
Qualitative analysis of complex modularized fault
trees using binary decision diagrams
R Remenyte and J D Andrews*

Aeronautical and Automotive Engineering, Loughborough University, Loughborough, UK

The manuscript was received on 15 June 2005 and was accepted after revision for publication on 23 February 2006.

DOI: 10.1243/1748006XJRR10

Abstract: Fault tree analysis is commonly used in the reliability assessment of industrial
systems. When complex systems are studied conventional methods can become
computationally intensive and require the use of approximations. This leads to inaccuracies
in evaluating system reliability. To overcome such disadvantages, the binary decision
diagram (BDD) method has been developed. This method improves accuracy and efficiency,
because the exact solutions can be calculated without the requirement to calculate minimal
cut sets as an intermediate phase. Minimal cut sets can be obtained if needed.

BDDs are already proving to be of considerable use in system reliability analysis. However,
the difficulty is with the conversion process of the fault tree to the BDD. The ordering of the
basic events can have a crucial effect on the size of the final BDD, and previous research has
failed to identify an optimum scheme for producing BDDs for all fault trees. This paper
presents an extended strategy for the analysis of complex fault trees. The method utilizes
simplification rules that are applied to the fault tree to reduce it to a series of smaller
subtrees whose solution is equivalent to the original fault tree. The smaller subtree units are
less sensitive to the basic event ordering during BDD conversion. BDDs are constructed for
every subtree. Qualitative analysis is performed on the set of BDDs to obtain the minimal cut
sets for the original top event. It is shown how to extract the minimal cut sets from complex
and modular events in order to obtain the minimal cut sets of the original fault tree in terms
of basic events.

Keywords: fault tree analysis, binary decision diagram, minimal cut sets

1 INTRODUCTION

The binary decision diagram (BDD) method [1] has
been developed as an alternative to conventional
methods for performing qualitative and quantitative
analysis of fault trees. This method appears to be
more efficient for analysing a system without the
need for the approximations used in the traditional
approach of kinetic tree theory [2].

Rather than analysing the fault tree directly the
BDD method first converts the fault tree to a binary
decision diagram that represents the Boolean equa-
tion for the top event. It is possible that problems
may occur with the conversion process of the fault

tree to the BDD. If the ordering of the basic events
is not chosen suitably, the size of the final BDD can
grow exponentially. Previous research has failed to
identify an optimum scheme for producing BDDs
for all fault trees. Research has now focused on
the application of alternative techniques that will
facilitate the use of BDDs to solve large fault tree
structures.

This paper presents an analysis approach using
two simplification strategies that have been shown
to be effective in reducing the complexity of the
problem: reduction [3] and modularization [4]. The
reduction technique simplifies the fault tree to its
minimal logic form, while modularization breaks
down the fault tree to independent subtrees that
can be analysed separately. BDDs are obtained for
each module in separate computations, culminating
in a set of BDDs, which together represent the origi-
nal system failure diagram. This strategy is described

*Corresponding author: Department of Aeronautical and

Automotive Engineering, University of Loughborough, Lough-

borough, Leicestershire LE11 3TU, UK. email: J.D.Andrews@

lboro.ac.uk

JRR10 � IMechE 2006 Proc. IMechE Vol. 220 Part O: J. Risk and Reliability

1



in reference [5] where quantitative analysis is per-
formed on the set of BDDs to obtain the top event
probability, the system unconditional failure inten-
sity, and the criticality of the basic events.

A qualitative analysis of a fault tree produces a list
of minimal cut sets. These are lists of component
failures that are necessary and sufficient to cause
the top event. A method of obtaining minimal cut
sets is not presented in the original treatment and
is the subject of this paper. Before the calculation
of minimal cut sets all BDDs need to be minimized,
using Rauzy’s minimization procedure [1]. Then
qualitative analysis for every module can be carried
out and minimal cut sets for the whole system
extracted. Each of these stages is described in detail
in the following sections and demonstrated through-
out with the use of an example.

