P (f 0⊥) ∧ ∀n. P (f n⊥) ⇒ P (f n+1⊥)
⇔ { definition of f n }

P⊥ ∧ ∀n. P (f n⊥) ⇒ P (f (f n⊥))
⇐ { generalising f n⊥ to x }

P⊥ ∧ ∀x. P x⇒ P (f x)

As an application of fixpoint induction, let us see how it can be used to prove the map-iterateproperty
from the previous section: map f (iterate f x) = iterate f (f x). First of all, we abstract from the use of
iterateand define a predicate P on functions by the following equivalence:

P g ⇔ ∀f ,x. map f (g f x) = g f (f x)

Verifying that a predicate is chain-complete is normally just a matter of appealing to standard recipes for
constructing such predicates [38]. For example, chain-completeness of P follows from the fact that any
equation between continuous functions is chain-complete, which is easy to verify.

Using the above predicate, the map-iterate property can be written as P iterate. In turn, the seman-
tics of the function iterate is given by iterate= fix h, where h is the continuous function defined by
h g f x= x : g f (f x). Hence, the map-iterateproperty can now be written as P (fix h), which by fixpoint
induction follows from the assumptions P ⊥ and ∀g. P g⇒ P (h g), which are verified as follows (the
hint “substitutivity” refers to the fact that functions give equal results for equal arguments):

P⊥
⇔ { definition of P }

∀f ,x. map f (⊥ f x) = ⊥ f (f x)
⇔ { definition of ⊥ }

∀f ,x. map f⊥ = ⊥
⇔ { map f is strict }

true

and

J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs 5

P (h g)
⇔ { definition of P }

∀f ,x. map f (h g f x) = h g f (f x)
⇔ { definition of h }

∀f ,x. map f (x : g f (f x)) = f x : g f (f (f x))
⇔ { definition of map}

∀f ,x. f x : map f(g f (f x))) = f x : g f (f (f x))
⇐ { substitutivity }

∀f ,x. map f(g f (f x))) = g f (f (f x))
⇐ { generalising f x to y }

∀f ,y. map f(g f y) = g f (f y)
⇔ { definition of P }

P g

Note that by virtue of being an implication rather than an equivalence, fixpoint induction provides a
sufficient condition for establishing a certain form of property, but not a necessary one, and hence may
not always be applicable. For example, if P is the chain-complete predicate “is an infinite list” and f is
the continuous function f xs= 1 : xs, then P (fix f) expresses the true statement that 1 : 1 : 1 : · · · is an
infinite list, but this true statement cannot be proved using fixpoint induction because ⊥ is not an infinite
list and hence the base case P⊥ is false. However, for such examples one can always resort to reasoning
explicitly using the definition of fix f as the limit of an infinite chain of approximations.

Fixpoint induction is not specific to the type of lists, but is independent of the details of the underlying
type, requiring only the fact that the type forms a cpo. However, it is clear that fixpoint induction is a
rather low-level proof method. In particular, it is tedious to have to return to first principles and perform
proofs at the level of the fixpoint semantics of programs. It is also important to note that proofs using
fixpoint induction require careful consideration of the underlying cpos and their properties, particularly
when reasoning in the presence of partial and infinite values [10].

4. Approximation lemma

A higher-level method for proving properties of corecursive programs is the approximation lemma[5],
a recent improvement of the well-known take lemma [7]. Recall the standard function take n, which
returns the first n elements of a list, and is defined as follows:

take0 xs = []
take(n+ 1) [] = []
take(n+ 1) (x : xs) = x : take n xs

For example, take3 onesreturns the finite list 1 : 1 : 1 : []. The approximation lemma is based upon a
function approx ndefined in the same way as take n, except that the case for n = 0 is removed:

approx(n+ 1) [] = []
approx(n+ 1) (x : xs) = x : approx n xs

6 J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs

Because (n+ 1) patterns only match strictly positive integers, removing the n = 0 case means that, by
case exhaustion, approx 0 xs= ⊥ for all lists xs. For example, approx 3 onesreturns the partial list
1 : 1 : 1 : ⊥. The approximation lemma itself is given by the following equivalence:

xs = ys ⇔ ∀n. approx n xs= approx n ys

This equivalence states that two lists are equal precisely when all their approximations are equal. The
left-to-right direction is trivially true by substitutivity. For the other direction, it is easy to show that

