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Summary 

The lack of a high resolution structure for the bacterial helicase-primase complex and the 

fragmented structural information for the individual proteins have been hindering our 

detailed understanding of this crucial binary protein interaction. Two new structures for 

the helicase-interacting domain of the bacterial primases from E. coli and B. 

stearothermophilus have recently been solved and both revealed a unique and surprising 

structural similarity to the amino-terminal domain of the helicase itself. In this mini-

review the current data are discussed and important new structural and functional aspects 

of the helicase-primase interaction are highlighted. An attractive structural model with 

direct biological significance for the function of this complex and also for the 

development of new antibacterial compounds is examined. 
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Introduction 

The interaction between the bacterial replicative ring helicase (DnaB) and the primase 

(DnaG) is instrumental during the priming and elongation stages of DNA replication. 

Loading of DnaB at the bacterial replication origin (oriC) and subsequent recruitment of 

DnaG via a transient interaction with DnaB signifies the end of the initiation (priming) 

and onset of the elongation stages of DNA replication. This interaction is needed 

repeatedly to regulate the cyclic synthesis of Okazaki fragments during lagging strand 

synthesis (Tougu and Marians, 1996a). In E. coli, DnaG acts distributively by 

dissociating and re-associating to synthesize each primer for Okazaki fragment synthesis 

(Tougu et al., 1994). Alternatively, DnaG may remain bound to the newly synthesized 

primer and the single strand binding protein (SSB) and subsequently is competed off and 

released from the DNA by the χ subunit of the DNA polymerase holoenzyme III (pol. 

III), (Yuzhakov et al., 1999). In contrast to the weak and transient interaction in E. coli, 

the B.stearothermophilus DnaB-DnaG complex is stable, implying that the two proteins 

remain permanently associated and that DnaG does not leave the replisome during 

lagging strand synthesis (Bird et al., 2000). 

 

Both proteins in the complex modulate each other’s activities. DnaB affects the initiation 

specificity, stimulates primer synthesis and reduces the size of the primers synthesized by 

DnaG (Lu et al., 1996; Johnson et al., 2000; Bhattacharyya and Griep, 2000; Mitkova et 

al., 2003) while DnaG stimulates the ATPase and helicase activities of DnaB (Bird et al., 

2000). The structural details of this interaction have been somewhat limited. A 16 kDa 

carboxyl-terminal domain (P16) of DnaG mediates structurally and functionally the 
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interaction with DnaB (Tougu et al., 1994; Bird et al., 2000). DnaG-interaction sites have 

been reported to reside on the surfaces of the amino-terminal (Chang and Marians, 2000) 

and carboxyl-terminal (Lu et al., 1996) domains of E. coli DnaB, as well as the linker 

region that connects the two domains in the S. typhimurium and B. stearothermophilus 

DnaB proteins (Maurer and Wong, 1988; Stordal and Maurer, 1996; Thirlway et al., 

2004). The lack of structural information for the DnaB-DnaG complex and the 

incomplete structural information for the individual proteins are hindering our efforts to 

understand the molecular details that underpin this essential interaction. Although there 

are no high-resolution structures available for both intact proteins, crystal structures have 

been reported for the amino-terminal domains of E. coli DnaB (Fass et al., 1999; Fig. 1a) 

and B. stearothermophilus DnaG (Pan and Wigley, 2000; Fig. 1b), as well as the central 

polymerisation domain of E. coli DnaG (Keck et al., 2000; Podobnik et al., 2000; Fig. 

1b). The solution structure of the amino-terminal domain of E. coli DnaB is also available 

(Weigelt et al., 1999; Fig. 1a). Crucially the structure of the carboxyl-terminal DnaB-

interacting domain (P16) of DnaG has been a mystery until now that crystal and NMR 

structures have been reported for the E. coli and B. stearothermophilus P16 domains, 

respectively (Oakley et al., 2005; Syson et al., 2005). 

 

P16 is a structural homologue of the N-terminal domain of DnaB  

Both P16 structures revealed two-subdomains, a smaller carboxyl-terminal helix hairpin 

and a larger amino-terminal helical bundle that is structurally homologous to the unique 

amino-terminal domain of DnaB (Fig. 2a). E. coli P16 crystallised as a dimer with two 

different conformers differing in the state of a long helix (α5) that connects the two 
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subdomains. NMR spectroscopy studies revealed that the kink near M542 in conformer II 

is a crystallisation artefact and in solution P16 is mainly a monomer with a regular α5 

helix except for residues 522-527, as observed for conformer I (Oakley et al., 2005). 