2 SIMPLIFICATION OF THE FAULT TREE
STRUCTURE

For complex industrial systems fault trees can be
very large and their qualitative and quantitative
analyses are time consuming. Therefore two pre-
processing techniques can be applied to the fault
tree in order to obtain the smallest possible subtrees
and reduce the size of the problem. The first stage of
pre-processing is a reduction technique [3] that
restructures the fault tree to its most concise form.
Once this has been applied it is possible to simplify
the failure logic diagram further by identifying inde-
pendent subtrees (modules) within the fault tree that
can be treated separately. The linear-time algorithm
is an extremely efficient method of modularization
and forms the second stage of fault tree pre-
processing. This results in a set of independent fault
trees, each with the simplest possible structure,
which together describe the original system failure
causes.

2.1 Reduction

The reduction technique reduces the fault tree to its
simplest form while retaining the significant features

of the logic structure. Its effectiveness has been
demonstrated with its application to a large set of
fault trees, where it reduced the size of the resulting
BDDs by approximately 50 per cent [5]. This reduc-
tion approach is applied in three stages: contraction,
factorization, and extraction. First, subsequent
gates of the same type are contracted to form a
single gate. Second, pairs of events that always
occur together in the same gate type are identified
and they are combined to form a single complex
event. Finally, the following two structures from
Fig. 1 are identified and replaced in order to reduce
the repeated occurrence of events to a single occur-
rence and facilitate further reduction. The above
three steps are repeated until no further changes
are possible in the system that would result in a
more compact representation of the fault tree.

Consider the fault tree shown in Fig. 2. Using the
reduction technique a smaller tree is obtained, as

ba ca

a

cb

restructure

ba ca

a

cb

restructure

Fig. 1 Reduction, the extraction procedure

e f

gf i

G4

Top

a b

c G2d

G1

G3

hg

Fig. 2 Example fault tree

2 R Remenyte and J D Andrews

Proc. IMechE Vol. 220 Part O: J. Risk and Reliability JRR10 � IMechE 2006



shown in Fig. 3. At first, two subsequent gates of the
same type (G2 and G3) were contracted forming a
single gate. Then the factorization procedure was
performed three times: for a pair of basic events a
OR b, for a pair of basic events c AND d, and for a
pair of basic events e OR h, creating complex events
2000, 2001, and 2002 respectively. In this example
there were no structures of the type presented in
Fig. 1, therefore, the extraction procedure was not
applied. The corresponding complex event data are
shown in Table 1.

Reduction has simplified the example fault tree. In
the original fault tree there were five gates; in the
reduced fault tree there are four. In the original
tree there were eleven events, nine of them different;
in the reduced tree there are eight events, and six
of them are different. For large systems the degree
of simplification is far more significant. Having
reduced the fault tree to a more concise form, the
second pre-processing technique of modularization
is considered.

2.2 Modularization

The modularization procedure identifies subtrees
within the fault tree, known as modules. A module
of a fault tree is a subtree that is completely indepen-
dent from the rest of the tree. It contains no basic
events that appear elsewhere in the fault tree. The
advantage of identifying these modules is that each
one can be analysed separately from the rest of the
tree. The results from subtrees identified as modules
are substituted into the higher-level fault trees where
the modules occur.

Using the linear-time algorithm the modules can
be identified after just two depth-first traversals of
the fault tree. The first of these performs a step-by-
step traversal recording, for each gate and event,
the step number at the first, second, and final visits
to that node. Each gate is visited at least twice. After
the first traversal the maximum (Max) of the last vis-
its and the minimum (Min) of the first visits of the
descendants (any gates or events appearing below
that gate) of each gate are calculated. Step numbers
for every node in the example fault tree, Max and
Min of the gates and events for the reduced tree in
Fig. 3 are presented in Tables 2, 3, and 4 respectively.

