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We model the way in which polymers bind to DNA and neutralise its charged backbone by
analysing the dynamics of the distribution of gaps along the DNA. We generalise existing theory for
irreversible binding to construct new deterministic models which include polymer removal, move-
ment along the DNA and allow for binding with overlaps. We show that reversible binding alters
the capacity of the DNA for polymers by allowing the rearrangement of polymer positions over a
longer timescale than when binding is irreversible. When the polymers do not overlap, allowing
reversible binding increases the number of polymers adhered and hence the charge that the DNA
can accommodate; in contrast, when overlaps occur, reversible binding reduces the amount of charge
neutralised by the polymers.
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I. INTRODUCTION

In this paper we extend a deterministic mathemati-
cal model of polymer binding [1] to include removal and
movement of polymers along the DNA plasmid. Both
the kinetics of reversible binding and the steady state
(equilibrium) solutions are studied. The DNA is mod-
elled as a single one-dimensional strand, with uniformly
spaced binding sites. The model is used to analyse how
the distribution of gap sizes evolves when polymers at-
tach to the DNA. Such knowledge allows us to calculate
the fraction of DNA sites occupied by the polymers and
the resulting charge neutralisation.

The resulting model has the form of a generalised
‘parking problem’, also known as ‘Random Sequential
Absorption’, (RSA) and has been studied by Rényi [2]
and Bonnier et al. [3]. Epstein [4, 5] has applied the
RSA model to polymer absorption, where it is referred
to as ‘the excluded site binding model’ and has been used
to estimate the time variation of charge neutralisation, as
well as the equilibrium value [6]. One area where knowl-
edge of charge neutralisations is vital is in the delivery of
gene therapy. The successful introduction of DNA into
the nucleus of an abnormal cell requires the DNA to be
compacted: one way of achieving this is through the use
of cationic polymers [7].

A recent review of RSA models is given by Talbot et

al. [8]. Whilst this describes the generalisation of RSA to
the adsorbtion of particles with a variety of shapes and
a range of sizes to a surface, the problem of reversibile
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binding is only briefly addressed. Exact solutions and
large-time asymptotic results of RSA systems have been
derived by Ben-Naim & Krapivsky [9], who also consider
generalised RSA models which include reversible bind-
ing (Krapivsky & Ben-Naim [10]). Both Brewer et al.

[11, 12] and Lever et al. [13] show that DNA condensa-
tion by polymers is a reversible process. Tarjus et al. [14]
analyses a generalised RSA model in which either bind-
ing and desorption or binding and surface diffusion of
polymer on DNA occurs. Although complex, the model
is analysed theoretically in the low coverage limit. This
contrasts with our results for an alternative generalised
RSA model with reversible binding and surface diffusion
of adsorbed polymers, where asymptotic results are ob-
tained for the high coverage regime. Other extensions of
RSA to include cooperative effects have been studied by
Evans [15], and Barma [16]; the latter including diffusion
of adsorbed particles along the substrate. Van Tassel et

al. [17] also present a generalised model of partially re-
versible RSA. In the spirit of Michaelis-Menten reaction
kinetics, they assume that upon binding to a substrate,
the polymer which is in its native state and the substrate
form a metastable complex. It is possible for this complex
to unbind, or for the polymer to undergo some conforma-
tional change in which it becomes irreversibly bound to
the substrate. They argue that such a model is more
accurate than Langmuir-models due to the treatment of
surface blocking.

Teif [18] models polymer adsorption to DNA with dif-
ferent on and off rates for normal and condensed DNA
and incorporates the effect of dissolved salt on the con-
densation process. His models explain decondensation of
the DNA at very high polymer concentrations through
resolubilisation of the DNA. The cooperativity parame-
ter in the McGhee-von Hippel model can be motivated
by the fact that some polymers have sticky ends and free
polymer is more likely to bind adjacent to an already-
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bound polymer than in the interior of a gap. However,
many condensing polymers do not have sticky ends yet
still exhibit a cooperative binding effect, so an alterna-
tive justification is required. Brewer et al. [11] shows
that for DNA condensation into toroids by adsorption of
protamine, polymer adhesion is the rate-limiting step in
condensation. If condensation occurs immediately upon
polymer binding; then the DNA will locally change its
shape at and near the region of bound polymers; this
provides a mechanism for the rates of polymer attach-
ment and removal to differ near already bound polymers
from those in uncondensed DNA.

The remainder of this section contains an introduction
to the notation we use to derive our models of polymer-
adherence to DNA, and a summary of the results ob-
tained in [1] for irreversible binding with and without
overlaps. In Section I A we summarise the modelling ap-
proach and quote the model for irreversible binding, the
gap distribution kinetics for reversible binding are de-
rived in Section II. A corresponding model for partially-
overlapping polymers is derived in Section III; this model
allows charge inversion [19], this occurs when so much
polymer adheres to the DNA that the complex acquires
a positive charge. The model is extended to include poly-
mer motion along the DNA in Section IV. Even though
the dynamic model is slow to solve numerically when mo-
tion is included, the asymptotic solutions for fast motion
allow us to calculate the charge neutralisation associated
with polymer binding with or without motion (see Sec-
tion IV B) and our asymptotic solution method is applied
to find steady state solutions in Section IV C. Reversible
binding of overlapping polymers with motion is studied
in Section V. The results are discussed in Section VI.

A. Modelling approach

Here, we follow the modelling approach introduced in
[1]. We define x to be the length of the polymer, and p to
be the length of the gap in which the incoming polymer
will bind. Both x and p are integers, and for the case of
charged polymers binding to DNA they represent num-
bers of base pairs. We define Np(t) to be the number
of gaps of length p at time t. In the simpler cases only
positive gap lengths are considered, however, we show
later that binding with overlaps can be incorporated into
such models by treating overlaps as gaps with negative
lengths.

The length of the DNA molecule is P0 (each site cor-
responds to a negatively charged phosphate group) and
the concentration of the DNA is measured in moles (M)
and denoted by A0. The following parameters (with cor-
responding units) are used: binding, removal and move-
ment rates kf (s−1M−1), kr (s−1) and km (sites×s−1)
respectively; the concentrations of bound, and free poly-
mers in solution are B (M) and L (M) respectively; L0

(M) denotes the initial number of polymers in solution
(so B = L0 − L). The notation for the length, rates and

concentrations is summarised in Figure 1.

A0
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kf ↓

L

x
z }| {

| {z }
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FIG. 1: Summary of polymer binding notation for a case when
A0 = 1, P0 = 20, x = 5, L0 = 3, L = 1 and B = 2.

