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Abstract—In a previous paper the authors argued the case ~ The biological immune system is a complex system of
for incorporating ideas from innate immunity into artificial  cells of different types interacting with each other and the
immune systems (AlSs) and presented an outline for a concep- tissye in which they reside. The key elements of the system
tual framework for such systems. A number of key general I . | d fi bined with th .
properties observed in the biological innate and adaptive are ce.s, signals and antigen, com me V\," e environ-
immune Systems were h|gh||ghted’ and how such properties ment, tissue. Ce||S ha.Ve access to the|r environment throug
might be instantiated in artificial systems was discussed in antigen and signals. Essentially, signals provide cell wi
detail. The next logical step is to take these ideas and build a information on thebehaviourof entities in their environment,
software system with which AlSs with these properties can be \hije antigen provides cells with information on thieucture
implemented and experimentally evaluated. This paper reports of these entities. In the biological system structure régleat
on the results of that step - thel i bti ssue system. ) ) : g. y . ’

an antigenic level and behaviour at a signal level are tghtl
I. INTRODUCTION coupled. If the behaviour of a cell changes then so does
libtissue is a software system for implementing and'ts antigen profile and vice versa. Part of the mot_lvatlon for
the research presented here comes from a desire to better

evaluating AIS algorithms on real-world monitoring and ; . .
control problems. AIS algorithms are implemented as multignderstand how information from these two levels determine

agent systems of cells, antigen and signals interactinigirwit the dynamics of the immune system.
tissue compartments. Input data is provided by sensorswhic A I iding inf " behavi ianal
monitor a system under surveillance, and cells are activeclﬂI S Well as providing information on behaviour, signais

able to affect the monitored system through response me _sg E;%V;d% ar Cgfnt;()ls-?eighigfrg fg;tgr:]n.tr’]gz sg/ sti(r)nmcelgs.
anisms.l i bti ssue provides ageneral implementational viou Ing : ; y piex

framework within which many different AIS algorithms Cansignalling networks which are actively maintained between
be instantiated, rather thanc [1]i bt i ssue is being used cells. A cell's behaviour can be seen in terms of the funstion

at the University of Nottingham to explore the applicatidn 0@ cell performs. Of particular interest are the functions

a range of novel immune-inspired algorithms to problems iﬂf gnugen processing, S|_gnal processing, cellular _blgldm
intrusion detection. antigen matching and antigen response. Simple antigen pro-

A brief review of the biological and conceptual views thatCeSSing cpnsists C.)f twp steps: antiggn ingestion and antige
underpin the design ofi bti ssue is given in Section Il, presentation. During ingestion, antigen is transferednf_ro
more detailed background information can be found in gw extragellu'lar space 0 the mtleno'r of the cell. During
previous paper [2]. This is then followed by a deta“eooresentanon, internalised antigen is displayed on thiaser

description of the i bt i ssue implementation in Section Ill. of the cell. Additional manipulation of the antigen whilst

i bt i ssue has grown into a fairly complex software system'ns'de the cell is also possible. A specialised class ofscell

and its use is better understood in the context of ex::1mplecs""”ed APCs performs antigen processing in the body. Signal

Thus, Section IV shows howi bt i ssue can be applied to processing refers to the ability of a cell to have its behawio

a real-world problem in computer security, and Section \ipfluenced th_rough the level of a signal, such as a cytokine
describes the implementation of a simple example algorith ;&(E)Drmonz 'B the exstfacelllular spfa_<|:_e.h (fontrol I(I)f Ecsbgy
usingl i bti ssue. An analysis and evaluation of this algo- 'ds an d angerl |gnfatrs]_, oro elper cells by S
rithm are then presented in Section VI. The paper conclugB&PVIde 9ood examples ot this.

with a brief summary and discussion of future work in

Section VII. While signals allow cells to influence each other without

coming into contact, many immune system processes involve
I1. APPLYING INNATE IMMUNITY interactions between cells which require contact. Celtglbi
with each other through the action of adhesion molecules

. ) ) . . . %hd receptors on their surfaces. Antigen matching, thébil
ical processes in detail and then discuss these biologioal Pof certain classes of receptors, for example TcRs, to only

et o, sonceff actvated by speic pters of anigen s one examp
Y P of this. Antigen matching within a particular context leads

itgmi\;ebr: Ihnge%?epiigggf?él?gf;%ltﬁ;? :n%”[e;]ig?}r&?;ito cells mounting a response, such as the initiation of the
disgcussions :;md explanations of the biological terminglo complement cascade. This response has an impact on the
P 9 npiog environment, causing other cells to change their behaviour
Jamie Twycross, jpt@cs.nott.ac.uk (corresponding authami Uwe and_ so their structure, and closes the loop between cell and
Aickelin, uxa@cs.nott.ac.uk, are at the University of Naggham, U.K. environment.