Therefore, the dimerisation of E. coli P16 observed in the crystal structure is likely to 

have no biological significance. The monomeric solution structure of B. 

stearothermophilus P16 also supports this notion.  

 

The two subdomains of P16 have distinct functions 

P16 is sufficient to elicit the full stimulatory effects on the activity of DnaB (Tougu et al., 

1994; Bird et al., 2000) and mutagenesis studies have localised the DnaB-interaction 

eepitope of DnaG at the extreme carboxyl terminus (Tougu and Marians, 1996a; Tougu 

and Marians, 1996b) in what we now know is a helix hairpin. This module interacts with 

DnaB when detached from the amino-terminal subdomain but this interaction is non-

functional, as it does not elicit the characteristic stimulatory effect on the ATPase activity 

of DnaB (Syson et al., 2005). The larger amino-terminal helical bundle, that is 

structurally homologous to the amino-terminal domain of DnaB, appears to be essential 

for a functional interaction and the stimulation of DnaB activity. Therefore, the two 

subdomains of P16 have distinct functions. The helix hairpin at the carboxyl terminus 

mediates the interaction of DnaG with DnaB structurally whilst the rest of P16 mediates 

the functional effects on the activity of DnaB. 

 

A model for the DnaB-DnaG complex and the activation of DnaB 

 5



 Based upon the structural homology between the amino-terminal subdomain of P16 and 

the amino-terminal domain of DnaB an attractive model has been proposed to explain 

how DnaG interacts and activates DnaB (Syson et al., 2005; Fig. 2b). Albeit speculative 

the model is compatible with current structural and biochemical data and as we shall see 

below it provides a testable framework for further biochemical studies to verify (or not) 

its validity. The ring DnaB helicase adopts six-fold and three-fold symmetric 

conformations referred to as C6 and C3 (Yu et al., 1996; Patel and Picha, 2000). The 

biological significance of these conformations remains unclear but electron microscopy 

studies revealed that C3 (considered to be a trimer of dimers) is defined by a 

characteristic interaction of the amino-terminal domain of one monomer with the 

carboxyl-terminal domain of the neighbouring monomer within a dimeric unit. This 

interaction is repeated three times (once for each dimeric unit) around the C3 ring (Yang 

et al., 2002; Fig. 2c). The importance of the amino-terminal domain in modulating the C6 

to C3 ring transition has also been highlighted by its solution and crystal structures 

(Weigelt et al., 1999; Fass et al., 1999) and by biochemical evidence (Biswas et al., 

1994). The structural similarity between the amino-terminal subdomain of P16 and the 

amino-terminal domain of DnaB suggest that the former may be the functional equivalent 

of the latter in the DnaB-DnaG complex. The carboxyl-terminal two-helix hairpin of 

DnaG could interact with the linker that joins the two domains of DnaB and the amino-

terminal subdomain of P16 could displace the structurally homologous amino-terminal 

domain of DnaB while at the same time maintaining the interactions that preserve the C3 

ring conformation of the DnaB  ring. The structural flexibility between the two 

subdomains of P16 is compatible with this model. In the B. stearothermophilus P16 the 
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two subdomains have limited interaction suggesting that their connection is highly 

mobile allowing independent motions between the two subdomains (Syson et al., 2005). 

Similarly in the E. coli P16 the long α5 helix that connects the carboxyl-terminal hairpin 

to the rest of P16 in conformer I is flexible and could again allow independent mobility of 

the two subdomains (Oakley et al., 2005). Although conformer II is not the major 

conformer in solution and has been attributed to crystal packing forces (Oakley et al., 

2005) a tantalising question is whether it could have a biological relevance. For example, 

could conformer II correspond to the P16 conformation once bound to DnaB? Even more 

intriguingly could the differences in the connectivity of the carboxyl-terminal hairpin to 

the rest of P16 in the E. coli and B.stearothermophilus proteins explain the fact that the 

former forms a weak and transient complex whereas the latter forms a stable complex 

with DnaB? These are speculative suggestions that could be answered by hybrid P16 

proteins where the amino-terminal helical bundle of the E. Coli P16 could be fused to the 

hairpin of the B. stearothermophilus P16 and vice versa. Obviously the high resolution 

crystal structure of the DnaB-DnaG (or P16) complex will also provide key information 

to interrogate this model.  