As polymers adhere, they neutralise the negative
charge of the DNA; however we ignore the electrostatic-
thermodynamic properties of the system in favour of a
model which is more faithful to the geometric constraints
of binding and blocking of binding sites. Our model is
thus more closely related to models of random sequen-
tial adsorption rather than the counterion condensation
theories of Manning [20] and Rouzina & Bloomfield [21].
Two physical quantities derived from the gap size dis-
tribution can be used to calculate the extent of charge
neutralisation. They are the total number of gaps, M0,
as defined by

M0(t) =

P0∑

p=0

Np(t), (1)

and the total length of gaps, M1,

M1(t) =

P0∑

p=1

pNp(t). (2)

The charge neutralisation θ is defined to be the propor-
tion of charges on the DNA neutralised by the polymer.
This can be calculated in two ways

θ(t) =
x (M0(t) − 1)

P0

=
P0 −M1(t)

P0

, (3)

sinceM0−1 is the number of polymer molecules attached
to the DNA plasmid and P0 −M1 is the total number of
sites occupied by the polymers. Thus the identity

xM0(t) +M1(t) = P0 + x, (4)

is valid for all t.
Since the number of polymers bound to the DNA is

M0 − 1, the concentration of bound polymers is B =
A0(M0−1), where A0 is the molar concentration of DNA.
Hence the molar concentration of free polymers L(t) can
be expressed in terms of the sum of all gaps as

L(t) = L0 −B(t) = L0 −A0(M0(t) − 1), (5)

where L0 = L(t = 0) is the molar concentration of poly-
mers in the solution before any binding occurs.

The rate at which the gap distribution Np evolves over
time is calculated by considering the rates at which gaps
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are created and destroyed during polymer adhesion (Fp),
removal (Up) and movement (Vp) of polymers. Combin-
ing the above rates results in

dNp
dt

= F fp − F rp + Ufp − Urp + V fp − V rp , (6)

where f and r in the superscripts refer to the rates at
which gaps are formed and removed respectively.

B. Irreversible binding

Irreversible binding without motion occurs when F fp
and F rp are the only non-zero terms in (6). When the
irreversible binding terms [1, 22] are separated into gap
creation and removal components we have

F fp = 2Kf

P0∑

g=p+x

Ng , (7a)

F rp = Kf (p− x+ 1)Np, (7b)

where Kf is the binding rate defined by Kf = kfL(t),
and kf is a rate constant. The full system of equations
for the gap distribution kinetics is

dNp
dt

= − F rp (P0−x+1 ≤ p ≤ P0), (8a)

dNp
dt

=F fp − F rp (x ≤ p ≤ P0−x), (8b)

dNp
dt

=F fp (0 ≤ p ≤ x−1). (8c)

See Figure 2(a) for an illustration of gaps formed as
polymers bind without overlaps. In [1] the system of
equations (8) was solved numerically for a variety of
cases. Figure 5 shows how the charge neutralisation θ(t)
defined in equation (3) evolves over time (dashed line).
Recurrence relations for the steady-state value of θ are
derived, and an asymptotic analysis enables approximate
solutions to be constructed. The curve does not asymp-
tote to θ = 1 because the polymers have length x > 1,
they bind at random positions, and as a result gaps form
between bound polymers. When all gaps are smaller than
x, no further binding can occur, yet not all of the charges
on the DNA have been neutralised. Thus the final charge
neutralisation will be below 100%. Guided by experimen-
tal work involving long polymers and longer strands of
DNA [23], the particular scalings considered are x � 1
and P0 = O(x2), and in this limit we obtain

θ ∼ 3x

4x− 1

(

1 − x− 1

3P0

)

.

In Section II, we generalise (8) to allow for polymer-
removal and polymer motion along the DNA.
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FIG. 2: (a) Illustration of how polymer adhesion destroys a
gap of size p and leads to the formation of gaps of length q
and p − x − q; (b) Illustration of how polymer removal can
lead to the formation of a gap of length p, and how polymer
adhesion leads to the formation of a gap of length q.

The case of irreversible binding with overlaps is also
considered in [1]; here the gap creation and removal com-
ponents are

F fp = 2Kf

P0∑

g=p+1

Ng , (9a)

F f−p = 2Kf

P0∑

g=1

Ng, (9b)

F rp = Kf (p+ x− 1)Np, (9c)

where Kf is the binding rate defined by Kf = kfL(t),
and kf is a rate constant. Gaps with p < 0 describe
overlaps of size −p, and the new term F f−p denotes the
rate of creation of overlaps. The full system of equations
for the gap distribution kinetics is

dNP0

dt
= − F rP0

, (10a)

dNp
dt

=F fp − F rp (1 ≤ p ≤ P0 − 1), (10b)

dNp
dt

=F f−p (1 − x ≤ p ≤ 0). (10c)

In place of (1) and (2) we now have

M0 =

P0∑

p=1−x

Np(t), M1 =

P0∑

p=1−x

pNp(t); (11)

with these new definitions, the identity (4) and the for-
mula (3) both still hold.

See Figure 3 for an illustration of polymer binding
with overlaps. In Section III (10) is generalised to in-
clude polymer motion and removal. Our earlier paper
[1] presents the results of numerical simulations of irre-
versible binding models, together with asymptotic anal-
ysis of the system for long DNA plasmids and long poly-
mers. Plots of charge neutralisation over time have the
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same sigmoidal shape as the dashed line in Figure 5, al-
though they rise to values between θ = 1 and θ = 3,
(see, for example, the solid line in Figure 10). For
x ∼

√
P0 � 1 asymptotic analysis of the charge neutrali-

sation recurrence relation showed that θ ∼ 2−2/x+x/P0.
It was also found that at equilibrium, the distribution
of overlap sizes is uniform, in contrast with the equilib-
rium distribution of gap sizes in the non-overlapping case
where there are many more smaller gaps.

(a) (b) (c)

FIG. 3: Polymers of length x = 5 with overlaps.

II. NON-OVERLAPPING REVERSIBLE

BINDING

In this section we extend the model of non-overlapped
binding (8) to incorporate reversible binding, so that in
equation (6) F f,rp and Uf,rp are non-zero but V f,rp = 0.
The model is derived in subsection II A and numerical
results are presented in II B.