[1l. SYSTEM IMPLEMENTATION A. libtissue clients

l'i btissue clients are of three types: antigen, signal and

The aim of the research presented here is to build @sponse. Antigen clients collect and transform data intb a
software system which allows researchers to implement ag@n which are forwarded tola bt i ssue server. Currently,
analyse novel AIS algorithms and apply them to real-worl@ systrace antigen client has been implemented which
problems. This clearly translates into three separatesaka cqjlects process system calls (syscalls) usipgt r ace [4].
functionality: algorithm implementation, algorithm agsis  Syscalls are a low-level mechanism by which applications
and algorithm application. This section begins by desegbi request system services such as peripheral 1/0 or memory
how the overall architecture dfi bti ssue delivers these allocation from an operating system_ S|gna| clients manito
functionalities. It then goes on to present in as much texini system behaviour and provide an AIS running on the tissue
detail as space permits how these functionalities havelgtu server with input signals. A process monitor signal client,

been implemented. which monitors a process and its children and records
statistics such as CPU and memory usage, and a network
_ monitored hosts ~libtissue clients libtissue server signal client, which monitors network interface statiststich

as bytes per second, have been implemented. Two response
| clients have been implemented, one which simply logs an

| : : anti : [T

| ; ; gen ; > antigen store : .

! b ] P I el alert, and another which allows an active response through

T oo - the modification of asystrace syscall policy. All of these

! [ operating } ! response ! ! cells o . : y y- p- y .

posstem S LT D clients are designed to be used in realtime experiments and

; Lo o I e for data collection for offline experiments wittcr epl ay.

| inetworkng: || signal > Signal store | . The implementation is designed to allow _varied AIS algo-

S S Do A rithms to be evaluated on real-world, realtime systems and

Y So e problems. When testing IDSs it is common to use preexisting
data source data representation AIS algorithm

datasets such as the Lincoln Labs dataset [5]. However, the
Fig. 1. The architecture ofi bt i ssue. | i bt i ssue clients monitor a host Projectl i bti ssue has been built for is focused on combin-
and provide input data to ki bt i ssue server and AIS algorithm. Clients ing measurements from a number of different concurrent data
also allow algorithms to change the state of the monitored. host sources. Preexisting datasets which contain all the nagess
sources are not available. Therefore, to facilitate expen:
libtissue has a client/server architecture pictured irfation, alibtissue replay client, calledt crepl ay, was
Figure 1. An AIS algorithm is implemented as part of adlso implemented. This client reads in log files gathereohfro
l'i btissue server, and ibtissue clients provide input previous realtime runs of antigen and signal clients, asd al
data to the algorithm and response mechanisms which charfifis the facility to read logfiles generated byr ace [6].
the state of the monitored system. This client/server techi It then sends these logs tolabti ssue server. Variable
ture separates data collection by thet i ssue clients from replay rates are available, allowing data collected from a
data processing by thei bti ssue servers and allows for realtime session to be used to perform many experiments
relatively easy extensibility and testing of algorithmsrew  quickly. Having such a replay facility is important in terfs
data sources.i bti ssue is coded in C as a Linux shared reproducibility of experiments. In this paper, all expegintal
library with client and server APIs, allowing new antigenruns are scripts which take data and parameter files as input
and signal sources to be easily added itot i ssue servers and run a tissue server andr epl ay client.
from a programmatic perspective. Becaudebti ssue is o
implemented as a library, algorithms can be compiled arfg- libtissue servers
run on other machines with no modification. Client/server A |ibtissue server is in fact several threaded pro-
communication is socket-based, allowing clients and ssrvecesses running asynchronously. An initialisation routisie
to potentially run on separate machines, for example a bigrfgst called which creates a tissue compartment based on
or antigen client may in fact be a remote network monitor.user-supplied parameters. During initialisation a thrésad
AIS algorithms are implemented within ki bti ssue also started to handle connections between the server and
server as multiagent systems of cells. Cells exist withihi bti ssue clients, and this thread itself starts a separate
an environment, called a tissue compartment, along withiread for each connected client. After initialisation|Isse
other cells, antigen and signals. The problem to which thée characteristics of which are specified by the user, are
algorithm is being applied is represented bibti ssue created and initialised, and the tissue compartment ptgulila
as antigen and signals. Cells express various repertofiesvdth these cells. Cells in the tissue compartment then cycle
receptors and producers which allow them to interact witnd input data is provided by connecteddt i ssue clients.
antigen and control other cells through signalling network 1) Tissue compartment§hel i bti ssue server provides
l'i btissue allows data on implemented algorithms to bea multiagent simulation engine in which AIS algorithms
collected and logged, allowing for experimental analydis acan be implemented. At the centre of this simulation is the
the system. concept of a tissue compartment. A tissue compartment is



the environment in which cells, sighals and antigen interacexperimental approach is more often adopteidot i ssue