 

The proposed model predicts the presence of a spatially conserved and functionally 

equivalent network of surface residues on the structurally homologous amino-terminal 

domain of DnaB and amino-terminal subdomain of P16. Such network of residues on the 

surface of DnaB will be crucial for the integrity of the C3 ring conformation while on the 

surface of DnaG it will also be involved in mediating both the integrity of the C3 ring 

conformation and the stimulatory effects on the ATPase activity of DnaB in the complex. 
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This model could potentially explain the observation that in B. stearothermophilus 

binding of DnaG to DnaB induces exclusively the C3 ring conformation and is also 

consistent with the DnaB6-DnaG3 complex observed in E. coli and B. stearothermophilus 

(Mitkova et al., 2003; Bird et al., 2000), as well as the DnaB6-DnaG2 and DnaB6-DnaG1  

complexes observed in B. stearothermophilus (Thirlway et al., 2004). The ‘freezing’ of 

DnaB in the C3 ring conformation is not a unique feature of DnaG binding only as the 

same has been observed when the helicase-loader DnaC binds to DnaB (Barcena et al., 

2001). 

 

A network of spatially conserved surface residues could be the key to the molecular 

details of the DnaB-DnaG interaction 

The poor primary sequence conservation between P16 and the amino-terminal domain of 

DnaB makes it almost impossible to identify a network of spatially conserved surface 

residues simply by an amino acid sequence comparison. However, with the E. coli and B. 

stearothermophilus P16 structures now available structural superpositions of the atomic 

coordinates between the two P16 structures and the amino-terminal domain of E.coli 

DnaB can be carried out. These comparisons identified a strikingly conserved network of 

surface residues that could potentially decipher the molecular details that underpin the 

DnaB-DnaG interaction. Structural comparisons between E. coli and B. 

stearothermophilus P16 proteins with the amino-terminal domain of DnaB, followed by 

an amino acid sequence comparison between E. coli and B. stearothermophilus P16 

proteins are shown in Fig. 3a. Spatially conserved residues were identified by these 

comparisons and these are shown in Fig. 3b. These residues form a strikingly conserved 
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network on the surfaces of the P16 proteins and the amino-terminal domain of E. coli 

DnaB and could form the interaction hot spot of the DnaB-DnaG association. 

Remarkably they are reasonably well conserved in DnaB proteins from fourteen bacterial 

species (Fig. 3c). Two of these amino acids (E33 and D82 in E. coli) are part of a tetrad 

of residues that were found to be completely conserved in the DnaB amino-terminal 

domains from different organisms (Weigelt et al., 1999). Interestingly, two other residues 

(E31 and Y104) that have been reported to mediate subtle effects upon the E. coli DnaB-

DnaG interaction (Chang and Marians, 2000) reside very close to residues (A32, E33 and 

E107, L108) involved in the putative interaction network (Fig. 3b, c). The equivalent 

tyrosine (Y88) in B. stearothermophilus DnaB was also reported to affect directly the 

DnaB-DnaG interaction when mutated to an alanine (Thirlway et al., 2004). All the 

residues of the key network of contacts proposed here should be prime targets for 

mutagenesis studies to examine their contributions to the C6 to C3 (and vice versa) ring 

transitions, the DnaG to DnaB and DnaB to DnaG modulatory effects. These 

observations raise a number of important questions: 

 (i) Are the residues shown in Fig.3 essential for the C3 ring conformation and do they 

affect the ATPase and helicase activities of DnaB? (ii) Which of these residues 

participate directly in the functional modulation of the DnaB activity by DnaG? (iii) 

Which of these residues participate in the functional modulation of the DnaG activity by 

DnaB? (iv) Are the P16 domain of DnaG and amino-terminal domain of DnaB 

functionally interchangeable? (v) Can we develop small molecules that interfere with this 

network to abolish the interaction? 
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Evolution of the bacterial primase-helicase systems 

Although the bacterial primase and helicase activities reside on separate polypeptides 

some bacteriophages like T7 , T3 and P4 possess a single polypeptide with both primase 

and helicase activities in separate amino- and carboxyl-terminal domains, respectively 

