
Rule-based and Resource-bounded:
A New Look at Epistemic Logic∗

Mark Jago

Abstract

Syntactic logics do not suffer from the problems of logical omniscience but are often thought to lack
interesting properties relating to epistemic notions. By focusing on the case of rule-based agents, I develop
a framework for modelling resource-bounded agents and showthat the resulting models have a number
of interesting properties.

1 Introduction

Logical omniscience is a well-documented problem for epistemic logics based on a possible worlds seman-
tics (first presented in Hintikka’s seminalKnowledge and Belief[21]). In this paper, I concentrate on the
concept of belief, as believingφ is a necessary condition on knowingφ. Belief is defined as truth in all
epistemically accessible worlds and as a consequence, belief is closed under consequence and agents auto-
matically believe all valid sentences. This is clearly inadmissible as a general analysis of belief.1 Several
authors take the view that, in a number of situations, logical omniscience is unproblematic, “in particular
for interpretations of knowledge that are often appropriate for analyzing distributed systems . . . and certain
AI systems.” However, “it is certainly not appropriate to the extent that we want to model resource-bounded
agents” [16, p. 41]. I will therefore take as my starting point the requirement that the beliefs of resource-
bounded agents be modelled accurately.

To avoid the problem of logical omniscience, a syntactic approach is required: that is, one which takes
the truth-conditions of belief ascriptions to be given, at least in part, in terms of sentences.2 Contrary to
the impression one receives from the logical literature, syntactic accounts of belief receive support from
the current philosophical literature.3 An objection is that syntactic epistemic logics merely giveus “ways
of representingknowledge [and belief] rather thanmodellingknowledge [and belief]”. If so, the thought
runs, “[o]ne gains very little intuition about knowledge [or belief] from studying syntactic structures” [15,
p. 320]. The syntactic approach “lacks the elegance and intuitive appeal of the semantic [possible worlds]
approach” [14, p. 40]. My aim in this paper is therefore to present an elegant and intuitively appealing
syntactic logic of belief which allows us to accurately model resource-bounded reasoners.

The key idea is to model inference as a nondeterministic step-by-step process. Each time an inference
rule is applied and a new belief derived, the agent moves intoa new belief state. This is a very fine-grained
notion of belief change. It allows models to be built in whichperfectly rational reasoning is possible, in the
sense that the agent’s logical abilities need not be depleted in any way, but in which logical omniscience
never arises. This framework models agents that, as [22] hasit, are neither logically omniscient nor logi-
cally ignorant. The lesson to be taken is that, in order to model real AI agents without making unrealistic
assumptions about their resource bounds, an epistemic logic must be able to represent an agent’s reasoning
at the level of individual inferences (the title of the paperis intended to reinforce this point). My strategy in
this paper is to investigate step-by-step inference in a simplified setting. The only inferential action that will
be modelled here is the act of deriving new beliefs from old using (a generalised version of)modus ponens.

∗Thanks to Natasha Alechina for incisive comments, to Brian Logan for guidance and to three anonymous referees for the Logics
for Resource Bounded Agents workshop for their helpful suggestions.

1See [34, 35, 24] for discussions of logical omniscience and related problems.
2Many authors seem to dispute this claim, especially [27, 14,16, 15]. However, none of the approaches presented there genuinely

solve the problem. See [24]. The approach based onawarenessgiven in [14] unwittingly concedes the point (see [24].
3See Perry [30, 31] and Corazza [11, 10] for accounts of beliefin terms of an accepted sentence. Further support comes from

accepting thelanguage of thought hypothesis: see Fodor [17, 18].

Actions such as making assumptions or instantiating axiom schema are not modelled here (but see [24] in
which such actions are modelled in the current framework).

I take as a working example a prominent case from the AI literature: the case ofrule-based agents.
These agents consist of a program—a set of condition-actionrules—and a rule interpreter. Rule-based
agents have been more or less ignored by the literature on epistemic logic4 but play an important rôle in
other areas of AI. There are several rule-based agent architectures available, e.g. SOAR [26] and SIM -
AGENT [33] which allow a great degree of abstraction in specifyingbehaviour. Rule-based programming
extensions are also increasingly being offered as add-ons to existing, lower-level, agent toolkits, e.g., JADE
[7] and FIPA-OS [32]. Rule-based behaviour is also playing an important rôle in analysing domains such
as business. Business rules (statements that define or constrain an aspect of a business [9], e.g.every visitor
of the conference gets a 20 per cent discount on the first product purchase) are being used by companies
to analyse the behaviour and improve the efficiency of their business. As the business rules community
puts it, “business rules are the very essence of a business. They define the terms and state the core business
policies. They control or influence business behaviour. They state what is possible and desirable in running
a business—and what is not” [9].