As well as housing cells, the maximum number of which ismplements probes which periodically sample and log data
determined by thenax_cells parameter, each tissue compartfrom a tissue compartment. Sampling is necessary, since
ment has a fixed-size antigen store, set by _antigen  even with simple algorithms such as the one described in
parameter, where antigen provided Ibybt i ssue clients is  Section V below it is infeasible in terms of storage space and
placed. The tissue compartment also stores a fixed-numlgarformance to log all of the data produced. Additionally,
of signals, set by thenax_cytokines parameter, the levels of since any experiment will require only certain data, the
which are set either by signal tissue clients or cells. details of what is logged are left to the user, who provides

Input data can undergo some preprocessing before emerﬁ\‘@robe callback function. The rate at which this callback is
a tissue compartment. As well as representing the targdtn, and so the rate at which data is sampled, is defined by
domain problem as antigen and signals, one of the roles B¥e probe.rate parameter. Probes allow data to be efficie_ntly
li bti ssue is to frame it in a tnore biological way in the gathered and ease the experimental evaluation of algaithm
following sense. The biological systems which biologigall ~ 2) libtissue cells:li bti ssue cells, like tissue compart-
inspired algorithms are based upon are specific for a patwents, have antigen and signal stores, the sizes of which
ticular environment with particular characteristics. Fbe  are set by thenum_antigen and num_cytokines parameters.
immune system these characteristics include rate of antigeThey also have a number of different receptors and producers
uniqueness of antigen and antigen turnoverbti ssue  which allow them to interact with others cells, antigen and
implements these functions by allowing the preprocessirgignals in the tissue compartment. Currently, four types of
of data froml i bti ssue clients before it enters the tissue,receptors have been implemented: antigen, cytokine, cell
controlled by a number of user-defined parameters. Thgnhd VR receptors. Antigen receptors allow cells to transfer
antigen_multiplier parameter determines the number of copieantigen from the tissue compartment to their own internal
of an incoming antigen placed into the tissue antigen storagantigen store. Cytokine receptors allow cells to read s$igna
It was found necessary to have such a parameter since,l@gels in the compartment. Cell receptors allow cells tadbin
will be seen, datum in real-world problems often occur afo other cells. Binding is necessary for VR receptors to be
a low frequency. Biologically, it is the case that a certairactivated, which match antigen presented on another cell.
level of antigen is necessary to simulate the system, this i&ntigen from a cell’s internal store are presented on antige
a single unique antigen will not perturb the immune systerproducers, one of the three types of producers currently
much. Seen from the level of the pathogen, which is made umplemented. The other two types, response and cytokine
of repeated protein structures and reproduces itself phlti producers, allow cells to communicate with response dient
times, this is also clear. The multiplicity of antigen seeims and to change signal levels in the tissue compartment and
be an important property of the biological immune system. lhence control the behaviour of cells with cytokine receptor
essence, thantigen_multiplier parameter allows$i bti ssue  respectively.
to emulate this property for problems which have differing \wnjle |ibtissue provides the basic building blocks
degrees of multiplicity in their input data, and its value isor modelling biological cells in terms of receptors and
therefore problem dependent. producers, the details of their actual configuration onscell

Another important concept related to antigen multiplicityand how cells behave in response to them is specified by the
is that of antigen persistence. In the biological systeni-induser.|i bti ssue implements a simple scheduler which is
vidual antigen do not persist indefinitely, but instead ¢hisr periodically called at a rate defined by thell_.update_rate
a turnover of antigen. This is provided for by bti ssue parameter. When called, the scheduler, taking the cells in a
on one level through the limitation of the size of a tissueandom order, first sets the values of the receptors for all
compartment’s antigen store by thex_antigen parameter, of the cells. A user-defined cell cycle callback function is
and can be seen by tracing the transit of antigen that atleen executed for each cell. This function is essentially th
received by a i bti ssue server. After preprocessing by the controller for the cell, and determines how the actions ®f it
l'i btissue server as detailed above, new antigen, multipliedeceptors and producers are related. Once all of the calibac
by the antigen_multiplier parameter, will simply overwrite have been run, the scheduler updates the tissue compartment
existing antigen. Antigen is then transferred from theutiss according to cells’ antigen producers. This design, sihee t
to the internal antigen store of cells with antigen receptorcell cycle callback is in fact an arbitrary C function, means
From the internal store antigen is transferred to antigethat cells can have complex behaviours. The specific action
producers on these cells, where it persists for a user-definend parameters of the various producers and receptors is now
time period before being removed. Users can also remodescribed in more detail.
antigen from a cell's store in the cell cycle callback. These antigen receptors allow the transfer of antigen from the
factors combine to create a turnover of antigen in the tissugssue compartment's antigen store to the internal store of
with antigen entering and eventually being removed. a cell. Transfered antigen is removed from the tissue com-