A. Kinetics of gap creation and destruction due to

polymer unbinding

A gap of size p is created when a polymer of length
x is removed if two gaps of length q and p − q − x are
destroyed (see Figure 2(b)): we represent this situation
as follows

(p− x− q) + (q) → (p). (12)

The frequency at which the shorter gaps occur is propor-
tional to NqNp−q−x. These two gaps have to be sepa-
rated by a bound polymer. Since the gap Np−q−x could
be located in any of M0 positions, the frequency at which
both gaps occur separated by just one bound polymer is

NqNp−q−x
M0

. (13)

If the polymers are removed from the DNA at the rate
kr (s−1) then the total number of gaps of length p that
are created when (12) occurs is

Ufp =
kr
M0

p−x
∑

q=0

NqNp−x−q. (14)

With Ufp defined by (14) we use a similar argument to
determine how gaps of length p are destroyed when a
polymer is removed from the DNA, and hence specify
Urp .

kr ↑
p

z }| {

q
z}|{

| {z }

p + x + q

x
z }| {

FIG. 4: Illustration of the destruction of a p-gap due to poly-
mer unbinding.

A gap of length p will be destroyed by removal if there
is a corresponding gap of length q separated by one bound
polymer of length x. In this case, the two gaps (p, q)
coalesce to form one larger gap of length p + x + q (see
Figure 4):

(p) + (q) → (p+ x+ q). (15)

Adopting the same approach that was used to obtain
(14), but noting that two gaps are destroyed whenever a
polymer unbinds, we deduce that the rate of gap removal
due to polymer unbinding U rp is given by

Urp =
2kr
M0

Np

P0−p−x∑

q=0

Nq. (16)

When P0 � x, equation (16) can be approximated by

Urp = 2krNp. (17)

The gap creation (14) and destruction (16) terms are
combined with (8) to obtain the following differential
equations for the kinetics of gap distribution of the non-
overlapping reversible binding system

dNp
dt

= − F rp + Ufp (P0−x+1 ≤ p ≤ P0), (18a)

dNp
dt

=F fp − F rp + Ufp − Urp (x ≤ p ≤ P0−x), (18b)

dNp
dt

=F fp − Urp (0 ≤ p ≤ x−1). (18c)

We note that gaps of size P0 −x+1 ≤ p ≤ P0 cannot be
destroyed by polymer-removal and therefore (18a) con-
tains only the gap creation term U fp . When polymers
leave the DNA, they always create gaps at least as long
as the polymer itself. Hence when considering short gaps
with 0 ≤ p ≤ x − 1 only gap destruction terms (U rp ) are
present (see (18c)).

B. Numerical solution

The evolution of gap distributions Np(t) was calcu-
lated by solving equations (18) numerically using a semi-
explicit interpolation method [24] with adaptive step-size
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control written and compiled using Fortran 90. The
charge neutralisation was calculated from θ = x(M0 −
1)/P0, where M0 is the total number of gaps (see (3)).
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FIG. 5: Curves showing how, for nonoverlapped binding,
polymer removal affects the charg neutralisation dynamics
θ(t) and, in particular, increases the equilibrium charge neu-
tralisation. Parameter values: L0 = 10−6 M, A0 = 2 × 10−9

M, P0 = 500 sites, x = 20 sites, kf = 108M−1s−1.

When the polymers bind reversibly to the DNA we find
a second phase of kinetic behaviour which occurs over a
longer timescale, during which the charge neutralisation
exceeds that for irreversible binding (see Figures 5, 7 and
8). The initial rise in charge neutralisation is the same
for reversible and irreversible binding. That the inclu-
sion of polymer removal causes a later increase in charge
neutralisation is perhaps counter-intuitive. During this
latter phase of the process, polymer desorption allows the
rearrangement of polymers on the DNA: polymer removal
and reattachment leads to changes in the distribution of
gaps sizes. The equilibrium gap distribution correspond-
ing to the charge neutralisation curves shown in Figure 5
is plotted in Figure 6 and shows that reversible binding
results in a less uniform distribution of gap-sizes at equi-
librium than is the case with irreversible binding. Over
the longer timescale, polymer-rearrangement causes an
increased frequency of shorter gaps, creating other gaps
large enough for extra polymer-landing and hence is con-
sistent with the increased charge neutralisation observed
in Figure 5.

1. Effect of varying the kinetic rates

The plot in Figure 7 shows the effect on charge neu-
tralisation of varying the binding and removal rates. The
first effect to notice is that the time of the initial rise
from θ = 0 depends on the rate of binding kf , the solid
and dashed curves are initially coincident (kf = 1010

M−1 s−1), as are the dotted and the dash-dotted lines
(kf = 108 M−1 s−1). For the parameter values used, the

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

p

N
p

k
r
=0 s−1

k
r
=0.2 s−1

(a) Linear scale

10
0

10
1

0

2

4

6

8

10

p

N
p

k
r
=0 s−1

k
r
=0.2 s−1

(b) Log scale

FIG. 6: Curves showing how, for non-overlapped binding,
polymer removal changes the equilibrium gap distribution.
Parameter values are as in Figure 5).

simulations show that the rate of removal does not influ-
ence the binding kinetics until θ exceeds one half. (By
making the removal rate kr extremely large, it is possi-
ble to make the equilibrium charge neutralisation curve
asymptote to a low value of θ).

If kr = 0 the initial plateau is maintained for all sub-
sequent times, however if kr > 0, there is a second phase
of kinetics occurring over a longer timescale, in which
higher charge neutralisations are accessible as a second
plateau in θ is attained. In the case of the dash-dotted
line, the removal rate is so large that only one plateau
is seen. The height of the final plateau depends on the
ratio of the removal and binding rates, thus the dotted
curve and the solid curve approach the same limit, with
the dotted curve simply being shifted in the horizontal
direction, since its rates are simply multiples of those for
the solid curve.

When the removal rate is increased, with the bind-
ing rate fixed the equilibrium charge neutralisation falls
(compare dotted with dash-dotted line). We note also
that when only the binding rate is increased and the re-
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moval rate fixed then the initial increase in θ occurs ear-
lier and the final equilibrium value of θ is also increased
(compare dashed and dotted lines).
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FIG. 7: Series of curves showing how changing the binding
and removal rates influences the charge neutralisation dynam-
ics, θ(t). Parameter values: L0 = 10−6M, A0 = 5 × 10−9M,
P0 = 200 sites, x = 5 sites.

2. Effect of varying the polymer length

The effect of changing polymer length on charge neu-
tralisation is shown in Figure 8. We find that initially
longer polymers adhere at a greater rate, leading to faster
kinetics, but that the equilibrium charge neutralisation
is lower (compare solid and dashed curves in Figure 8).