approx0 � approx1 � approx2 � approx3 � ·· ·

is a chain that has the identity function id on lists as its limit (by induction on natural numbers and lists,
respectively), using which result the right-to-left direction can be verified as follows:

xs = ys

⇔ { definition of id }
id xs = id ys

⇔ { above result }
(
⊔

n{approx n}) xs = (
⊔

n{approx n}) ys

⇔ { continuity of application }⊔
n{approx n xs} =

⊔
n{approx n ys}

⇐ { substitutivity }
∀n. approx n xs= approx n ys

The utility of the approximation lemma is that it allows us to prove two lists equal using the simple
technique of induction on natural numbers. For example, by the approximation lemma the map-iterate
property is equivalent to the following property:

∀n. approx n(map f (iterate f x)) = approx n(iterate f (f x))

This property can now be verified by induction on n. The base case n = 0 is trivially true because
approx0 xs= ⊥ for all lists xs, while the inductive case n = m+ 1 is verified as follows:

J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs 7

approx(m+ 1) (map f (iterate f x))
= { definition of iterate}

approx(m+ 1) (map f (x : iterate f (f x)))
= { definition of map}

approx(m+ 1) (f x : map f (iterate f (f x)))
= { definition of approx}

f x : approx m(map f (iterate f (f x)))
= { induction hypothesis }

f x : approx m(iterate f (f (f x)))
= { definition of approx}

approx(m+ 1) (f x : iterate f (f (f x)))
= { definition of iterate}

approx(m+ 1) (iterate f (f x))

Unlike fixpoint induction, the approximation lemma is an equivalence and hence provides a necessary
and sufficient condition, although only for the special (but very common) case of an equality between
two lists. For such cases, using the approximation lemma has the advantage that proofs are performed at
the level of the syntax of programs, without reference to their underlying fixpoint semantics.

Replacing the use approx in the approximation lemma by take gives the take lemma, which was
popularised by Bird and Wadler’s textbook on functional programming [7]:

xs = ys ⇔ ∀n. take n xs= take n ys

The take lemma can be used to prove the same properties as the approximation lemma, but the latter
is simpler to prove and to apply. More importantly, however, the approximation lemma naturally gen-
eralises from lists to a large class of types (all polynomial types, which generalise the sum-of-product
types supported by most functional languages), whereas the take lemma does not [21].

5. Coinduction

Another high-level method for proving properties of corecursive programs is coinduction[18]. The
principle of coinduction is based upon the general notion of a bisimulation[22], which in the context of
this article is a relation R on lists that has the following property:

xs R ys ⇒

xs = ys = ⊥
∨

xs = ys = []
∨

∃v,vs,ws. xs= v : vs ∧ ys= v : ws ∧ vs R ws

This property states that two lists that are related by a bisimulation are either both undefined, both empty,
or both non-empty with heads (first elements) that are equal and tails (remaining lists of elements) that

8 J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs

are themselves related by the bisimulation. Two lists xs and ys are called bisimilar, written xs∼ ys, if
they are related by such a bisimulation. That is, we have the following definition:

xs ∼ ys ⇔ ∃R. R is a bisimulation ∧ xs R ys

Coinduction itself is given by the following equivalence:

xs = ys ⇔ xs ∼ ys

This equivalence states that two lists are equal precisely when they are bisimilar. The left-to-right di-
rection is trivially true, because the equality relation on lists is a bisimulation, as is easily verified.
Conversely, by the approximation lemma the right-to-left direction is equivalent to:

xs ∼ ys ⇒ ∀n. approx n xs= approx n ys

In turn, by making the implicit quantification over xsand ysexplicit, and moving the quantification over
n to the outermost level, the above implication is equivalent to:

∀n. (∀xs,ys. xs ∼ ys ⇒ approx n xs= approx n ys)

This property can now be verified by induction on the natural number n. (The rearrangement of quanti-
fiers is necessary to strengthen the induction hypothesis for this proof.) The base case n = 0 is trivially
true, because approx0 xs= ⊥ for all lists xs. For the inductive case n = m+ 1 there are three cases to
consider, derived from the premise xs∼ ys. The first two cases, xs= ys=⊥ and xs= ys= [], are trivially
true because approx(m+1) ⊥=⊥ and approx(m+1) [] = [] for all natural numbers m. The third case,
xs= v : vsand ys= v : wswith vs∼ ws, is verified as follows:

approx(m+ 1) (v : vs)
= { definition of approx}

v : approx m vs

= { induction hypothesis with vs∼ ws}
v : approx m ws

= { definition of approx}
approx(m+ 1) (v : ws)