In general, a rule-based agent’s program will contain condition-action rules of the form

P1, . . . , Pn ⇒ Q1, . . . , Qm

Pi are the conditions,Qi the resulting actions, and eachPi, Qi may contain unbound variables or possibly
even logical connectives.5 Here, I treat both rules in the agent’s program and literals held in its working
memory as beliefs (the working memory does not play a significant rôle in the formalism). In the modal
systems discussed below, an agent’s rules are represented in the states of those models. An equivalent
formulation could be given by encoding rules as conditions on the arcs between states. Intuitively, it makes
sense to encodeinferencerules as conditions on arcs and beliefs as the sentences supported by states (the
question is whether to treat the rules that appear in the agent’s program as inference rules). On the alternative
formulation, each rule is treated as an inference rule in itsown right whereas on the account presented here,
rules are formulae and the agent reasons using a generalisedform of modus ponens:

λ1, . . . , λn, (λ1, . . . , λn ⇒ λ)
λ

In this way, agents are modelled as having many beliefs and only the one rule of inference.
I focus on an agent’s reasoning process by assuming that the agent has an initial stock of beliefs (which

might be observations) that are neither revised nor added to, other than by firing rules and adding their
consequents as new beliefs. I make three further simplifying restrictions: (i) to rules which produce a single
action; (ii) to propositional rules and (iii) to rules whichcontain no disjunctions (thus, on agents who have
no disjunctive beliefs). The first two are inessential;6 (iii) is a restriction on the expressiveness of the logic
presented here, but is by no means a limitation of the generalframework.7

The remainder of the paper proceeds as follows. In section 2,I present syntax and semantics for a
logic which models a single rule-based agent and then, in section 3, discuss the properties of such models.
In section 4, I consider an agent with a fixed program and, in section 5, present an axiomatization and
complexity analysis of the resulting logic. Related and future work is discussed in sections 6 and 7.

2 Modelling Rule-Based Agents

We fix a denumerable set of propositionsP = {p1, p2 . . .}. A literal is either a proposition or its negation;
literals are writtenλ1, λ2 Rules are of the formλ1, . . . , λn ⇒ λ and in general rules are denoted
ρ, ρ1, ρ2, Since it is often useful to know which belief a rule adds whenfired, we use the abbreviation

4A notable exception is [25]; see section 6.
5For example, in the ‘definition’ ruleperson(x) ⇒ man(x) ∨ woman(x).
6Because negation may only appear before a predicate—the agent does not believe the negation of any rule—a program in which

rules contain unbound variables can be modelled using a denumerable set of propositions, so long as both the set of predicates and
the set of constants is denumerable (in any practical case, both will be finite). Using a propositional logic allows us to use a far more
readable notation without limiting the underlying logic—all results given below also hold for the predicate case. A logic that deals
with predicate-style rules is considered in [4].

7Disjunction is ignored here merely to reduce the complexityof the presentation. See [24] for the extended framework, including
disjunctions.

cn(ρ) for λ, given thatρ = (λ1, . . . , λn ⇒ λ). The agent’sinternal languageLP overP contains only
rules and literals; no other formulae are considered well-formed. SinceP will be fixed throughout, the
superscript may be informally dropped. Arbitrary formulaeof L are denotedα, α1,

The modal languageMLP , which is used to reason about the agent’s beliefs, is built from formulae of
LP (again the superscript may informally be dropped).ML contains the usual propositional connectives
¬,∧,∨,→, the ‘3’ modality and a belief operatorB. Given a literalλ and a ruleρ, ‘Bλ’ and ‘Bρ’ are
primitive wffs of ML, and all primitive wffs are formed in this way. Ifφ1 andφ2 are bothML wffs, the
complex wffs ofML are then given by

¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | 3φ1

The dual modality ‘2’ is introduced by definition:2φ
df
= ¬3¬φ. Note that the primitive formulae ofML

are all of the form ‘Bα’, where ‘α’ is aL-formula, hence the problem of substitution within belief contexts
does not arise in logics based onML.