The principle of the algorithm is that if any des-
cendant of a gate has a first visit step number smaller
than the first visit step number of the gate, then it
must also occur beneath another gate. Also, if any
descendant has a last visit step number greater
than the second visit step number of the gate, then

2002f

2000

2001

gf i

g

Top

G2

G1

G4

Fig. 3 Fault tree after reduction

Table 1 The complex event data

Complex event Gate value Event 1 Event 2

2000 OR a b
2001 AND c d
2002 OR e h

Table 2 Step numbers for every node in the fault tree

Step number 1 2 3 4 5 6 7 8
Node Top 2000 G1 2001 G2 f g 2002

Step number 9 10 11 12 13 14 15 16
Node G4 f g i G4 G2 G1 Top

Table 3 Data for gates in the fault tree

Gate Top G1 G2 G4

1st visit 1 3 5 9
2nd visit 16 15 14 13
Final visit 16 15 14 13
Min 2 4 6 6
Max 15 14 13 12

Table 4 Data for events in the fault tree

Event 2000 2001 f g 2002 i

1st visit 2 4 6 7 8 12
2nd visit 2 4 10 11 8 12
Final visit 2 4 10 11 8 12

Qualitative analysis of complex modularized fault trees 3

JRR10 � IMechE 2006 Proc. IMechE Vol. 220 Part O: J. Risk and Reliability



again it must occur elsewhere in the tree. Therefore,
the rules for identifying a gate as heading a
module are:

(a) the first visit to each descendant is after the first
visit to the gate;

(b) the last visit to each descendant is before the
second visit to the gate.

The following gates can be identified as heading
modules

Top, G1, G2

G4 can not be a module because some of its
descendants (events f and g) are visited before gate
G4. The occurrences of these subtrees are replaced
by the single modular events, which are named

G1 � M1,G2 � M2

Three separate fault trees, shown in Fig. 4, now
replace the fault tree in Fig. 3.

Having reduced the fault tree to its minimal form
and identified all the independent modules the
next stage is to obtain the BDDs.

3 OBTAINING THE BINARY DECISION
DIAGRAMS

A BDD must be constructed for each of the modules.
In this paper the variable ordering scheme for every
module is set to be left-right top-down. For examples
as small as these the variable ordering is largely
irrelevant. Following the chosen scheme gives the
orderings of basic events

Top : M1 < 2000

M1 : M2 < 2001

M2 : f < g < 2002 < i

The BDD construction method is described in [1].
It works by using an ordered triple to represent each
node on the BDD

iteðx,f1,f0Þ

where x is the Boolean variable represented by
the node and f1 and f0 are the logic functions on
its ‘1-branch’ and ‘0-branch’ respectively. ite is if-
then-else operation

If x occurs

then consider f1

else consider f0

endif

BDD construction then moves through the fault
tree in a bottom-up manner. Basic events are
assigned ite structures. For example, a basic event
a is expressed as

a ¼ iteða,1,0Þ

When gates are encountered and the input events, J
and H, are expressed in their ite form, the following
rules are applied

If J ¼ ite x,f1,f0ð Þ and H ¼ ite y,g1,g0ð Þ

then J � H ¼

iteðx,f1 � H ,f0 � HÞ
if x < y in the ordering

iteðx,f1 � g1,f0 � g0Þ
if x ¼ y in the ordering

8>><
>>:

Applying these rules to the fault tree in Fig. 4
results in the BDDs presented in Fig. 5.

Once the complete set of BDDs have been
computed, the qualitative and quantitative analyses
can be carried out. This paper concentrates on the
calculation of minimal cut sets using binary decision
diagrams obtained from simplified trees.

Top

M1 2000

M1: G1

M2 2001

g

2002gf

G2

f i

G4

M2:

Fig. 4 The three modules obtained for the fault tree shown in Fig. 3

4 R Remenyte and J D Andrews

Proc. IMechE Vol. 220 Part O: J. Risk and Reliability JRR10 � IMechE 2006



4 COMPUTATION OF MINIMAL CUT SETS

Qualitative analysis of BDDs [6] produces a list
of minimal cut sets of the fault tree. A minimal
cut set is a list of component failure events
that are both necessary and sufficient to cause
the system failure mode. Every path through a
BDD starts from the root vertex and proceeds
down through the diagram to a terminal vertex.
Paths that terminate at a 1 vertex yield a set of
conditions that will result in system failure. Those
components that are encountered on the path in
their failure state (node exited on the 1 branch)
will be members of the cut set. The task then is to
remove cut sets that do not represent the minimal
conditions.