Even when composed of relatively small numbers opartment. For each antigen receptor a cell has, a random
simple actors, the behaviour of multiagent systems is oftdncation in the tissue antigen store is chosen. If the locati
difficult to understand. While formal analysis is possible, acontains no antigen then none is transfered for that recepto



A random location is picked in the cell's antigen store intdime which determines the number of cell cycles an antigen
which to transfer the tissue antigen. If this location corga is displayed for on the producer. While an antigen is being
a previously transfered antigen then it is overwritten by thdisplayed, it cannot be overwritten by other antigen. Toget
incoming antigen. Clearly, both the parameter settingstfer with antigen receptors, antigen producers give a cell the
size of the tissue and cell antigen compartments;_antigen  ability to process antigen.

andnum_antigen respectively, as well as the rate of incoming Cytokine producers allow signals stored in the tissue
antigen to the tissue compartment, will affect the over@ér compartment to be set. At each time step the value on the
at which antigen is transferred from the tissue compartmenytokine producer affects the value to the corresponding
to the internal antigen store of cells. cytokine in the tissue compartment. Since the values of

Cytokine receptors allow cells to read the values of theytokines can also be read by other cells, cells equipped wit
signals stored in the tissue compartment, which are s@fth cytokine receptors and producers are capable of signal
by 1i btissue signal clients or cells themselves throughProcessing and can form complex signalling networks. Re-
cytokine producers. As well as providing a control mechsponse producers allow cells to send messagleisttoi ssue
anism for cells, cytokine receptors are designed to givisponse clients and so actively affect the systems they are
cells sensitivity to external signals. Cytokine receptars Monitoring. The semantics of the message and its actual
initialised as receptive to a specific tissue cytokine and &ffects are determined by user-supplied callbacks. In this
each iteration the value of this cytokine is copied to th&®aper, only a simple response producer which logs a mes-
receptor. This value is available for use during the usefage is considered. Active responses in combination with
specified cell cycle callback, and can, for example, affedti bti ssue response clients are also possible. If the action

the value of an internal cytokine or be used to determine tH¥f response producers is linked to cytokine and VR receptors
range of receptors a cell expresses. in the cell cycle callback then cells can be made to respond

Cell receptors model the concept of cellular bindind® @ntigen in a selective way.

in libtissue and enable cells to restrict some recep- IV. AN EXAMPLE PROBLEM
tor/producer interactions. A cell receptor can be spectiic g arehitecture described in the previous section allows

a cell of a particular type. At each time step a random index;s aigorithms to be implemented and experimentally eval-

in the tissue compartment’s cell store is chosen for eadh F%Iated fairly easily, and an example algorithm will shortty b
receptor. If a cell of the same type as the cell receptorsmséiven First, this section addresses hbiabt i ssue can be

at that index then that cell's index is copied to the receptofise tq test algorithms on realistic data derived from real-

Only when a cell is bound can certain other receptors, sUGlh, iy problems. A brief review of a real-world intrusion
as VR receptors, be activated. detection problem is now presented, followed by a short
VR receptors allow antigen presented on antigen producedgscription of the datasets gathered for this problem.
to be matched. A VR receptor is the lock part of a lock-and- Fundamentally, anomaly detection in intrusion detection
key type receptor mechanism. The lock is opened, that igsts on the idea of a normal profile of behaviour, deviations
the receptor activated, by certain antigen, the keys, whiglom which are considered as attacks [7]. It is attractive in
are presented on antigen producers of other cells. The exagat it allows novel attacks to be detected so long as one can
structure of the locks and keys and the matching criterigetermine to a sufficient degree of accuracy what is normal.
chosen to establish which keys fit which locks is problengrrors occur when instances of normal behaviour are seen
dependent.i bt i ssue provides for this by allowing the user as attacks, the false positive rate, or when attacks are seen
to specify the lock and key structure and matching in usegs normal behaviour, the false negative rate. Reducing the
defined callback functions. VR receptors endhlét i ssue false positive rate of anomaly detection systems is cugrent
cells to perform antigen matching. a key area of research in intrusion detection. Process dgoma
Antigen producers take antigen and make it available fatetection is a specific example of one such anomaly detection
inspection by other cells through VR receptors. Antigeproblem. Several process anomaly detection systems have
producers work much like antigen receptors except that théyeen built on the idea of using syscalls to monitor the be-
transfer a randomly chosen antigen if available from aell’haviour of processes. Research such as [7] and [8] has shown
internal store to the antigen producer itself. The antigen that this avenue is promising, especially when combined wit
removed from the cell’s store and replaces any antigen whi@iher sources of data such as context signals. Systems such
may already be on the antigen producer. This transfer amd syst race [4] have also been implemented which allow
overwriting, when combined with antigen receptors, allowgrocess behaviour to be controlled through syscall palicie
antigen to be passed through the system from tissue to cell toln order to gather data for the process anomaly detection
an antigen producer on a cell and so to eventual destructiggroblem a small experimental network with three hosts
The parameter settings for the number of antigen receptoras set up. Pairs oftrace and process_noni tor logs
and producers a cell has, along with the size of the celliwere collected on the instrumented target machine while
antigen store, affect how quickly this process takes placepc. st at d was utilised in a number of different scenarios.
One further parameter is available which has proved useflihese logs were then parsed to form a singée epl ay
in controlling this process. Antigen producers have aroacti logfile for each of the scenarios. An antigen entry in the