Models are graphs of states, with each arc representing a change in an agent’s belief state. Although
time is not explicitly represented in these models, each arcis thought of as a transition from an agent’s belief
state at one time to a (possible) belief state at a future moment in time, arrived at by firing a rule and adding
its consequent as a new belief. A modelM is a structure〈S, T, V 〉 whereS is a set of states;T ⊆ S × S
is a transition relation on states; andV : S −→ 2L is thelabelling function, assigning a set of sentences of
the agent’s internal language to each state. Where there is atransition froms to s′, s′ will be said to be a
successorof s; s′ is reachablefrom s when there is a sequence of statesss1s2 · · · sns

′ such that each is the
successor of the one before.

Definition 1 (Labelling) Given a modelM = 〈S, T, V 〉, a sentenceα ∈ L is said tolabela states ∈ S
whenα ∈ V (s). Given modelsM = 〈S, T, V 〉 andM ′ = 〈S′, T ′, V ′〉 (which need not be distinct), states
s ∈ S ands′ ∈ S′ are said to be label identical, writtens L s′, whenV (s) = V ′(s′).

The definition of a formulaφ of ML being true, or satisfied, by states in a modelM (writtenM, s φ) is
as follows:

M, s Bα iff α ∈ V (s)

M, s ¬φ iff M, s 6 φ

M, s φ1 ∧ φ2 iff M, s φ1 andM, s φ2

M, s φ1 ∨ φ2 iff M, s φ1 orM, s φ2

M, s φ1 → φ2 iff M, s 6 φ1 orM, s φ2

M, s 3φ iff there exists a states′ ∈ S such thatTss′ andM, s′ φ

Such models are known as Kripke models. ‘M, s φ’ is read ass supports the truth ofφ in M , or s
supportsφ for short (if it is clear which model is being talked about). The definitions of global satisfiability
and validity are standard, and these notion extend to sets for formulae in the usual way. Statess, s′ ∈ S are
said to bemodally equivalentin M , writtens! s′, when{φ |M, s φ} = {ψ |M, s′ ψ}.

Because these models are common to modal logics in general, they need to be restricted in certain ways
to model rule-based agents. In particular, the rules which an agent believes do not change; rules are neither
learnt nor forgot. This is standard practise in rule-based AI systems (cf conditionS4 below). Secondly,T
must relate statess andu when some ruleρ can be fired ats, andu is just likes except the agent has gained
one new belief, the consequent ofρ. Here,ρ is said to be ans-matching rule.

Definition 2 (Matching rule) Letρ be a rule of the formλ1, . . . , λn ⇒ λ. ρ is then said to bes-matching,
for some states ∈ S, iff ρ ∈ V (s), eachλ1, . . . , λn ∈ V (s) butλ 6∈ V (s).

Wheneverρ is s-matching for some states, then the agent can move into a new stateu in which it has
gained a new belief.u is said toextends by that new belief, namelycn(ρ).

Definition 3 (Extension of a state)For any ruleρ and statess, u ∈ S, u extendss by cn(ρ) iff V (u) =
V (s) ∪ { cn(ρ)}.

If there are no matching rules at a state (and so no rule instances to fire), that state is aterminating
stateand has a transition to itself (or to another identical state, which amounts to much the same in modal
logic). This ensures that every state has an outgoing transition; in other words,T is aserial relation. As a
consequence, the question ‘what will the agent be doing after n cycles?’ may always be answered, even if
the agent ran out of rules to fire in less thann cycles.

Definition 4 (Terminating state) A states is said to be a terminating state in a modelM iff no rule ρ is
s-matching.

Transitions relate terminating states to identically labelled terminating states and, whenever there is a match-
ing ruleρ at a states, a transition should only be possible to a stateu which extendss by cn(ρ). We capture
such transition systems in the classS (for single agent models).

Definition 5 The classS contains precisely those modelsM which satisfy the following:

S1 for all statess ∈ S, if a ruleλ1, . . . , λn ⇒ λ is s-matching, then there is a states′ ∈ S such thatTss′

ands′ extendss byλ.