(Frick and Richardson, 2001; Patel and Pitcha, 2000). Phylogenetic analysis of the 

primases and associated helicases has indicated a common origin for all one component 

primase-helicase systems (Ilyina et al., 1992). Such systems may have arisen either by 

fusion of separate ancestral primase and helicase genes or by initial duplication of an 

ancestral gene encoding a bi-functional primase-helicase gene followed by divergence 

with one gene retaining the primase and the other the helicase activity. The striking 

structural homology between the carboxyl-terminal domain of DnaG and the amino-

terminal domain of DnaB support a slightly different scenario whereby the gene 

duplication applies only to the linker region connecting the primase and helicase 

activities in the ancestral bi-functional gene, followed by gene separation leaving one 

copy of the linker region at the carboxyl-terminus of the primase and another at the 

amino-terminus of the helicase. Subsequent divergence of the linker region resulted in 

two structurally/functionally homologous domains on separate DnaG and DnaB 

polypeptides (Fig. 4). Early on in evolution some bacteriophages like T7 and T3 would 

have assimilated the ancestral bi-functional bacterial gene in their genomes whereas later 

on in evolution other bacteriophages like T4 would have assimilated the separate 

activities. 

 

 10



The separation of the two activities has also resulted in architectural differences between 

the binary DnaB-DnaG and the bi-functional one component complexes. The latter has an 

obvious 1:1 stoichiometry for the two linked activities whereas the former has mainly a 

DnaB6-DnaG3 stoichiometry (Bird et al., 2000; Mitkova et al., 2003), with a minority of 

stoichiometrically different complexes (DnaB6-DnaG2 and DnaB6-DnaG1) also present in 

the B. stearothermophilus system (Thirlway et al., 2004). Separation of the helicase 

domain of the bi-functional T7 gp4 protein resulted in a helicase that crystallised as a ring 

hexamer (Sawaya et al., 1999; Singleton et al., 2000) whereas the full length bi-

functional T7 gp4 protein crystallised as a heptamer despite the presence of a mixed 

population of hexamers and heptamers in solution (Toth et al., 2003). The biological 

significance of these mixed oligomers in both the one component bacteriophage and two 

component bacterial primase-helicase systems is not clear at present. They may (or not) 

all be functionally competent but utilised for different functions during DNA replication. 

More juxtaposed primases relative to the associated helicase may simply increase, whilst 

less primases may decrease, the rate of primer synthesis if required. Indeed the full length 

T7 gp4 protein exhibits better primer synthesis activity than the isolated primase 

fragment (Frick and Richardson, 1999). A slower rate of primer synthesis may be 

required during primosomal assembly and initiation either at oriC or in the restart 

replisome, relative to normal elongation.  

 

The helicase-primase interaction: a target for antibiotic development 

DNA replication is the most basic of functions in all biology and should be a prime target 

for antibiotic development. It is the target of the bactericidal fluoroquinolone class of 
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antibiotics that interfere with the DNA gyrase and topoisomerase IV activities but there 

are no other marketed drugs targeting other components of the replication machinery. 

Novel inhibitors have been reported for the PolC of gram-positive bacteria (Daly et al., 

2000) and for the binary interaction between a prototypic pair ORF104 and DnaI (the 

putative helicase loader in gram –positive bacteria) in S. aureus (Liu et al., 2004).  

Both the DnaB and DnaG proteins, as well as their binary interaction, are essential for 

bacterial survival. Inhibition of either activity (or the formation of the DnaB-DnaG 

complex) will be detrimental to bacterial survival and thus these proteins should be 

legitimate targets for antibiotic development. Specific nucleotide analogues and also 

small molecules that target the primase activity or primase-helicase interaction have been 

reported (Moore et al., 2002; Hedge et al., 2004; Zhang et al., 2002). Our increasingly 

better understanding of protein-protein interfaces and the existence of interaction ‘hot 

spots’ (Halperin et al., 2004) render protein complexes feasible targets for the 

development of novel antagonistic peptidomimetics and small molecule inhibitors 

(Cochran, 2001; Cochran, 2000; Zhao and Chmielewski, 2005). The new P16 structures 

and also the potential identification of a spatially conserved interaction network of 

residues on the surfaces of P16 and the amino-terminal domain of DnaB provide us with 

new leads for the development of antagonist small molecules that could interfere with 

this network thus abolishing the essential primase-helicase interaction. Experimental 

screening and structure-based virtual screening approaches will benefit from the recent 

determination of the new P16 structures.  