t crepl ay log was created for every syscall recorded in theellular binding, antigen matching, and antigen response.
strace log. A signal entry was created for each recordindgzach Type 2 cell has a number of cell receptors specific for
of CPU usage in theprocess_nonitor log. While the Type 1 cells, VR receptors to match antigen, and a response
strace log actually contains much more information, theproducer which is triggered when antigen is matched. Type 2
use of just the syscall number is more than sufficient focells also maintain one internal cytokine, an integer wiiéch
testing the example algorithm described in the next sectioincremented every time a match between an antigen producer
It would be expected that a more complex algorithm woulénd VR receptor occurs. If the value of this cytokine is still
require additional complexity in both the antigen and raoige zero, that is no match has occurred, after a certain number
signals it is provided with, such as the addition informatio of cycles, set by theell_lifespan parameter, then the values
about syscall arguments, sequences of syscalls, or instrad all of the VR receptor locks on the cell are randomised.
tion pointer address. A larger number of datasets woul8ettings for the various parameters are given in Table I.
also be necessary to statistically validate an algorithhre T

monitored scenarios are divided into three groups based on TABLE I

whether the type of interaction with thepc. st at d server THEIibti ssue PARAMETER SETTINGS USED FORwocel | .

is a successful attack, a failed attack, or normal usage. max.antigen 1000
max_cytokines 0

V. AN EXAMPLE ALGORITHM max.calls 100

This section describes an example AIS algorithm called cell.update rate (psecs) 100000
twocel | implemented using i btissue. The algorithm antigen_multiplier 10
is primarily intended to evaluate the initidli bti ssue num_cells 1 50
implementation, and also as an explanatory aid to help the num.antigen 1 100
reader understand how the fairly complex system described num.antigen.receptors 1 10

in Section Il is used to actually implement an algorithm. num_.antigen-_producers 1 10
For this reason the functions and interactions of the cells antigen_producer_action.time 10
in the example are kept fairly simple. This simplicity will num_cells 2 50
of course limit the algorithm’s overall performance on the cell lifespan 2 100
problem when compared to existing solutions. On the other num_cell_receptors 2 2
hand it allows for the behaviour of the algorithm to be traced num.vr_receptors 2 20
at an in-depth level, the results of which are presented in num.response_producers 2 1
Section VI below. This also makes the algorithm a useful tool probe_rate (psecs) 1000000

for testing and evaluation of tHe bt i ssue implementation
itself. Other papers such as [9] focus on more complex

algorithms developed withi bt i ssue. A tissue compartment is populated with a number of Type

1 and 2 cells. Antigen and signals in the compartment are
set byl i bti ssue clients based on the syscalls a process is
making and its CPU usage. Type 1 and 2 cells have different
eytokine response cell cycle callbacks. Type 1 cells ingest antigen througdirth
receptor producer antigen receptors and present it on antigen producers. The
cell period for which the antigen is presented is determined by a

A. the twocell algorithm

;22%?3 receptor signal read by a cytokine receptor on these cells, and so can
be made dependant upon CPU usage. Type 2 cells attempt
to bind with Type 1 cells via their cell receptors. If bound,

antgen . VR receptors on these cells interact with antigen producers
producer receptor on the bound Type 1 cell. If an exact match between a VR

receptor lock and antigen producer key occurs, the response
producer on Type 2 cells produces a response, in this case a
log entry containing the value of the matched receptor.