S2 for any terminating states ∈ S, there exists a states′ ∈ S such thatV (s′) = V (s) andTss′

S3 for all statess, s′ ∈ S, Tss′ only if either(i) there is ans-matching ruleλ1, . . . , λn ⇒ λ ands′ extends
s byλ; or (ii) s is a terminating state andV (s) = V (s′).

S4 for all rulesρ and statess, u ∈ S, ρ ∈ V (s) iff ρ ∈ V (u).

It is clear that this definition ensures thatT is a serial relation for any modelM ∈ S. For any states ∈ S,
either there is at least one matching rule or there is not. In the former case,S1 ensures thats is related to
some extension of itself byT ; otherwise,s is a terminating state and is related to an identically labelled
state byT .

There may, of course, be many matching rules at a given state,and for each there must be a stateu such
thatTsu. Each transition may be thought of as corresponding to the agent’s nondeterministic choice to fire
one of these rule instances. ‘3φ’ may then be read as ‘after some such choice,φ will hold.’ We can think of
the agent’s reasoning as a cycle: (i) match rules against literals; (ii) choose one matching rule; (iii) add the
consequent of that rule to the set of beliefs; repeat. By chaining diamonds (or boxes), e.g. ‘333’ we can
express what properties can (and what will) hold after so many such cycles. We can abbreviate sequences of
n diamonds (orn boxes) as3n and2

n respectively. ‘2nφ’, for example, may be read as ‘φ is guaranteed
to hold aftern cycles.’ Note that the agent’s set of beliefs grows monotonically state by state and that the
agent never revises its beliefs, even if they are internallyinconsistent.

Example

Before investigating the properties that models in the class S have, an example may help to illustrate the
concepts that have been introduced. Typically, the rules inrule-based programs will contain variables which
are matched against the contents of the agent’s working memory to produce instances of the rule. In this
example, the agent’s program contains just two rules:

R1 PremiumCustomer(x), Product(y) ⇒ Discount(x, y, 10%)

R2 Spending(x,>1000) ⇒ PremiumCustomer(x)

However, a first-order language is not needed to model this agent. Instead, we can consider the language
that contains all instances of the rules and all ground literals that appear in these instances.8

Now suppose that the agent’s initial working memory contains the beliefs

Product(iBook) Spending(Jones, >1000) Product(Sunglasses)

When the agent begins executing, R2 can be matched againstJones to produce

Spending(Jones, >1000) ⇒ PremiumCustomer(Jones) (1)

8When considering a programR (section 4) or the axiomatization given in section 5, we mustalso assume that the set of constants
used to instantiate the variables in rules is finite.

Since no other instances of either R1 or R2 are possible, there is then a unique next state in which

PremiumCustomer(Jones)

is added to the agent’s working memory. At the agent’s next cycle, R1 can be matched againstJones and
eitherSunglasses or iBook to produce the instances

PremiumCustomer(Jones), Product(Sunglasses)⇒ Discount(Jones, Sunglasses, 10%) (2)

PremiumCustomer(Jones), Product(iBook) ⇒ Discount(Jones, iBook, 10%) (3)

Note that (1) is no longer counted as a matching rule instance, since its consequent has already been added
to the working memory. The agent can then move into a state in which the working memory contains
eitherDiscount(Jones, Sunglasses, 10%) or else containsDiscount(Jones, iBook, 10%) in addition
to its previous contents. If the agent fires (2), addingDiscount(Jones, Sunglasses,10%) to working
memory, (3) remains a matching rule instance andDiscount(Jones, iBook, 10%) is added at the next
state. Similarly, if the agents fires (3), addingProduct(iBook) ⇒ Discount(Jones, iBook, 10%), then
(2) remains matching. There is then a next state addingDiscount(Jones, Sunglasses, 10%) to working
memory. Figure 1 shows a branching time model in which new beliefs are added to the working memory
(only new beliefs are shown). The agent can deriveDiscount(Jones , iBook , 10%) in 2 cycles, whereas it
must derive it in 3 cycles. If this model isM and its roots, thenM, s 33Discount(Jones, iBook, 10%)
andM, s 222Discount(Jones, iBook, 10%).