Consider the example of a BDD illustrated in Fig. 6.
There are three paths through the BDD to the term-
inal 1 vertex passing through nodes: (F1, F2, F3),
(F1, F2, F3, F5), and (F1, F2, F4). Considering the
component failure events only these give three cut
sets: {a, b, c}, {a, b, d}, and {a, c}. The BDD is not in
its minimal form, therefore, it does not generate
minimal cut sets. Since cut set {a, c} will fail the sys-
tem it does not matter if b fails or not and so the cut
set {a, b, c} needs to be removed. The structure needs
to undergo the minimization procedure, presented
in [1], after which the redundant combinations will
be eliminated and the resulting BDD structure will
encode the minimal cut sets. In this example, the
minimization process will result in the terminal 1
vertex of node F3 being replaced with a terminal 0
vertex, and redundant cut set {a, b, c} will be
removed.

In the analysis strategy presented in this paper,
causes of the original fault tree top event are

represented by a set of modularized elements. Quali-
tative analysis therefore has to consider BDDs
encoding complex events and/or modular events.
The algorithm that performs this obtains the mini-
mal cut sets of the system by extracting the mini-
mal combinations of component failures from
every complex and modular event. This is necessary
because when reduction and modularization are
used to construct the BDDs, it is essential to be
able to analyse the system in terms of its original
components.

The minimal cut sets for every BDD and complex
event are required to represent the failure mode of
the system determined by the original fault tree.
The calculation process for the system level minimal
cut sets then starts with the minimal cut sets pro-
duced for the primary BDD (that which represents
the top event of the original fault tree). These may
contain other modules or complex events. The
results obtained for the modules or complex events
are substituted into the list. This process continues
as illustrated below until only the original basic
events appear.

A key point of the algorithm, which is the same
as the MOCUS method [7] for calculating minimal
cut sets from fault trees, is that an AND gate
increases the number of basic events in each
minimal cut set and an OR gate increases the num-
ber of minimal cut sets in the system. A two dimen-
sional array is created. Each line in the array
represents a cut set. Each column is an element in
the cut set. At the start the top event gate is located
in the first row and the first column of the two-
dimensional array. Then the array is scanned
repeatedly replacing:

(a) each complex event that is an OR gate by a
vertical expansion including the input events
to the gate (duplicating all other events in
this row);

M1

1

1 0

2000

Top:

1 0

1 0

M2

0

1 0

2001

M1:

1 0

1 0

M2: f

1

1 0

2002

g

1

1 0

1 0

1 0

Fig. 5 The obtained BDDs for the modules presented in
Fig. 4

c

1 0

d

b

1 0

c

0

1

a

1 0

1 0

1 01 0

1 0

F1

F2

F3

F5

F4

Fig. 6 Example BDD

Qualitative analysis of complex modularized fault trees 5

JRR10 � IMechE 2006 Proc. IMechE Vol. 220 Part O: J. Risk and Reliability



(b) each complex event that is an AND gate by a
horizontal expansion including the input events
to the gate;

(c) each modular event by a vertical and/or hori-
zontal expansion including the list of minimal
cut sets obtained from the BDD, that represents
the modular event;

until only basic events appear in the array. Qualita-
tive analysis using this algorithm will be performed
for the example in Fig. 5 with complex events
defined in Table 1.

The extraction of minimal cut sets from modular
and complex events is presented in Fig. 7. First of
all, the top event is modular, the primary BDD
produces two minimal cut sets

fM1g,f2000g

which replace the top event in the array, as
shown in Fig. 7(ii). Second, performing a qualitative
analysis of the BDD of module M1 gives the
minimal cut set

fM2,2001g

This minimal cut set replaces M1 in a horizontal
expansion.

Since complex event 2000 ¼ a OR b, its inputs
a and b replace the gate in a vertical expansion.