The cells int wocel |, shown in Figure 2, are of two types,
labelled Type 1 and Type 2, and each type has different
receptor and producer repertories, as well as differerit cel One of the goals ofi bt i ssue is to allow algorithms to
cycle callbacks. Type 1 cells are designed to emulate twme experimentally evaluated and tested. The aim of this sec-
key characteristics of biological APCs: antigen and signalon is to highlight through a handful of simple experiments
processing. In order to process antigen, each Type 1 celltlee methodology employed when attempting to understand
equipped with a number of antigen receptors and producetBe dynamics of algorithms implemented withbt i ssue
A cytokine receptor allows Type 1 cells to respond to th@nd when testing them on a real-world problemocel | is
value of a signal in the tissue compartment. Type 2 cellgsed for this purpose and its behaviour is examined when
emulate three of the characteristics of biological T cellsapplied to six datasets. The first experiment looks at a

Fig. 2. The two different cell types implementedtinocel | .

VI. RESULTS



TABLE Il
THE SYSCALL POLICY GENERATED BYt wocel | FOR THEnormal2
DATASET AND THE FREQUENCY OF RESPONSE FOR EACH SYSCALL

number oft wocel | runs, while the second takes one run
and examines it more closely. The third evaluates the per-
formance of a syscall policy generated toyocel | . During

these experiments, in order to more clearly understand the syscall frequency
dynamics oft wocel |, the cytokine receptor on Type 1 cells gettimeofday(78) 1
is disabled, thus makingwocel | unresponsive to the CPU listen(304)
usage external signal. The final experiment returns to the send(309) 1
question of signals and compares the effect the addition of select(142) 2
the signal has on the dynamicstofocel | . The parameters poll(168) 3
given in Table | were used for all experiments, which were recvfrom(312) 8
carried out on a 2GHz AMDG64 Turion laptop running Linux. fentl(55) 9
Runs used on average around 1%, and never more than 3%, fstat(108) 9
of the available CPU resources. open(5) 22
TABLE Il close(6) 34

THE NAIVE SYSCALL POLICY AND THE AVERAGE t wocel | POLICY
GENERATED FROM THEnormall AND normal2 DATASETS.

syscall freq | mean | sd cv it makes under normal usage, as in ti@mall and nor-
chdir(12) 2 | 007 | 026 | 371 mal2 datasets. A permit policy statement is then created
execve(11) 2 | 007 | 026 | 371 for all syscalls seen. This baseline is not too unrealistic
personality(136) 2 0.07 0.34 | 485
Setsid(66) 5 007 | 034 T 485 when cqmpared to how curr'ent systems suchyas r ace
fork(2) 2 0.10 | 0.37 | 370 automatically generate a policy. The first column of Table Il
write(4) 2 0.10 | 0.37 | 370 shows the permitted syscalls (syscall number given in brack
send(309) 2 0.15 | 0.56 | 373 ets) in such a naive policy generated from tieemall and
time(13) 2 | 015 | 040 | 266 normal2 datasets. The frequency with which each syscall was
EEHE T 2 017 | 052 | 305 observed at combined over the two datasets is given in the
Iseek(19) 2 017 | 0.42 | 247 S X
fync(118) 5 025 T 080 1 365 second column, as this will be useful for further analysis.
getrlimit(191) 2 028 | 067 | 320 Similarly to the naive policy, one way in whidghaocel |
listen(304) 2 0.28 | 0.63 | 239 can be used is to generate a syscall policy by running it
select(142) 3 057 | 148 | 225 with normal usage data during a training phase. During the
gettimeofday(78) | 4 | 0.50 | 0.85 | 276 run, responses made by Type 2 cells are recorded. At the
getsc{‘;':(’:t?ge(306 j 8:22 ig; gg end of each run, a syscall policy is created by allowing only
uname(122) 7 075 T 1.91 | 250 _those s_yscal!s responded to, and denylng all _others. Since
Stat(106) 4 080 | 258 | 259 interactions inli bti ssue are stochastic, looking at the
connect(303) 5 1.60 | 2.48 | 254 average results over a number of runs helps to understand the
getdents(141) 8 020 | 0.73 | 322 behaviour of implemented algorithms. A script was written t
mprotect(125) | 8 | 047 | 1.30 | 185 start thet wocel | server and then after 10 seconds start the
poll(168) 8 | 090 | 167 | 224 tcrepl ay client and replay a dataset in realtimewcel |
sendto(311) 9 0.95 2.13 | 225 . . .
recvirom(312) 9 545 | 368 | 233 was allowed_ tp contlnu_e running for a further mmutt_a after
risigaction(174) | 10 | 0.97 | 2.19 | 155 replay had finished. This process was repeated 20 times for
getpid(20) 10 | 1.60 | 2.28 | 142 both thenormall andnormal2 datasets, yielding 40 individual
fentl(55) 12 | 118 | 2.76 | 268 syscall policies. A single averagawcel | policy was then
bind(302) 12 | 168 | 451 | 200 generated by allowing all syscalls which were permitted in
m”br;L”(Zggl) 12 ;22 g;g iég any of the 40 individual policies. It was found that all of
fstat(108) 53 | 233 | 445 | 229 the 38 sys_calls _that were permlttec_l in the naive policy were
ioctl(54) 24 | 273 | 467 | 190 also permitted in the average policy. The mean frequency
socket(301) 25 | 310 | 4.97 | 150 with which the syscall appeared in a policy is given in the
old.-mmap(90) 27 | 190 | 429 | 171 third column of Table Il. As expected, there appears to be
;‘:}ii((?) gg ggg 3% 128 a correlation between the frequency that a syscall occurs
close(6) se7 T 1943 2703 139 and the likelihood of it being in a policy generated by