The utility of coinduction is that it reduces the problem of proving that two lists are equal to the
problem of finding a bisimulation that relates the two lists. For example, by coinduction the map-iterate
property is equivalent to finding a bisimulation R that relates map f (iterate f x) and iterate f (f x). The
latter condition is easily satisfied by defining the relation R as follows:

R = {(map f (iterate f x), iterate f (f x)) | f ,x of appropriate types}

To verify that R is a bisimulation, suppose that xs R ys, which means that xs= map f (iterate f x) and
ys= iterate f (f x) for some f and x. Unfolding these expressions using the definitions for iterate and
map, we see that xs= f x : map f (iterate f (f x)) and ys= f x : iterate f (f (f x)). Because both resulting

J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs 9

expressions have the same head (f x), and their tails are related by R (with f x as the seed value rather
than x), we have shown that R is a bisimulation, which completes the proof.

Like the approximation lemma, coinduction gives a necessary and sufficient condition for the equal-
ity of two lists, and naturally generalises from lists to a large class of types [22]. However, coinduction
has the advantage that proofs directly exploit the structure of programs themselves, whereas the approx-
imation lemma relies on an auxiliary structure, namely natural numbers.

6. Fusion

The use of inductive or coinductive methods when proving properties of corecursive programs can of-
ten be avoided altogether by using fusion [25]. This method is derived from the use of the standard
corecursive function unfold p h t, defined by the following equation:

unfold p h t x = if p x then [] else h x : unfold p h t(t x)

The function unfoldencapsulates a simple pattern of corecursion for producing a list from a seed value x,
by means of three argument functions p, h, and t. If the predicate p is true for the seed, then the empty list
is produced. Otherwise the result is a non-empty list, whose head is produced by applying the function
h to the seed, and whose tail is produced by applying the function t to the seed to generate a new seed,
which is then itself unfolded in the same way. The function unfoldencapsulates the natural basic pattern
of corecursive definition (technically, it is the witness to the finality of the list type [25].)

Many familiar corecursive functions on lists can be defined using unfold. For example, the functions
iterate f and map f can be defined by the following two equations, in which falseis the constant predicate
that holds of no argument, and null is the predicate on lists that holds only of the empty list:

iterate f = unfold false id f

map f = unfold null(f ·head) tail

The basic method for proving properties of programs defined using unfold is its universal prop-
erty [25], which is given by the following equivalence:

f = unfold p h t ⇔ ∀x. f x = if p x then [] else h x : f (t x)

This equivalence states that unfold p h tis not just a solution to its defining equation, but is in fact the
uniquesolution. The left-to-right direction is trivially true, because substituting f = unfold p h tinto the
right-hand side gives the definition for unfold. Conversely, for the other direction, by substitutivity and
the approximation lemma the equation f = unfold p h tis equivalent to:

∀x,n. approx n(f x) = approx n(unfold p h t x)

This property can now be verified by induction on the natural number n, using the right-hand side of the
universal property of unfold as an assumption. The base case n = 0 is trivially true because approx0 xs
is ⊥ for all lists xs, while the inductive case n = m+ 1 is verified as follows:

10 J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs

approx(m+ 1) (f x)
= { assumption }

approx(m+ 1) (if p x then [] else h x : f (t x))
= { distribution over if }

if p x then approx(m+ 1) [] else approx(m+ 1) (h x : f (t x))
= { definition of approx}

if p x then approx(m+ 1) [] else h x : approx m(f (t x))
= { induction hypothesis }

if p x then approx(m+ 1) [] else h x : approx m(unfold p h t(t x))
= { definition of approx}

if p x then approx(m+ 1) [] else approx(m+ 1) (h x : unfold p h t(t x))
= { distribution over if }

approx(m+ 1) (if p x then [] else h x : unfold p h t(t x))
= { definition of unfold}

approx(m+ 1) (unfold p h t x)