 

Epilogue 
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The new P16 structures and their structural homology to the amino-terminal of DnaB 

suggest a common structural/functional module. In the absence of the primase the amino-

terminal domain of the helicase is the active module whereas in the presence of the 

primase this role is taken up by the carboxyl-terminal domain of the primase. New lines 

of investigation are now obvious to test this notion and could also re-focus rational drug 

development approaches that target this ubiquitous and essential bacterial interaction. 

 

Acknowledgements 

I thank Max Paoli for his valuable comments on the manuscript. 

Ed Egelman has kindly provided the C3 DnaB model shown in Fig. 2. 

 13



References 

Barchena, M., Ruiz, T., Donate, L.E., Brown, S.E., Dixon, N.E., Radermacher, M. and 

Carazo, J.M. (2001). The DnaB-DnaC complex: a structure based on dimers assembled 

around an occluded channel. EMBO J., 20, 1462-1468. 

 

Bhattacharyya, S. and Griep, M.A. (2000). DnaB helicase affects the initiation specificity 

of Escherichia coli primase on single-stranded DNA templates. Biochem. 39, 745-752. 

 

Bird, L.E., Pan, H., Soultanas, P.and Wigley, D.B. (2000). Mapping protein – protein 

interactions within a stable complex of DNA primase and DnaB helicase from Bacillus 

stearothermophilus, Biochem., 39, 171-182. 

 

Biswas, S.B., Chen, P.H. and Biswas, E.E. (1994). Structure and function of Escherichia 

coli DnaB protein: role of the N-terminal domain in helicase activity. Biochem., 33, 

11307-11314. 

 

Chang, P. and Marians, K.J. (2000). Identification of a region of Escherichia coli DnaB 

required for functional interaction with DnaG at the replication fork. J. Biol. Chem., 275, 

26187-261195. 

 

Cochran, A.G. (2000). Antagonists of protein-protein interactions. Chem. & Biol., 7, 

R85-R94. 

 

 14



Cochran, A.G. (2001). Protein-protein interfaces: mimics and inhibitors. Curr. Opin. 

Chem. Biol., 5, 645-659. 

 

Daly, J.S., Giehl, T.J., brown, N.C., Zhi, C., Wright, G.E. and Ellison, R.T. 3rd. (2000). In 

vitro antimicrobial activities of novel anilinouracils which selectively inhibit DNA 

polymerase III of gram-positive bacteria. Antimicrob. Agents Chemother. 44(8), 2217-

2221. 

 

Fass, D., Bogden, C.E., and Berger, J.M. (1999). Crystal structure of the N-terminal 

domain of the DnaB hexameric helicase. Structure, 7, 691-698. 

 

Frick, D.N. and Richardson, C.C. (1999). Interaction of bacteriophage T7 gebe 4 primase 

with its template recognition site. J. Biol. Chem., 274, 35889-35898. 

 

Frick, D.N. and Richardson, C.C. (2001). DNA primases. Ann. Rev. Biochem., 70, 39-

80. 

 

Halperin, I., Wolfson, H. and Nussinov, R. (2004). Protein-protein interactions: coupling 

of structurally conserved residues and of hot spots across interfaces. Implications for 

docking. Structure, 12, 1027-1038. 

 

 15



Hegde, V.R., Pu, H., Patel, M., Black, T., Soriano, A., Zhao, W., Gullo, V.P. and Chan, 

T.M. (2004). Two new bacterial DNA primase inhibitors from the plant Polygonum 

cuspidatum. Biooragnic & Med. Chem. Letters, 14, 2275-2277. 

 

Ilyina, T.V., Gorbalenya, A.E. and Koonin, E.V. (1992). Organization and evolution of 

bacterial and bacteriophage primase-helicase systems. J. Mol. Evolution, 34, 351-357. 

 

Johnson, S.K., Bhattacharyya, S. and Griep, M.A. (2000). DnaB helicase stimulates 

primer synthesis activity on short oligonucleotide templates. 39, 736-744. 

 

Keck, J.L., Roche, D.D., Lynch, A.S. and Berger, J.M. (2000). Structure of the RNA 

polymerase domain of E.coli primase. Science, 287, 2482-2486. 

 

Liu , J., Dehbi, M., Moaeck, G., Archin, F., Bauda, P., et al, (2004). Antimicrobial drug 

discovery through bacteriophage genomics. Nat. Biotech., 22, 185-191. 