twocel | . Standard deviations, given in the fourth column
of Table Il, appear to at first show an increasing amount of

In experiments it is important to have a baseline witoise for high-frequency syscalls. However, examinatibn o
which to compare algorithmic performance. In terms ofhe coefficient of variation for each syscall, given in thstla
syscall policies such a baseline can be generated and is heapdumn of Table Il, shows that there is in fact more variation
termed anaive policy A naive syscall policy is generated in the frequencies of response to the lower frequency sigscall
for a process, such apc. st at d, by recording the syscalls  The last experiment showed that theocel | algorithm



has the property of responding in a selective way to inpu dat
based on the frequency at which an input data item occurs.
In order to examine more closely hawwocel | responds, a
single run of thet wocel | algorithm was observed. Follow-
ing the same general procedure as the previous experiment,
twocel | was run once with theormal2 dataset. The result-

ing policy is shown in Table Ill, along with the frequencies
with which the permitted syscalls were responded to. During
the run, the time at which a Type 2 cell produced a response
to a particular syscall was also recorded, and the rate atwhi
these responses occur is plotted in Figure 3. The rate of
incoming syscalls is also plotted for comparison. This fgur
clearly shows a correlation between the rate of incoming
syscalls and the rate of responses produced by Type 2 cells.
Cells initially do not produce any response until syscalls
occur, and then produce a burst of responses for a relatively
short period before settling down to an unresponsive state
once again. This is to be expected, as antigen enter and are
passed throughwocel | until their eventual destruction after
being presented on Type 1 cell antigen producers.
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Fig. 3. The rate of incoming antigen and corresponding csfpoase rates
for the normal2 dataset. A .
racy and error of &i bti ssue algorithm can be evaluated.

For the same run, the individual receptors expressed iy terms of syscall policies, a particular policy can be ¢dns
Type 2 cells can also be examined. Figure 4 shows tiefed successful in relation to the number of normal syscalls
repertoire of VR receptors expressed by all 50 Type 2 celit permits versus the number of attack syscalls it denies.
during the run. Al i btissue probe periodically recorded The naive policy and averagewocel | policy generated
the syscall values expressed by the VR receptors on all of tf@m datasetsiormall and normal2 in the first experiment
Type 2 cells. A point is plotted in Figure 4 if the syscall wasabove were evaluated in such a way. The number of syscalls
being expressed during that period. Points for the 10 sigscaboth policies permitted and denied when applied to the four
whichtwocel | responded to (see Table Ill) are highlighteddatasets in the attack and failed groups was recorded. For
As expected, due to the limited lifespan of unmatched Typeach dataset, Table IV shows the percentages of attack and
2 cells, set by theell_lifespan parameter, and after which the normal syscalls in the dataset, together with the percentag
cell's VR receptor is randomised, many bursts of around 10f syscalls permitted by the naive andwcel | policies.
seconds of expression of VR receptors specific for a givefhe results show that the tendency of the naive policy was
syscall are seen. Once a VR receptor matches, and a respoiesgermit the vast majority of syscalls, whether attacktegla
and permit policy is therefore produced for that syscal, thor not. Thet wocel | generated policy behaved much more
cell stops randomising its receptors. This can be observéglectively, denying a slightly larger proportion of syii&a
from the continuous horizontal lines in Figure 4 for the 10n the successl andsuccess2 datasets than it permitted. For
highlighted syscalls. the failurel andfailure2 datasets the converse was true.