There are two phenomena that our model has not yet
taken into account. Firstly, since longer polymers have
greater charge, their binding and removal rates may dif-
fer from those of shorter polymers. Secondly, the initial
concentration of polymers was identical in both cases.
Therefore in the case of longer polymers, there are more
polymeric charges available to neutralise the DNA. Fewer
longer polymers are required to cover the DNA sur-
face and hence the reduction in the binding rate will be
greater in the case of shorter polymers. One might ex-
pect this to promote higher charge neutralisation when
longer polymers are used. However, longer polymers also
give rise to longer gaps on the DNA plasmid, reducing
its charge neutralisation. In practice, the latter effect
prevails: thus in Figure 8 the equilibrium value of θ is
lower for the longer polymer (compare solid and dashed
curves).
L0x is the total amount of charge in the system. If we

increase the polymer length (x) while holding L0 fixed
then this will increase the total amount of polymer charge
available to neutralise the DNA. From Figure 8 we note
that a simple increase in x, with L0 fixed, leads to acceler-
ated kinetics, a lower intermediate plateau and a slightly

lower equilibrium value of θ. We now investigate the ef-
fect of increasing the polymer length (x) and decreasing
L0 so that the total amount of polymer charge (xL0) is
held constant.
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FIG. 8: Series of curves illustrating how the length of the
polymer, with adjusted binding rate, affects the charge neu-
tralisation dynamics θ(t). Parameter values: A0 = 5×10−9M,
P0 = 200 sites, kf = 108M−1s−1, kr = 0.2s−1.

Comparing dashed and dot-dashed lines in Figure 8 in-
dicates that an increase in polymer length combined with
a reduction in the binding rate (by a factor of four in both
cases) results in an approach to the first plateau of the
graph on a similar timescale. This corresponds to the
equilibrium value of the charge-neutralisation in the irre-
versible binding case, which is higher for short polymers.
Following that, the kinetics of the dash-dotted curve
(x = 20, L0 = 0.25 × 10−6M−1s−1) are similar to those
of the original, 20-site polymer (solid curve, L0 = 10−6)
but the reversible binding equilibrium (second plateau)
is lower for L0 = 0.25×10−6 than for L0 = 10−6, indicat-
ing a more complex dependence on the polymer length,
polymer concentration in the solution, and binding and
removal rates.

III. OVERLAPPING REVERSIBLE BINDING

We now generalise the above model of reversible bind-
ing to include cases when polymers bind with only some
of their charges, leaving ends which overlap with neigh-
bouring bound polymers. The effect can be incorporated
into our models quite naturally by describing an overlap
of p sites as a gap of size −p. This again corresponds to
equation (6) with F f,rp and Uf,rp non-zero and V f,rp = 0.
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A. Removal kinetics

Even when negative gap lengths are allowed, two gaps
at the ends of a polymer are transformed into one larger
gap when a polymer is removed from the DNA plasmid.
The new gap is always of positive length since the poly-
mer had to be attached to the DNA with at least one
monomer unit. The creation of gaps of size p due to re-
moval is proportional to the total number of gaps of sizes
q and p− x − q with 1 − x ≤ q ≤ P0 − 1. Thus we have
a gap creation term which depends on the removal rate
and applies to gaps that are at least 1-site long, namely

Ufp =
kr
M0

p−1
∑

q=1−x

NqNp−x−q, (19)

where kr is the removal rate. The lower and upper limits
correspond to the largest possible overlap.

When a gap of size p is destroyed by polymer removal,
the removal rate is proportional to the number of such
gaps; and since two gaps are destroyed when a polymer
is removed, it is also dependent on the number and size
of other gaps

Urp = 2
krNp
M0

P0−p−x∑

q=1−x

Nq. (20)

It is possible for overlaps to overlap; this depends on
the order in which adjacent polymers attach to the DNA.
An example of possible overlaps is illustrated in figure 3.
Polymer (b) shares an overlap of length 3 with polymer
(a) and an overlap of length 4 with polymer (c); polymer
(c) overlaps (a) as well as (b).

Polymer removal is modelled in a way similar to that
described in Section II. The only difference is that when
polymers are allowed to overlap, the smallest gap possible
has length 1 − x (corresponding to an overlap of length
x − 1). In this case our governing equations for binding
and removal are

dNP0

dt
= −F rP0

+ UfP0
, (21a)

dNp
dt

= F fp − F rp + Ufp − Urp (1≤p≤P0−1), (21b)

dNp
dt

= F f−p + Ufp − Urp (2−x≤p≤0), (21c)

dN1−x

dt
= F f−1−x − Ur1−x. (21d)

B. Numerical results

As in Section II B, the overlapped binding equations
were solved using a semi-implicit extrapolation method
with adaptive step-size control. The charge neutralisa-
tion for typical simulations are presented in Figure 9.

The effect of polymer removal is very different when
there is overlapped binding. Whereas the removal
of polymers for non-overlapped simulations resulted in
higher steady-state charge neutralisations (see Figures 7
and 8) in the overlapped case it results in a lower equi-
librium charge neutralisation (see Figure 9).
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FIG. 9: Effect of polymer length on the kinetics of binding
(A0 = 5 × 10−9M, P0 = 200 sites, kf = 108M−1s−1, kr =
0.2s−1).

We note from Figure 9 that the equilibrium charge neu-
tralisation appears to depend only on the polymer length,
and is independent of polymer concentration. This is in
clear contrast to the system where overlaps are prohib-
ited (Figure 8), where charge-neutralisation depends on
a complex combination of polymer concentration in the
solution as well as polymer length.
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FIG. 10: Effect of removal on charge neutralisation. Param-
eter values: L0 = 10−6M, A0 = 5 × 10−9M, P0 = 200 sites,
x = 5 sites, kf = 108M−1s−1.

The gap distributions corresponding to the equilibrium
charge neutralisations of Figure 10 are presented in Fig-
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ure 11. It can be seen that irreversible binding results
in a uniform distribution of gap (overlap) sizes and that
when removal occurs the number of gaps decreases as the
gaps increase in size; that is, larger overlaps are less fre-
quent, a similar result to that presented in Figure 5 where
the incluion of removal leads to a more pronounced, size-
dependent gap-distribution.

−4 −3 −2 −1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

p

N
p

k
r
=0 s−1

k
r
=0.2 s−1

FIG. 11: Effect of removal on steady-state gap distribution
(L0 = 10−6M, A0 = 5 × 10−9M, P0 = 200 sites, x = 5 sites,
kf = 108M−1s−1).