 

Lu, Y.B., Ratnakar, P.V.A.L., Mohanty, B.K. and Bastia, D. (1996). Direct physical 

interaction between DnaG primase and DnaB helicase of Escherichia coli is necessary for 

optimal synthesis of primer RNA. Proc. Natl. Acad. Sci. USA, 93, 12902-12907. 

 

Maurer, R. and Wong, A. (1988). Dominant-lethal mutations in the dnaB helicase gene of 

Salmonella typhimurium. J. Bacteriol., 170, 3682-3688. 

 

 16



Mitkova, A.V., Khopde, S.M. and Biswas, S.B. (2003). Mechanism and stoichiometry of 

interaction of DnaG primase with DnaB helicase of Escherichia coli in RNA primer 

synthesis. J. Biol. Chem., 278, 52253-52261. 

 

Moore, C.L., Chiaramonte, M., Higgins, T. and Kuchta, R.D. (2002). Synthesis of 

nucleotide analogues that potently and selectively inhibit human DNA primase. 

Biochem., 41, 140066-14075. 

 

Oakley, A.J., Loscha, K.V., Schaeffer, P. M., Liepinsh, E., Pintacuda, G., Wilce, M.C.J., 

Otting, G. and Nixon, N.E. (2005). Crystal and solution structures of the helicase-binding 

domain of Escherichia coli primase. J. Biol. Chem., In press. 

 

Pan, H. and Wigley, D.B. (2000). Structure of the zinc-binding domain of Bacillus 

stearothermophilus DNA primase. Structure, 8, 231-239.  

 

Patel, S.S. and Pitcha, K.M. (2000). Structure and function of hexameric helicases. Ann. 

Rev. Biochem., 69, 651-697. 

 

Podobnik, M., McInerney, P., O’Donnell, M. and Kuriyan, J. (2000). A TOPRIM domain 

in the crystal structure of the catalytic core of Escherichia coli primase confirms a 

structural link to DNA topoisomerases. J. Mol. Biol., 300, 353-362. 

 

 17



Sawaya, M.R., Guo, S., Tabor, S., Richardson, C.C. and Ellenberger, T. (1999). Crystal 

structure of the helicase domain from the replicative helicase-primase of bacteriophage 

T7. Cell, 99, 167-177. 

 

Singleton, M.R., Sawaya, M.R., Ellenberger, T. and Wigley, D.B. (2000). Crystal 

structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of 

nucleotides. Cell, 101, 589-600. 

 

Stordal, L. and Maurer, R. (1996). Defect in general priming conferred by linker region 

mutants of Escherichia coli DnaB. J. Bacteriol., 178, 4620-4627. 

 

Syson, K., Thirlway, J., Soultanas, P. and Waltho, J.P. (2005). The solution structure of 

the helicase-interaction domain of the primase DnaG: a model for the helicase activation. 

Structure, In press. 

 

Thirlway, J., Turner, I.J., Gibson, C.T., Gardiner, L., Brady, K., Allen, S., Roberts, C.J. 

and Soultanas, P. (2004). DnaG interacts with a linker region that joins the N- and C-

terminal domains of DnaB and induces the formation of 3-fold symmetric rings. Nucleic 

Acids Res., 32, 2977-2986. 

 

Toth, E.A., Li, Y., Sawaya, M.R., Cheng, Y. and Ellenberger, T. (2003). The crystal 

structure of the bifunctionaol primase-helicase of bacteriophage T7. Mol. Cell, 12, 1113-

1123. 

 18



 

Tougu, K. and Marians, K.J. (1996a). The interaction between helicase and primase sets 

the replications fork clock. J. Biol. Chem., 271, 21398-21405.  

 

Tougu, K. and Marians, K.J. (1996b). The extreme C terminus of primase is required for 

interaction with DnaB at the replication fork. J. Biol. Chem., 271, 21391-21397. 

 

Tougu, K., Peng, H. and Marians, K.J. (1994). Identification of a domain of Escherichia 

coli primase required for functional interaction with the DnaB helicase at the replication 

fork. J. Biol. Chem., 269, 4675-4682. 

 

Weigelt, J., Brown, S.E., Miles, C.S., Dixon, N.E. and Otting,G. (1999). NMR structure 

of the N-terminal domain of E. coli DnaB helicase: implications for structure 

rearrangements in the helicase hexamer. Structure, 7, 681-690. 

 

Yang, S., Yu, X., VanLoocl, M.S., Jezewska, M.J., Bujalowski, W. and Egelman, E.H. 