An example is now given of how the classification accu- The previous experiments have all used thecel | al-



TABLE IV

COMPARISON OF THE PERFORMANCE OF A NAIVE POLICY AND A e — without signal
twocel | POLICY GENERATED FROM THEnormal2 DATASET. with signal
dataset successl | success2 ‘ failurel ‘ failure2 ‘ 25
normal syscalls 23% 23% 81% 87%
attack syscalls 76% 76% 18% 12% 20
naive permit 90% 90% 99% 99% ©
naive deny 9% 9% 0% 0% 5
twocell permit | 47% 47% 69% | 68% 5
twocell deny 52% 52% 30% | 31% ¢
10 —
gorithm with the cytokine receptors of Type 1 cells disabled 5 7
This was necessary in order to gain an initial understanding
of the dynamics oft wocel | . This final experiment now 0 ‘
examines how the addition of a context signal changes the 10 2 %0 40 50 60

seconds

dynamics of the algorithm. When enabled, the cytokine re-

ceptor on a Type 1 cell controls tletion_time parameter of

antigen producers on these cells as follows. &bion_time Fig. 5. The mean response rates ofthecel | algorithm with and without
L ’ . a signal for 20 runs on theuccess2 dataset.

parameter is initialised to a value of 100. If there is no gjean

in the signal, CPU usage in this case, then the action time

stays the same. If CPU usage decreases, the action tigl@mentation, evaluation and application of AIS algorighm

is reduced by 50%, _an(_JI if it in<_:reases, the action time i§ore generally, they show the feasibility of using AISs
reset 100t wocel I with its cytokine receptor enabled wasimplemented as multiagent systems to address real-world
run 20 times on theuccess2 dataset and the responses ityroplems. Additionally, it is the authors’ experience that
produced recorded. For a fair comparison, the mean actigﬂnme algorithms such aswocel | are a necessary step
time observed on antigen producers over all of the rung, developing more complex algorithms. Such algorithms
28.57 in this case, was calculated andtthecel I algorithm  are peing developed by the authors and other researchers
without signals was run 20 times on the same dataset Witlsing | i bt i ssue and future papers will report the results
the action time of its antigen producers set to 29. Figure & thjs research. The sourcecodd obt i ssue is distributed
shows bspline curves fitted to the mean response rates @{ger a GPL licence and available, along with the datasets,

twocel I with and without a signal over the 20 runs. Thegjients and example algorithm used in this paper, from the
results show that the response time abcel | with a signal  fist author's website.

is much more tightly controlled, with responses startind an
dropping off more rapidly and lasting for a shorter duration ACKNOWLEDGMENTS
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and from the action of the cytokine receptor, which causes
a sudden rise and quick decreases in the action time of the

antigen producers on Type 1 cells based on the rate of charigfe P. Bentley, J. Greensmith, and S. Ujjin, “Two ways to gragstie for
of the external signal artificial immune systems,” idth Int. Conference on Artificial Immune
: Systems Banff, Canada: LNCS 3627, 2005, pp. 139-152.
[2] J. Twycross and U. Aickelin, “Towards a conceptual frarnekvfor
VII. CONCLUSIONS innate immunity,” in4th Int. Conference on Artificial Immune Systems
. . . . Banff, Canada: LNCS 3627, 2005, pp. 112-125.
The aim of this paper has been to describe the architectyse g n.'Germain, “An innately interesting decade of resangmmunol-
of the I'i bti ssue implementation and how it is used to  ogy,” Nature Medicingvol. 10, no. 12, pp. 1307-1320, 2004.

implement and evaluate algorithms on real-world problem&! ’c\)lf tphrg\’f;t'r:"ggg’mi&g ggihﬁfmgi%wgg j%zt:ﬂnci‘gnm’gsé i”il:oist
After briefly laying down the biological and conceptual 5403 pp. 257272, Y =Sympos grom, 5.5 Aug
background, the i bti ssue implementation was described [5] “Lincoln Labs DARPA Intrusion Detection Evaluation,ttp://www.Ii.
in detail. In order to help understand howbt i ssue is ac- mit.edu/IST/idevall. . .
. . . . . [6] “strace homepage,” http://www.liacs.ntwichert/strace/.
tually used, its application to a real-world intrusion d##8n 7] ¢ Kkruegel, D. Mutz, F. Valeur, and G. Vigna, “On the ddten
problem was presented. An example algorithm implemented of anomalous system call arguments,” Rimoc. of the 8th European
with 1i bti ssue was then introduced, and aspects of its ﬁ%?"vf;;"é”;tggef‘;%%fgcg;”é;%mgzger Security (ESORICSC)3jik,
dynam|c§ evaluated and dlsgusseq. The paper now concluggsp “Gao, M. K. Reiter, and D. Song, “On gray-box progranckiag for
with a brief summary and discussion of future work. anomaly detection,” ifProc. of the 13th USENIX Security Symposium
Whil imolifi h xampl r n ve vali San Diego, CA, August 2004, pp. 103-118.

. e.s P .ed’ the e a. p.es presented above va dajg] J. Greensmith, J. Twycross, and U. Aickelin, “Dendritiells for

thel i bti ssue implementation in several ways. They sho

! ) - / ’ anomaly detection,” Submitted to CEC06, 2006.
that it meets the goals it set out to achieve in terms of im-
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