Since longer polymers have more charge than their
shorter counterparts, their binding rate constant may dif-
fer from those of shorter polymers. Considering only the
solid and the dashed lines in Figure 9, the initial con-
centration of the polymers (L0) is set to be the same
in both cases. As a result there is much greater un-
neutralised charge of free polymers when x = 20 than
when x = 5. The free polymer concentration in the solu-
tion is decreased every time one of the polymers binds to
the DNA. Fewer polymers are required to cover the DNA
surface if they are longer and therefore the reduction of
polymer concentration in solution from t = 0 to equilib-
rium will be greater in the case of shorter polymers. The
effects should be even more noticeable when the initial
concentration of free polymers is small.

IV. EFFECT OF MOTION ON BINDING

WITHOUT OVERLAPS

A. Modelling motion

In this section we consider the case where polymers
move along the plasmid; no polymers can adhere, or be
removed from the plasmid and overlapped binding cannot
occur. This corresponds to (6) with Fp = 0 = Up and
Vp 6= 0. We also assume that the initial distribution
of gaps is given by Np(0). We assume that a polymer
molecule can move only if it has a non-zero gap to one

side of it, and that polymer motion occurs in unit steps.
Figure 12 illustrates the effect of possible motions on a
gap of length p.

↓(a) ↑(b)

↑(c)↓(d)
km

←−p + 1
z }| {

km

−→
←−p

z }| {

km

−→p− 1
z }| {

FIG. 12: Series of sketches illustrating how polymer move-
ment can lead to the formation and destruction of a gap of
length p. The processes labelled (a), (b), (c) and (d) are
modelled by formulae 22(a)-(d) respectively.

The effects that polymer movement, as depicted in Fig-
ure 12, has on gap distribution are shown below

V f−p = kmNp−1

(

1 − N0

M0

)

,

︸ ︷︷ ︸

gap of size
p−1 grows

(22a)

V r−p = km Np,
︸︷︷︸

gap of size
p shrinks

(22b)

V f+
p = km Np+1,

︸ ︷︷ ︸

gap of size

p+1 shrinks

(22c)

V r+p = kmNp

(

1 − N0

M0

)

,

︸ ︷︷ ︸

gap of size
p grows

(22d)

where km is the rate of polymer motion along the DNA.
Superscripts + and − refer to transformations between
the gap of the length p and larger and smaller gaps re-
spectively. As before, superscripts f and r refer to gap
formation and removal respectively. Gaps can grow only
if there is a non-zero gap on the other side of the polymer,
allowing polymer to move, hence the factor (1−N0/M0)
in (22a) and (22d), N0/M0 being the probability of any
given gap having size zero. Using (22) to construct gap
distribution kinetics equations due to polymer motion,
and combining with the effects of adhesion, removal mod-
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elled by (18), we obtain

dNp
dt

= −F rp + Ufp , (P0−x+1≤p≤P0) (23a)

dNP0−x

dt
=F fP0−x

−F rP0−x+U
f
P0−x

−UrP0−x+V
f−
P0−x

−V r−P0−x
,

(23b)

dNp
dt

=F fp −F rp +Ufp −Urp+V f+
p +V f−p −V r+p −V r−p

(x≤p≤P0−x−1), (23c)

dNp
dt

=F fp − Urp + V f+
p + V f−p − V r+p − V r−p

(1≤p≤x−1), (23d)

dN0

dt
= F f0 − Ur0 + V f+

0 − V r+0 . (23e)

B. Results for the system including adhesion,

removal and motion

The evolution of the gap distributions Np(t) was calcu-
lated by solving equations (23) numerically using a spe-
cial routine for stiff systems (the subroutine D02NBF of
the NAG Mark 18 Fortran library). The charge neutral-
isation is calculated from θ = x(M0 − 1)/P0, where M0

is the total number of gaps.
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FIG. 13: Effect of polymer motion on the kinetics of charge
neutralisation, θ. Parameter values: L0 = 10−6M, A0 =
2× 10−9M,P0 = 500 sites, x = 20 sites, kf = 108M−1s−1).

The kinetics of charge neutralisation for systems with
different rates of polymer motion are displayed in Fig-
ure 13. Numerical simulations again show that the equi-
librium charge neutralisation for systems with polymer-
removal, and with or without polymer-motion are identi-
cal; the difference is that the equilibrium state is reached
faster when motion is present. The equilibrium charge

neutralisation for systems with motion and no removal
is the same as that for the systems with removal and no
motion.
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FIG. 14: Effect of polymer motion on equilibrium gap distri-
bution, Np. Parameter values: L0 = 10−6M, A0 = 2×10−9M,
P0 = 500 sites, x = 20 sites, kf = 108M−1s−1.

The equilibrium gap distributions corresponding to the
charge neutralisation curves shown in Figure 13 are plot-
ted in Figure 14. They show that when binding is re-
versible and/or when motion is included, the equilibrium
distribution is identical.
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FIG. 15: Combined effects of polymer motion and removal
on the kinetics of charge neutralisation. Parameter values:
L0 = 10−6M, A0 = 2 × 10−9M, P0 = 500 sites, x = 20 sites,
kf = 108M−1s−1.

Figure 15 illustrates a situation when polymers can-
not leave the DNA after they bind but can move along
the DNA. The values of θ for reversible and irreversible
binding with motion initially coincide. Irreversible bind-
ing (corresponding to dash-dotted line in Figure 15) ap-
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proaches complete charge neutralisation (θ = 1) for large
times. Such behaviour is expected for any binding rate
and any length of polymer since polymers simply fill all
the gaps large enough to accommodate them; random
polymer motion will eventually result in gaps coalescing
to gaps large enough to accept further polymers until the
entire DNA plasmid has been neutralised.

C. Fast motion asymptotics

An equation for charge neutralisation for cases in which
polymers move along the DNA molecule at much greater
rates than those at which either binding or removal occur
on DNA of infinite length was derived by Epstein in [5].
In this section we use equations (23) to determine the
charge neutralisation kinetics for this case, and, in so
doing, confirm Epstein’s results.

In the later stages of the process, when motion becomes
important, only the distribution of short gaps is relevant
since the large gaps will have completely disappeared.

Over short timescales, no adhesion or removal occurs,
and the kinetics are governed by motion. Thus, setting
Fp = Up = 0 in equation (23), we have the equation for
the gap-distribution on the DNA plasmid in the limit of
P0 → ∞ is

1

km

dN0

dt
= N1 −

(

1 − N0

M0

)

N0, (24a)

1

km

dNp
dt

= Np+1 −
(

1 − N0

M0

)

Np

−Np +

(

1 − N0

M0

)

Np−1 (p ≥ 1), (24b)

where M0 =

∞∑

p=0

Np and hence d
dtM0 is an order of mag-

nitude smaller than M0.
At equilibrium equation (24a) implies

N1 = N0

(

1 − N0

M0

)

. (25)

When
d

dt
Np = 0, equations (24b) form a system of linear,

constant coefficient, recurrence relations whose solution
is given by

Np(t) = N0

(

1 − N0

M0

)p

, (26)

for any choice of the parameters N0, M0. For a given
system, M0 should be constant over the timescale consid-
ered in (24b). This suggests that there is a two-parameter
family of solutions to (24a), parametrised by N0 and M0,
N0 being the number of gaps of zero length and M0 being
the total number of gaps (of any size).