(2002). Flexibility of the rings: structural asymmetry in the DnaB hexameric helicase. J. 

Mol. Biol., 321, 839-849. 

 

Yu, X., Jezewska, M.J., Bujalowski, W. and Egelman, E.H. (1996). The hexameric E. 

coli DnaB helicase can exist in different quaternary states. J. Mol. Biol., 259, 7-14. 

 

 19



Yuzhakov, A., Kelman, Z. and O’Donnell, M. (1999). Trading places on DNA – A three-

point switch underlies primer handoff from primase to the replicative DNA polymerase. 

Cell, 96, 153-163. 

 

Zhang, Y., Yang, F., Kao, Y.Y., Kurilla, M.G., pomliano, D.L. and Dicker, I.B. (2002). 

Homogenous assays for Escherichia coli DnaB-stimulated DnaG primase and DnaB 

helicase and their use in screening for chemical inhibitors. Anal. Biochem., 304, 174-179. 

 

Zhao, L. and Chmielewski, J. (2005). Inhibiting protein-protein interactions using 

designed molecules. Curr. Opin. Struct. Biol., 15, 31-34. 

 

 20



Figures 

Figure 1 

a. A schematic representation of the two domain structure of the DnaB helicase and the 

solution (pdb: 1JWE) and crystal (pdb: 1b79) structures of the amino-terminal domain of 

E. coli DnaB. 

b. A schematic representation of the domain structure of the DnaG primase and the 

crystal structures of the amino-terminal (pdb: 1D0Q) and central polymerisation (pdb: 

1DD9) domains of the B. stearothermophilus and E. coli DnaG proteins, respectively. 

The Zn atom in the amino-terminal domain is indicated by a red dot. Structures for the 

DnaB-interacting carboxyl-terminal P16 domain from the E. coli and B. 

stearothermophilus DnaG proteins have been solved recently (see Fig. 2) and are the 

subject of this minireview.  

 

Figure 2 

a. The P16 structures of the B. stearothermophilus and E. coli (pdb: 1T3W) DnaG 

proteins consist of two subdomains: a carboxyl-terminal hairpin (cyan) and an amino 

terminal helical bundle (green). The latter is structurally similar to the amino-terminal 

domain (P17) of the E. coli DnaB. 

b. A speculative model for the interaction of P16 with the C3 ring of the DnaB helicase. 

P16 binds to the linker region that joins the two domains of DnaB via its carboxyl-

terminal hairpin and the amino-terminal subdomain of P16 displaces the 

structurally/functionally similar P17 domain of DnaB thus maintaining the C3 ring 

conformation. 
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c. A view of the C3 DnaB ring along the three-fold symmetry axis. The ring adopts a 

trimer of dimers conformation with three amino-terminal domains (2N, 4N and 6N) 

making contacts with neighbouring carboxyl-terminal domains (1H, 3H and 5H) as 

indicated by red asterisks (Yang at el., 2002). 

 

Figure 3 

a. The locations of spatially conserved residues (shown in blue) on the surfaces of the E. 

coli P17 domain (top left and right), the amino-terminal subdomain of the B. 

stearothermophilus P16 (green) and the equivalent subdomain of the E. coli P16 (red). 

b. The network of surface residues that could potentially participate in the DnaB-DnaG 

interaction. Identical residues in all three proteins (shown in blue in panel a) are indicated 

by ν and similar residues by +. 

b. The identical residues (ν) from panel b are reasonably well conserved in the amino-

terminal domains of many bacterial DnaB helicases (Sty: S. typhimurium, Hin: H. 

influenzae, Bsu: B. subtilis, Mle: M. leprae, Mtu: M. tuberculosis, Rma: R. marinus, Tpa: 

T. pallidum, Ssp: Synechocystis, Ctr: C. trachomatis, Osi: O. sinensis, Bdu: B. 

burgdorferi, Scl: S. clavuligerus, Aae: A. aeolicus, Hpy: H. pylori). Conservation is 

indicated by ν whereas non-conserved residues are reported.  

 

Figure 4 

Schematic diagram showing the evolution of two separate primase and helicase activities 

from a single ancestral gene. The ancestral gene encoded a bi-functional protein with the 

primase at the amino-terminus (green) and the helicase at the carboxyl-terminus (blue) 
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linked together by a linker region (pink). Duplication of the linker region followed by 

gene separation and divergence resulted in two separate DnaG and DnaB proteins. 
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