This gives the representation shown in Fig. 7(iii).
From the array in Fig. 7(iii), M2 can now be replaced.
M2 produces three minimal cut sets

ff g,fgg,f2002g

They result in another vertical expansion in the
array, duplicating the other elements in the row –
in this case 2001, to produce the array shown in
Fig. 7(iv). Finally, the inputs for complex events
2002 and 2001 are expanded to give the arrays of
steps v and vi respectively.

The minimal cut sets in the array contain only
basic events, therefore the calculation is finished.
The minimal cut sets of the fault tree, presented in
Fig. 2, are

fag,fbg,ff ,c,dg,fg ,c,dg,fe,c,dg,fh,c,dg

Since each of the modules and complex events
(which are mini-modules) are independent the
rows in the array will contain the minimal cut sets.
It is recognized that the two dimensional array is
an efficient representation of this information and
is used mainly as a means to demonstrate the
process. A practical implementation would use a
single dimensional array with a more complex
house-keeping routine.

Top M1

2000

M2

a

2001

b

f

g

2001

2001

2002 2001

a

b

f

g

c

c

e c

h

a

c

d

d

d

d

b

f

g

2001

2001

e 2001

c

a

2001

b

(i)

(ii)

(iii)

(iv)

(v) (vi)

Fig. 7 Extracting minimal cut sets from modular and complex events

6 R Remenyte and J D Andrews

Proc. IMechE Vol. 220 Part O: J. Risk and Reliability JRR10 � IMechE 2006



5 CALCULATION OF MINIMAL CUT SETS
WITH TRUNCATION APPROXIMATIONS

The computation of minimal cut sets for very large
fault trees can be time-consuming. At times the
computation may be too intensive or the problem
too large to solve in real time. In this case the time
taken to perform the analysis can be reduced by
applying truncation approximations. The algorithm
for calculating minimal cut sets, presented in
reference [1], may be extended in order to obtain
only truncated minimal cut sets that are the most
significant ones. Truncation may be performed
such that only minimal cut sets with less than
or equal to a predefined order (number of events
in the minimal cut set) are retained, or that only
minimal cut sets whose probability is greater
than a cut off are retained. If the probability of the
minimal cut set, represented by a path through a
BDD, is smaller than the predefined truncation
value, the path corresponding to this minimal
cut set does not need to be considered further.
The same strategy is followed if the order of the
minimal cut set is larger than the assigned maximum
order.

For example, for the BDD in Fig. 8, if we are only
interested in first- and second-order component fail-
ure combinations that cause the system failure
mode, the calculations should be stopped before
traversing the 1 branch of node F2, because at this
point there are already two component failures on
the path and the system state is still undetermined.
Further failures would be required to cause system
failure, which would exceed the cut off level and so
a terminal 0 vertex replaces F3 in the minimal BDD
as illustrated in Fig. 8. Therefore, the only minimal
cut set obtained is {a, c}.

When all BDDs representing modules have been
considered in this way, the results now need to be
combined to obtain truncated minimal cut sets for

the original top event. In this extraction algorithm
the minimal cut sets are deleted from the list as
they are being formed (even if not completely
defined) as soon as the maximum order of the mini-
mal cut set or the minimum probability value of the
minimal cut set to occur are reached. If the minimal
cut sets need to be truncated according to the
maximum order, the array of minimal cut sets is
scanned repeatedly and:

(a) each complex event that is an OR gate is
replaced by a vertical expansion including the
input events to the gate;

(b) each complex event that is an AND gate
is replaced by a horizontal expansion inclu-
ding the input events to the gate under the con-
dition that the number of events in every set
does not exceed the assigned maximum order;

(c) each modular event is replaced by a vertical
and/or horizontal expansion including the list
of truncated minimal cut sets obtained from
the BDD, which represents the modular event,
under the condition, applied in case (b);

(d) each minimal cut set with an unreplaced modu-
lar or complex event is deleted.

These steps are applied until only basic events
appear in the array.