Assuming (26) holds for 0 ≤ p ≤ P0 and P0 � 1, we
have

M1 =
M0

N0

(M0 −N0) . (27)

An expression relating the number of gaps of size zero to
M0 is found by applying the identity P0−M1 = x(M0−1)
to (27). This gives

N0 =
M2

0

P0+x+ (1−x)M0

. (28)

At any particular time we expect the shape of the distri-
bution Np(t) to be given by (26) with (28) and 0 < M0 <
1 + P0/x.

Over large times M0(t) will vary as polymers slowly
adhere to the DNA or are removed from it. We substi-
tute for N0 from (28) into (26) to get the approximate
distribution for all gap sizes

Np(t) =
M2

0

P0+x+ (1−x)M0

(
P0 + x− xM0

P0+x+ (1−x)M0

)p

,

(29)
where the only time-dependence is via M0(t) which we
determine below. Since we expect Np = 0 for p� x, this
will be a good approximation only in the later stages
of the polymer adhesion process, where Np is small for
p ≥ x.

We now derive an evolution equation for M0 that is
valid at large times when polymer adhesion and removal
occurs. From (23) we obtain the ode

dM0

dt
=

P0−x∑

p=0

(

Kf (p+ 1)Np+x −KrNp

P0−p−x∑

q=0

Nq

)

.

(30)
To close the system, we substitute from (29) into (30),
write Kr = kr/M0 and

Kf = kfL(t) = kf (L0 −A0(M0 − 1)) ,

and set the upper limits in (30) to infinity. In this way,
we obtain

dM0

dt
=
kf (L0−A0(M0−1)) (P0−x(M0−1))

x

(P0−x(M0−1)+M0)
x−1

− krM0.

(31)
Using θ = x(M0 − 1)/P0, we rewrite this as an evolution
equation for the charge neutralisation which, on taking
the limit P0 → ∞, yields

dθ

dt
=
kfx(L0 −A0(M0−1))(1 − θ)x

(1 − (x−1
x )θ)x−1

− krθ. (32)

Epstein’s derivation is based on the McGhee-von Hippel
isotherm [25]. In [5], Epstein uses θ to denote the quan-
tity (M0−1)/P0 so to convert to our charge neutralisation
variable θ = x(M0 − 1)/P0 we rescale multiply Epstein’s
θ by x. Equation (18) of [5] is thus transformed into (32)
above.
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Equation (31) is applicable to the binding of poly-
mers that have a high rate of movement along the DNA
molecule. The steady state solution of equation (31) also
applies to the polymers that do not move along the DNA
(km = 0) but are removable (kr > 0). Numerical solu-
tions of equation (31) are plotted in Figure 16. As ex-
pected, the steady-state charge neutralisation is the same
regardless of whether the polymers move. The time taken
to approach that state is considerably reduced when the
polymers move. All curves display identical behaviour on
the faster timescale when the binding process dominates.
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FIG. 16: Asymptotic solution of charge neutralisation kinetics
(L0 = 10−6M, A0 = 2 × 10−9M, P0 = 500 sites, x = 20 sites,
kf = 108M−1s−1).

We now use equation (32) to calculate two further
quantities: firstly the rate at which the charge neutral-
isation approaches unity in the case where there is mo-
tion and no removal, and secondly the equilibrium charge
neutralisation when the removal rate is small.

1. Equilibrium charge neutralisation in the case of small

removal rates

We consider the case where the polymers are long, and
the DNA plasmid is extremely long, so that it can ac-
commodate many polymers. Thus we use the scalings
x = 1/ε and P0 = y/ε2 with ε� 1. This implies that, to
leading order, M0 = θ/ε, and that (31) simplifies to

dθ

dt
= −krθ +

kf
ε2

(L1−A0θy)(1 − θ) exp

(
− θ

1− θ

)

, (33)

where A0 = O(1) and L0 ≈ L1/ε with L1 = O(1).
As shown above, if there is motion with no removal,

the equilibrium charge neutralisation is unity. However,
in the case of motion with reversible binding, the equilib-
rium value of θ is below unity. To obtain an asymptotic
expression for the equilibrium value when kr is small we

write θ = 1 − δ with δ � 1. From (33) we find that at
equilibrium

1

δ
e1/δ =

kf
krε2

(L1−A0y) =: q, (34)

and 1/δ = W (q), where W is Lambert’s function [26]
which has the property that W (q) ∼ log q for q � 1.
Thus for systems with a small removal rate the equilib-
rium charge neutralisation is given by

θ ∼ 1 − 1

log(kf (L1−A0y)/krε2)
, (35)

or, reintroducing the scales x = 1/ε and P0 = y/ε2,

θ ∼ 1 − 1

log(kf (L0x−A0P0)/kr)
. (36)

The accuracy of this asymptotic solution is investigated
in the next section.

2. Large-time solution for the case of motion with no

removal

If there is polymer motion, but no removal then the
charge neutralisation approaches exactly unity in the
large-time limit. To analyse the large-time solution in
this case, we return to (33) noting that kr = 0. We ex-
pect θ → 1 as t → ∞. The large-scale asymptotics can
be derived by introducing ψ = 1 − θ � 1 for which

ε2
dψ

dt
= −kf (L1−A0y)ψ e−1/ψ. (37)

Hence we find that θ(t) ∼ 1 − 1/ log(t) as t → ∞, which
gives the extremely slow convergence seen in the top
curve of Figure 15.

D. Charge neutralisation as a function of removal

rate

We now study the effect of varying the ratio of binding
to removal rates on the equilibrium charge neutralisation.
Steady-state solutions for reversible binding with differ-
ent values of kf/kr are compared to irreversible binding
solutions in Figure 17.

The solid line in Figure 17 represents the steady-state
solution of equation (31) for various values of kf/kr. The
dotted line corresponds to the steady-state of the irre-
versible binding system where it is assumed that poly-
mers cannot leave (kr = 0) or move along (km = 0)
the DNA once attached. The two curves intersect when
kf/kr = κ0 = 2.09 × 106M−1. The dashed line in in
Figure 17 corresponds to asymptotic solution (36). We
observe good agreement for kf/kr > 106.
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FIG. 18: Kinetics of charge neutralisation for various values
of the removal rate (L0 = 10−6M, A0 = 2× 10−9M, P0 = 500
sites, x = 20 sites, κ = kf/(krκ0), κ0 = 2.09 × 106M−1).