The utility of the universal property of unfold is that it makes explicit the assumption required for a
certain pattern of proof. For specific cases, by verifying this assumption (which can typically be done
without the need for inductive or coinductive methods) we can then appeal to the universal property to
complete the proof. In this manner, the universal property of unfold encapsulates a simple pattern of
proof concerning corecursive programs, just as the function unfold itself encapsulates a simple pattern of
definition for such programs. In practice, however, a corollary of the universal property called fusion is
often preferable, which is given by the following inference rule:

p·g = p′ h·g = h′ t ·g = g· t′
unfold p h t · g = unfold p′ h′ t′

This rule states three conditions that together ensure that the composition of an unfold and a function
can be fused together to give a single unfold, and can be derived (without using any form of induction or
coinduction) from the universal property as follows:

J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs 11

unfold p h t· g = unfold p′ h′ t′

⇔ { universal property }
∀x. (unfold p h t· g) x =

if p′ x then [] else h′ x : (unfold p h t· g) (t′ x)
⇔ { definition of composition }

∀x. unfold p h t(g x) =
if p′ x then [] else h′ x : unfold p h t(g (t′ x))

⇔ { definition of unfold}
∀x. if p (g x) then [] else h (g x) : unfold p h t(t (g x)) =

if p′ x then [] else h′ x : unfold p h t(g (t′ x))
⇔ { definition of composition }

∀x. if (p·g) x then [] else (h·g) x : unfold p h t((t ·g) x) =
if p′ x then [] else h′ x : unfold p h t((g· t′) x)

⇐ { substitutivity }
p·g = p′ ∧ h·g = h′ ∧ t ·g = g· t′

For example, using fusion it is easy to show that the composition of an unfold and the function used
to generate the new seed value can always be fused together,

unfold p h t · t = unfold (p· t) (h· t) t (1)

and that the composition of a mapand an unfold can always be fused:

map f · unfold p h t = unfold p(f ·h) t (2)

Using these general fusion laws, the map-iterateproperty can be proved at a higher level than using the
other three proof methods that we have discussed in previous sections. First of all, by substitutivity and
the definition of composition, the map-iterateproperty is equivalent to the following equation:

iterate f · f = map f · iterate f

This equation can now be verified as follows:

iterate f · f

= { definition of iterate}
unfold false id f· f

= { fusion (1) }
unfold (false· f) (id · f) f

= { constant functions, composition }
unfold false(f · id) f

= { fusion (2) }
map f · unfold false id f

= { definition of iterate}
map f · iterate f

12 J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs

Being an implication, fusion is not always applicable as a proof method. However, in such cases one
can often resort to reasoning explicitly using the universal property of unfold. Moreover, both fusion and
the universal property naturally generalise from lists to a large class of types [25].

Using fusion has the advantage that proofs are performed purely algebraically, without reference
to the underlying semantics of programs and without necessitating the use of any form of induction or
coinduction. On the other hand, using fusion requires that corecursive programs are defined using unfold,
which for more complicated examples can be unnatural, or impossible [16].

7. Conclusion

We have reviewed the four main methods for proving properties of corecursive programs, namely fixpoint
induction, the approximation lemma, coinduction, and fusion. In this concluding section we compare the
four methods, and provide some references to further reading.

Fixpoint induction.Using this method, proofs proceed by induction on the chain of approximations
underlying the least fixpoint semantics of programs. It is the lowest-level of the four methods, resulting in
proofs that can be viewed as being from “first principles”. For this reason, fixpoint induction is primarily
used as a foundational tool. For example, our proofs of the other three methods presented in this article
are all founded, directly or indirectly, upon fixpoint induction. For further reading, see [11, 26, 29].

Approximation lemma.Using this method, proofs proceed by induction on the depth of the structures
being compared, which is governed by the use of an auxiliary function approx. The main appeal of the
approximation lemma is that it allows proofs to be performed using the simple technique of induction on
natural numbers. For further reading, see [5, 13, 21, 30].

Coinduction.This method directly exploits the structure of programs themselves, rather than relying
on auxiliary structures such as cpos or natural numbers. Proofs proceed by finding a bisimulation that
relates the two programs being compared. Coinduction is widely used for reasoning about concurrent
processes, and is rapidly gaining popularity for reasoning about corecursive functional programs, with a
range of variants being studied. For further reading, see [9, 18, 19, 22, 24, 31, 35, 36, 37, 40].