A similar algorithm is applied for truncation
according to the probability of a minimal cut set
occurrence. In this case, the condition in the algo-
rithm is that the minimal cut set is deleted if the
probability of the basic events currently existing in
the minimal cut set is smaller than the assigned
value, as any other event added to the minimal cut
set will reduce the probability further.

In the previous example in Fig. 7, if the maxi-
mum order is set to be to two, complex event
2001 in Fig. 7(v) is not replaced, because this
would result in four minimal cut sets of order
three. Therefore, the minimal cut sets with

1

c

1 0

d

b

1 0

c

0

0

a

1 0

1 0

1 01 0

0

F1

F2

F3

F5

F4
Truncation

1
b 0

0

a

1 0

F1

F2

1 0

c
1 0

F4

Fig. 8 Truncation of minimal cut sets of the order greater than 2

Qualitative analysis of complex modularized fault trees 7

JRR10 � IMechE 2006 Proc. IMechE Vol. 220 Part O: J. Risk and Reliability



complex event 2001 are deleted. Fig. 9 represents
this truncation.

6 ANALYSIS USING ORIGINAL AND
SIMPLIFIED FTs

An analysis has been conducted on the fault tree-to-
BDD conversion process. In this analysis some
example fault trees were converted to BDDs and
then qualitative and quantitative analysis per-
formed. Seven example fault trees were analysed by
applying the BDD method to both the original and
the simplified fault trees. Table 5 provides a sum-
mary of the results for each fault tree.

The second and third columns of the table give
some indications of the complexity of the chosen
example fault trees with the number of gates and
basic events. The results of the two simplification
techniques are shown in the fourth and fifth col-
umns, which represent the number of complex and
modular events respectively. The reduction techni-
que has reduced the size of the problem remarkably,
especially for examples 2 and 3. The modularization
technique produced two modules for each of exam-
ples 1, 3, and 5, whereas for the other examples it
did not extract any modules except the module for

the top event. (This is because the complex factors
had already reduced the tree structure to a very effi-
cient form.)

The sixth and seventh columns show the number
of nodes in BDDs, which were obtained using the
simplified and the original fault-tree data respec-
tively. The simplification procedure decreased the
size of the BDD remarkably. The number of nodes
decreased by approximately one half (example 5 –
by a factor of more than 20) when the simplification
rules on the fault trees were applied. Extraction of
modules and complex events had a crucial effect
on the biggest trees (examples 6 and 7) because it
enabled the conversion process of fault trees to
BDDs, whereas owing to the size of the BDDs, the
process failed if the original fault tree structures
were used. (BDDs could not be formed in the
memory resources available.)

The eighth column represents the number of
minimal cut sets in the solution. This again indicates
the complexity of the problem. The last two columns
give the time taken to perform the analysis if simpli-
fied and original fault trees respectively were used.
The time decreased when simplification rules were
applied because smaller BDDs were obtained. Since
the conversion process for example 6 and 7 failed,
the entries for the time are not reported because
neither quantitative, nor qualitative, analysis was
able to be performed.

The computation of big fault trees can be time-
consuming. In order to find out which part of the
analysis utilized the most resources the analysis
was performed on a library of 338 example fault
trees. The results, averaged over the examples, were:

(a) reduction 1 per cent
(b) modularization 0 per cent
(c) BDD construction 14 per cent
(d) minimization 13 per cent
(e) obtaining minimal cut sets 71 per cent
(f) quantification 1 per cent

The two phases of the simplification process, the
construction and minimization of BDDs, the calcu-
lation of minimal cut sets, and quantification were
investigated. The most time-consuming parts of the

a

b

Truncation

f

g

2001

2001

e 2001

c

a

2001

b

Fig. 9 Truncation of minimal cut sets of the order greater
than two; the final step of the process, presented
in Fig. 7