E. Kinetics of high removal-rate reactions

We now examine the effects of varying the removal
and movement rates on charge neutralisation. Figure 18
shows the kinetics of charge neutralisation for irreversible
binding (circles) together with three pairs of curves. In
each pair, one curve corresponds to no motion and the
other to extremely rapid motion. We define κ0 = kf/kr
for the value of this ratio which gives an equilibrium
charge neutralisation equal to that which occurs in the

pure adhesion case (kr = 0 = km); from the above sub-
section we note that κ0 = 2.09×106 M−1. The definition
of κ implies kf = krκ0κ so that large values of κ repre-
sent adhesion-dominated systems whilst κ < 1 indicates
that removal plays the dominant role. We specify a re-
moval rate through κ such that kr = kf/κ0κ, thus κ = 10
corresponds to a low removal rate, and κ = 0.1, a high
removal rate.

In Figure 18, the solid line with bars across it corre-
sponds to binding when polymers are assumed to move
rapidly along the DNA plasmid (km → ∞, κ = 1). The
unmarked solid line corresponds to the reversible pro-
cess when polymers do not move along the DNA plasmid
(km = 0, κ = 1). Both cases with κ = 1 yield results that
are very close to irreversible binding but high movement
rates leads to slightly higher charge neutralisation than
when km = 0.

When the removal rate is high (κ = 0.1) the charge
neutralisation is low (θ ≈ 0.55) and again motion causes
a slight increase in θ. The same qualitative behaviour is
observed when the removal rate is low (κ = 10) except
that the charge neutralisation is much higher (θ ≈ 0.83).

The results presented in Figure 18 suggest that using
equation (32) to determine the steady state charge neu-
tralisation may underestimate the correct solution when
the removal rate is relatively low.

V. MODELLING MOTION WITH OVERLAPS

A. Pure motion

In this section we consider the case where a finite
number of polymer molecules are attached to the DNA.
The polymers can move along the plasmid,but no further
polymer can adhere, and none can be removed.

We assume that the initial distribution of gaps is given
by Np(0) and since overlaps are permitted, −(x − 1) ≤
p ≤ P0. We wish to determine how this distribution
evolves due to the allowed motion of adhered polymer
molecules. We suppose that a polymer molecule will al-
ways move unless it has reached maximum possible over-
lap p = −x+ 1 on one side, and that each motion corre-
sponds to the motion of a polymer over one lattice site.
Figure 19 illustrates the range of effects that polymer
movement can have on gaps of length p.

The effects that polymer movements (a)-(d) displayed
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FIG. 19: Illustration of p-gap formation and destruction due
to polymer motion; in this case p < 0 so the ’gap’ is actually
an overlap. The processes (a)-(d) are modelled by formulae
38(a)-(d) respectively.

in Figure 19 have on the gap distribution are shown below

V f−p = km

(

1 − N1−x

M0

)

Np−1

︸ ︷︷ ︸

gap of size

p−1 grows

, (38a)

V r−p = km Np
︸︷︷︸

gap of size

p shrinks

, (38b)

V f+
p = km Np+1

︸ ︷︷ ︸

gap of size
p+1 shrinks

, (38c)

V r+p = kmNp

(

1 − N1−x

M0

)

︸ ︷︷ ︸

gap of size
p grows

, (38d)

As before, superscripts f and r refer to gap formation
and removal respectively, and km is the rate of polymer
motion along the DNA. The additional superscripts ±
refer to transitions between gaps of length p and p ± 1
respectively.

Using (38) to construct equations for the evolution of
the gap-distribution, combining with the effects of adhe-

sion, and removal modelled by (21), we obtain

dNP0

dt
= −F rP0

+ UfP0
, (39a)

dNP0−1

dt
=F fP0−1− F rP0−1+ UfP0−1− UrP0−1

+ V f−P0−1 − V r−P0−1, (39b)

dNp
dt

=F fp − F rp + Ufp − Urp + V f+
p + V f−p

− V r+p − V r−p (1≤p≤P0−2), (39c)

dNp
dt

=F f−p + Ufp − Urp + V f+
p + V f−p − V r+p − V r−p

(2−x≤p≤0), (39d)

dN1−x

dt
= F f−1−x − Ur1−x + V f+

1−x − V r+1−x. (39e)

B. Numerical solution for adhesion, removal and

motion

As before, the evolution of the gap distributions Np(t)
was calculated by solving equations (39) numerically us-
ing the subroutine D02NBF from the NAG Mark 18 For-
tran library. The charge neutralisation was calculated
from θ = x(M0 − 1)/P0, where M0 is the total number
of gaps.
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FIG. 20: Effect of polymer motion on kinetics of charge neu-
tralisation when overlaps are permitted, log scale in time
(L0 = 10−6M, A0 = 5 × 10−9M, P0 = 200 sites, x = 5 sites,
kf = 108M−1s−1).

In Figure 20 we compare charge neutralisation for poly-
mer binding with and without motion. Recall that with
overlapped binding, polymer removal leads to a reduc-
tion in charge-neutralisation over larger timescales. Even
a relatively slow rate of movement results in a large in-
crease in charge neutralisation (dotted line in Figure 20)
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compared to that without movement (dashed line in Fig-
ure 20). Increasing the rate of movement further results
in a further increase of charge neutralisation (dash-dot
line in Figure 20).

When systems allowing motion with overlaps (Figure
20) are compared with systems allowing motion without
overlaps (Figure 13), it is clear that allowing overlaps
leads to a further large increase in charge neutralisation.
In the case of binding without overlaps movement merely
resulted in a faster approach to the reversible binding
equilibrium.

Further information about the system can be obtained
by studying the gap distribution (see Figure 21). The
data marked by x’s in Figure 21 correspond to the largest
movement rate, and shows a large number of overlaps
of the largest possible size. Rearrangements which in-
crease the size of overlaps when the DNA plasmid is
already fully covered lead to this scenario where very
large charge neutralisations observed, as shown in Fig-
ure 20, and are almost certainly unphysical. This is due
to an over-simplified model of polymer-motion; a more
accurate model of polymer motion would take account
of a charge-charge interactions and hence favour motion
which led to a reduction in overlap size.
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FIG. 21: Effect of polymer motion on equilibrium gap distri-
bution, (L0 = 10−6M, A0 = 5×10−9M, P0 = 200 sites, x = 5
sites, kf = 108M−1s−1).