Fusion.This is the highest-level of the four methods, with proofs proceeding using properties of the
higher-order function unfold. The main appeal of fusion is that it allows proofs to be performed purely
equationally, without the need for induction or coinduction. Due to the need to define programs in a
stylised form using unfold, fusion is a somewhat specialist method, but is widely used in the mathematics
of program construction community. For further reading, see [3, 6, 15, 17].

Of course, the above methods do not constitute the end of the story, and new proof methods for
corecursive programs will continue to be developed and explored. For example, Pitts’ work on exploiting
parametricity to reason about types in non-strict languages such as Haskell [33] has recently been used
to give the first formal proof of correctness of short cutfusion [23], and a categorical approach based
upon universal properties has subsequently produced a simpler account [14].

Acknowledgements

We would like to thank David Sands, the anonymous referees and the guest editors of this special issue
(Alberto Pettorossi and Maurizio Proietti) for many useful comments and suggestions.

J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs 13

References

[1] Aczel, P.: Non-Well-Founded Sets, Number 14 in CSLI Lecture Notes, Stanford: CSLI Publications, 1988.

[2] de Bakker, J.: Mathematical Theory of Program Correctness, Prentice-Hall, 1980.

[3] Bartels, F.: Generalised Coinduction, Mathematical Structures in Computer Science, 13, 2003, 321–348.

[4] Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena, Number 60 in
CSLI Lecture Notes, Stanford: CSLI Publications, 1996.

[5] Bird, R.: Introduction to Functional Programming using Haskell (second edition), Prentice Hall, 1998.

[6] Bird, R., de Moor, O.: Algebra of Programming, Prentice Hall, 1997.

[7] Bird, R., Wadler, P.: An Introduction to Functional Programming, Prentice Hall, 1988.

[8] Burge, W.: Recursive Programming Techniques, Addison-Wesley, 1975.

[9] Coquand, T.: Infinite Objects in Type Theory, in: Types for Proofs and Programs(H. Barendregt, T. Nipkow,
Eds.), vol. 806 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1994, 62–78.

[10] Danielsson, N., Jansson, P.: Chasing Bottoms: A Case Study in Program Verification in the Presense of
Partial and Infinite Values, in: Proceedings of the 7th International Conference on Mathematics of Program
Construction, vol. 3125 of Lecture Notes in Computer Science, Springer, Stirling, Scotland, July 2004.

[11] Davey, B., Priestley, H.: Introduction to Lattices and Order, Cambridge University Press, 1990.

[12] Fokkinga, M. M., Meijer, E.: Program Calculation Properties of Continuous Algebras, Technical Report
CS–R9104, CWI, Amsterdam, January 1991, Available online at http://wwwhome.cs.utwente.nl/
~fokkinga/#detail_0000003528.

[13] Ghani, N., Luth, C., de Marchi, F., Power, J.: Algebras, Coalgebras, Monads and Comonads, in: Proceedings
of the 4th International Workshop on Coalgebraic Methods in Computer Science, number 44.1 in Electronic
Notes in Theoretical Computer Science, Elsevier Science, April 2001.

[14] Ghani, N., Uustalu, T., Vene, V.: Build, Augment, Destroy. Universally, Proceedings of Programming
Languages and Systems: Second Asian Symposium, LNCS 3302, Springer Verlag, 2004.

[15] Gibbons, J.: Calculating Functional Programs, in: Algebraic and Coalgebraic Methods in the Mathematics
of Program Construction, vol. 2297 of Lecture Notes in Computer Science, Springer-Verlag, January 2002,
148–203.

[16] Gibbons, J., Hutton, G., Altenkirch, T.: When is a Function a Fold or an Unfold?, in: Proceedings of the 4th
International Workshop on Coalgebraic Methods in Computer Science, number 44.1 in Electronic Notes in
Theoretical Computer Science, Elsevier Science, April 2001.

[17] Gibbons, J., Jones, G.: The Under-Appreciated Unfold, in: Proceedings of the Third ACM SIGPLAN Inter-
national Conference on Functional Programming, Baltimore, Maryland, September 1998, 273–279.