Table 5 Calculation results for seven example fault trees

Example
Number
of gates

Number
of basic
events

Number
of complex
events

Number of
modules

Number of
nodes in
BDD with
simplifications

Number of
nodes in
BDD without
simplifications

Number of
minimal
cut sets

Time taken
with
simplifications

Time taken
without
simplifications

1 25 60 33 2 116 245 79 0.156 0.172
2 31 55 15 1 566 891 262 0.156 0.359
3 32 46 4 2 1467 2056 409 1.375 2.172
4 28 65 31 1 679 1228 1112 0.484 1.047
5 40 98 66 2 731 15078 2072 2.859 -
6 50 152 151 1 1 - 14 669 4.170 -
7 56 146 145 1 1 - 2202 755 1221.160 -

8 R Remenyte and J D Andrews

Proc. IMechE Vol. 220 Part O: J. Risk and Reliability JRR10 � IMechE 2006



analysis were the calculation of minimal cut sets and
the construction and minimization of BDDs. The
simplification process and quantification were the
least time-consuming parts of the analysis.

The time taken to calculate the minimal cut sets
and finish the analysis can be reduced if the trunca-
tion process for minimal cut sets is applied. A larger
reduction is noticed when investigating large fault
trees. If the order to truncate the minimal cut sets
was set to be two, i.e. only the single and dual order
failures were investigated, the average time taken to
perform the analysis for fourteen large fault trees
chosen decreased by 18 per cent. The average
time distribution for the separate parts of the
analysis were:

(a) reduction 0 per cent
(b) modularization 0 per cent
(c) BDD construction 48 per cent
(d) minimization 15 per cent
(e) obtaining minimal cut sets 36 per cent
(f) quantification 1 per cent

In this case, the truncation of minimal cut sets
reduced the resources needed for their calcul-
ation. This truncation decreased the time taken to
perform the analysis. These results are only indica-
tive of the processing effort distribution over the
analysis. It does however indicate areas in which to
concentrate effort to gain further improvement in
efficiency.

7 CONCLUSIONS

This paper has presented a procedure by which
large fault trees can be simplified prior to con-
version to their BDD form for analysis. In this proce-
dure simplification is performed in two phases, the
first reduces the fault tree to its more concise
form which removes the noise from the failure
logic and retains the underlying problem structure.
The second phase identifies independent modules,
which can be analysed separately. In doing this the
problem can be solved efficiently. Having performed
the simplification the problem is solved in terms
of the new modular structure and complex events.
A means of calculating minimal cut sets in terms

of the original basic events has also been pres-
ented. The approach is capable of using truncation
methods to yield only the important minimal cut
sets. Finally, an assessment was performed on the
analysis showing which aspects of the conversion,
qualification, and quantification utilize the most
resources.

REFERENCES

1 Rauzy A. New algorithms for fault tree analysis. Reliab.
Eng. Syst. Safety, 40, 1993, 203–211.

2 Vesely, W. E. A time dependent methodology for fault
tree evaluation. Nuc. Des. and Engng, 1970, 13,
337–360.

3 Platz, O. and Olsen, J.-V. FAUNET: A program package
for evaluation of fault trees and networks, Research
Establishment Risk Report, Sept. 1976, No. 348,
DK-4000 Roskilde, Denmark.

4 Dutuit, Y. and Rauzy, A. A linear-time algorithm to find
modules of fault trees. IEEE Trans. Reliability, 1996, 45,
No. 3, 422–425.

5 Reay, K. A. and Andrews, J. D. A fault tree analysis
strategy using binary decision diagrams. Rel. Engng
and Syst Safety, 78, 2002, 45–56.

6 Sinnamon, R. M. and Andrews, J. D. Improved effi-
ciency in qualitative fault tree analysis. Qual. and Rel.
Engng Int. 1997, 13, 293–298.

7 Andrews, J. D. and Moss, T. R. Reliability and
risk assessment, 2002, Professional Engineering
Publishers.

APPENDIX

Notation

a basic event
AND gate type AND
f1 logic function on the 1 branch of a node
f0 logic function on the 0 branch of a node
F1 number of the node
G1 gate
ite if-then-else structure
M1 modular event
OR gate type OR
2000 complex event
� operation between two gates or events

Qualitative analysis of complex modularized fault trees 9

JRR10 � IMechE 2006 Proc. IMechE Vol. 220 Part O: J. Risk and Reliability