The charge neutralisation process can be limited by
preventing motions that increase the number or size of
existing overlaps. Removing all movement terms that
lead to the formation of overlaps from equations (39)

gives the more physically realistic equations

dNP0

dt
= 0, (40a)

1

km

dNP0−1

dt
= −NP0−1, (40b)

1

km

dNp
dt

= Np+1 −Np

(P0 − x+ 1 ≤ p ≤ P0 − 2), (40c)

1

km

dNP0−x

dt
= NP0−x+1 −NP0−x +NP0−x−1S,

1

km

dNp
dt

= −NpS +Np+1 −Np +Np−1S

(1 ≤ p ≤ P0 − x− 1), (40d)

1

km

dN0

dt
= −N0S +N1 +N−1S, (40e)

1

km

dNp
dt

= −NpS +Np−1S

(2 − x ≤ p ≤ −1), (40f)

1

km

dN1−x

dt
= −N1−xS, (40g)

where S = 1
M0

∑P0

q=1Nq is the proportion of gaps which
are positive in length and km is the rate of motion.

Charge neutralisation of the system with motion lim-
ited to reducing overlaps is shown in Figure 22. Polymer
motion modelled by equations (40) neither increases the
charge (as it did in Figure 20), nor results in the same
charge neutralisation as irreversible binding without mo-
tion (Figure 13 in Section IV B). The graph correspond-
ing to polymers with motion rate, km = 0.1s−1 in Figure
22 shows that motion results in a slight decrease in the
charge neutralisation θ with the line corresponding to
km = 10s−1 confirming the result with charge neutrali-
sation decreasing a little further. The kinetics of charge
neutralisation in the system with modified motion still
occur on the same timescales: with binding on timescale
of 10−3 - 10−2, and rearrangements leading to reduction
in θ over t ∼ 10−1 - 10+1.

VI. DISCUSSION

We have developed a new deterministic model of the
kinetics of gap distributions occurring when polymers
bind reversibly, with or without overlaps, to DNA. We
have verified that the numerical simulations agree with
equivalent Monte Carlo simulations. New results con-
firmed that removal generally increases the charge neu-
tralisation when polymers do not overlap and decreases
it when they do. We have also determined the dis-
tribution of gaps/overlaps at equilibrium. In the non-
overlapping case, introducing reversible adhesion accen-
tuates the size-dependence of gap sizes, making smaller
gaps more common and larger gaps less common than in
the case of irreversible adhesion (Figure 6). When over-
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FIG. 22: Effect of limited polymer motion (40g) on the kinet-
ics of charge neutralisation, log scale in time (L0 = 10−6M,
A0 = 5 × 10−9M, P0 = 200 sites, x = 5 sites, kf =
108M−1s−1).

laps are permitted, irreversible binding produces a distri-
bution of overlaps which is independent of size, whereas
when binding is reversible small overlaps are more fre-
quent and large gaps less common (Figure 11).

Reducing the free polymer concentration had a less
pronounced effect on charge neutralisation in the case
of overlapping than in the non-overlapping case. The
decrease in charge neutralisation observed in non-
overlapped binding with lower concentration of polymers
in the solution was not observed when overlaps were al-
lowed.

We have also extended our deterministic model to al-
low for polymer motion along the DNA plasmid. Nu-
merical solutions of the non-overlapping process are in
good agreement with Monte Carlo simulations and sug-
gest that motion decreases the time taken to reach the
equilibrium charge neutralisation.

Polymer motion in the overlapped system can have a
dramatic effect on the equilibrium charge neutralisation.
Our initial model of polymer motion allows polymers to
move towards and over each other until they form the
maximum possible overlap, this leads to a greatly in-
creased equilibrium charge neutralisation, through an ef-
fect which we believe is unphysical. Although other au-
thors have commented on the possibility of such large
charge inversions [27], in many systems we believe there
will be an upper limit to observed charge inversions, as
noted by Tanaka & Grosberg [28]. Hence, we have pro-
posed a modified model in which polymer-motion can
only decrease overlap size. The corresponding equilib-
rium charge neutralisation is decreased.

We have considered one asymptotic domain in more de-
tail, namely the case of long polymers (of length x = 1/ε
with ε � 1) and very long DNA plasmids (of length
P0 = O(1/ε2)). In the case of reversible binding without

overlaps we have determined numerically how the ratio
(kf/kr) influences the equilibrium charge neutralisation,
in particular we have found an asymptotic approximation
which is valid when kf/kr is large. Our model is based
on the theory of random sequential adsorption (RSA),
an approach which has been widely used previously to
analyse the geometric effects of binding and blockage of
binding of polymers to a DNA plasmid. The novel as-
pects we have introduced here are the combination of
reversible adhesion and motion of the polymers along
the plasmid. In Section IV C we have used asymptotic
analysis to show that the system exhibits extremely slow
kinetics in its approach to equilibrium.

Future work could be directed at deriving more re-
fined formulae for the adhesion and removal rates’ and
their dependence on electrostatic DNA-polymer interac-
tions. The resulting models would then be more con-
sistent with the electrostatic/thermodynamic models of
[29]. In a future paper we address DNA-polymer inter-
actions in which the polymers have a polydisperse distri-
bution of lengths [31, 32].
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FIG. 23: Illustration of the main qualitative features of the
charge neutralisation kinetics of various models of polymer
binding.

In summary, our analysis of the kinetics of charge neu-
tralisation reveals four qualitatively different types of
behaviour; (see Figure 23). The simplest model of ir-
reversible binding without overlaps predicts a one-step
monotonic increase in the charge neutralisation (solid
line in Figure 23). This is always insufficient to cause
DNA condensation regardless of the length of the poly-
mer as it is below the 90% needed to condense DNA
(Wilson & Bloomfield [30]). When binding is reversible
and without overlaps (dashed line) the dynamics exhibit
a two-step monotonic increase to a higher equilibrium
charge neutralisation. The counterintuitive result that
including polymer-removal causes an increase in charge
neutralisation is due to the fact that removal creates gaps
large enough for a greater number of polymers to bind to
the DNA. Irreversible binding with overlaps (dotted line
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in Figure 23) exhibits the same one-step monotonic in-
crease as irreversible binding without overlaps but leads
to a much higher charge neutralisation (θ > 1). The
approach to the equilibrium charge neutralisation is non-
monotonic when there is reversible binding with overlaps.
These four types of behaviour discussed above could be
matched to experimental data to predict which of the
mechanisms present in our family of models of polymer-
binding are relevant for a particular system.
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