[18] Gordon, A.: A Tutorial on Co-induction and Functional Programming, in: Proceedings of the 1994 Glasgow
Workshop on Functional Programming, Springer Workshops in Computing, 1995, 78–95.

[19] Gordon, A.: Bisimilarity as a Theory of Functional Programming, BRICS Notes Series NS-95-3, Aarhus
University, 1995.

[20] Gumm, H. P., Ed.: Proceedings of the Sixth International Workshop on Coalgebraic Methods in Computer
Science, Elsevier Science, 2003, Electronic Notes in Theoretical Computer Science Volume 82.1.

14 J. Gibbons, G. Hutton / Proof Methods for Corecursive Programs

[21] Hutton, G., Gibbons, J.: The Generic Approximation Lemma, Information Processing Letters, 79(4), August
2001, 197–201.

[22] Jacobs, B., Rutten, J.: A Tutorial on (Co)Algebras and (Co)Induction, Bulletin of the European Association
for Theoretical Computer Science, 62, 1997, 222–259.

[23] Johann, P.: Short Cut Fusion is Correct, Journal of Functional Programming, 13(4), 2003, 797–814.

[24] Lassen, S.: Relational Reasoning About Contexts, in: Higher Order Operational Techniques in Semantics
(A. Gordon, A. Pitts, Eds.), Cambridge University Press, 1998, 91–135.

[25] Malcolm, G.: Algebraic Data Types and Program Transformation, Science of Computer Programming, 14(2-
3), September 1990, 255–280.

[26] Manna, Z., Ness, S., Vuillemin, J.: Inductive Methods for Proving Properties of Programs, Communications
of the ACM, 16(8), August 1973, 491–502.

[27] Moss, L., Ed.: Proceedings of the Fifth International Workshop on Coalgebraic Methods in Computer Sci-
ence, Elsevier Science, 2002, Electronic Notes in Theoretical Computer Science Volume 65.1.

[28] Moss, L., Danner, N.: On the Foundations of Corecursion, Logic Journal of the Interest Group in Pure and
Applied Logics, 5(2), 1997, 231–257.

[29] Park, D.: Fixpoint Induction and Proofs of Program Properties, Machine Intelligence, 5, 1969, 59–78.

[30] Paulson, L.: Mechanizing Coinduction and Corecursion in Higher-Order Logic, Journal of Logic and Com-
putation, 7, 1997, 175–204.

[31] Pavlovic, D.: Guarded Induction on Final Coalgebras, in: Coalgebraic Methods in Computer Science(B. Ja-
cobs, L. Moss, H. Reichel, J. Rutten, Eds.), number 11 in Electronic Notes in Theoretical Computer Science,
Elsevier, 2000.

[32] Peyton Jones, S.: Haskell 98 Language and Libraries: The Revised Report, Cambridge University Press,
2003.

[33] Pitts, A. M.: Parametric Polymorphism and Operational Equivalence, Mathematical Structures in Computer
Science, 10, 2000, 321–359.

[34] Reynolds, J. C.: Theories of Programming Languages, Cambridge University Press, 1998.

[35] Sands, D.: Computing with Contexts: A Simple Approach, in: Second Workshop on Higher-Order Oper-
ational Techniques in Semantics (HOOTS II)(A. D. Gordon, A. M. Pitts, C. L. Talcott, Eds.), vol. 10 of
Electronic Notes in Theoretical Computer Science, Elsevier Science Publishers B.V., 1998.

[36] Sands, D.: Improvement Theory and Its Applications, in: Higher Order Operational Techniques in Semantics
(A. Gordon, A. Pitts, Eds.), Cambridge University Press, 1998, 275–306.

[37] Sangiorgi, D.: On the Bisimulation Proof Method, Mathematical Structures in Computer Science, 8, 1998,
447–479.

[38] Schmidt, D. A.: Denotational Semantics: A Methodology for Language Development, Allyn and Bacon,
Inc., 1986.

[39] Smyth, M. B., Plotkin, G. D.: The Category-Theoretic Solution of Recursive Domain Equations, SIAM
Journal on Computing, 11(4), November 1982, 761–783.

[40] Turner, D. A.: Elementary Strong Functional Programming, in: Proceedings of the First International
Symposium on Functional Programming Languages in Education, vol. 1022 of Lecture Notes in Computer
Science, Springer-Verlag, 1995, 1–13.