{

Product(iBook), Spending(Jones, 0), Product(Sunglasses)
}

PremiumCustomer(Jones)

Discount(Jones, iBook, 10%) Discount(Jones, Sunglasses, 10%)

Discount(Jones, Sunglasses, 10%) Discount(Jones, iBook, 10%)

Figure 1: New literals added toWM

3 Properties of Models

Now we need to know, how well do these models capture a rule-based agent’s reasoning process? Below I
give a number of simple yet powerful results. Firstly, thereis a strong relationship between the way states
are labelled, the modal formulae which hold at those states and bisimulation. Secondly, models have abelief
convergenceproperty. The remainder of section is fairly technical.

When a bisimulation relationZ holds between statess, s′, we writes ⋍ s′.9 Intuitively, all bisimilar
models describe the same reasoning process. It is sometimesconvenient to work with models in which the
transition relationT forms a tree on the statesS. Such models are known astree models.

Proposition 1 Some standard properties of modelsM = 〈S, T, V 〉 andM ′ = 〈S′, T ′, V ′〉:

a. For all s ∈ S ands′ ∈ S′, s ⋍ s′ impliess! s′. [8, p.67]

b. Every modelM has a bisimilar tree model (obtained by unravellingM).

c. Any satisfiable formulaφ of depthd is satisfiable in a tree model of height no greater thand.

9See, for example, [8] for an explanation of bisimulation.

d. (Hennessy-Milner Theorem) IfM andM ′ are image finite,10 then,s! s′ impliess ⋍ s′ for all
s ∈ S ands′ ∈ S. [8, p.69]

These are standard properties of all Kripke models. From (a)and (b), whenever we are working with a
modelM , we can always switch to a tree modelM ′ which satisfies the same formulae (ifM, s φ, then
there is a states′ ∈ M ′ : M ′, s′ φ.) The converse to (b) does not hold in general.11 (c) gives a restricted
version of the converse to (b). I now list a few properties which modelsM ∈ S in particular possess (I
don’t give a proof here as each proof is more or less immediate).

Proposition 2 (Properties ofS Models) Assume that a modelM = 〈S, V, T 〉 is a tree model with rootr.
Then:

a. For all statess, s′ of depthn, |V (s)| = |V (s′)|. If V (r) is finite ands, s′ are not terminating states,
then|V (s)| = n+ |V (r)|.

b. If V (r) is finite, thenV (s) is finite for alls ∈ S.

c. If s L s′ ands, s′ are not terminating states, thens ands′ are of the same depth.

d. All siblings of terminating nodes are also terminating nodes.

e. If two childrens1 ands2 of s are such thatV (s1) − {λ1} = V (s2) − {λ2} then each has a childs′

such thatV (s′) = V (s) ∪ {λ1, λ2}.

Lemma 1 For tree modelsM,M ′ ∈ S and statess in M , s′ in M ′: if s L s′ andTsu, then there is a
u′ ∈ S′ such thatTs′u′ andu L u′.

Proof: If s is a terminating state then this is trivial; so assume that this is not the case. Then there is an
s-matching ruleρ such thatV (u) = V (s){ cn(ρ)}. Sinces L s′, ρ is alsos′-matching, hence there is a
u′ such thatTs′u′ andV (u′) = V (s′) ∪ { cn(ρ)}; henceu L u′. ⊣

Theorem 1 For any modelsM,M ′ ∈ S and all statess in M ands′ in M ′: s L s′ iff s! s′.

Proof: Clearly,s! s′ impliess L s′. The converse:M, s φ iff M ′, s′ φ, whenevers L s′, is
shown by induction on the complexity ofφ. The base case is trivial so assume thatM, v ψ iff M ′, v′ ψ
for all v ∈ S, v′ ∈ S′ andψ of lower complexity thanφ wheneverv L v′. The cases for Booleans are
also trivial, so considerφ := 3ψ. Thens L s′ andM, s 3ψ implies that there is a stateu ∈ S such
thatTsu andM,u ψ. By lemma 1, there is a stateu′ ∈ S′ such thatTs′u′ u′ L s′. By hypothesis,
M ′, u′ ψ and henceM ′, s′ 3φ. The converse holds by a similar argument, hences! s′. ⊣

Theorem 2 For any modelsM,M ′ ∈ S and all statess in M ands′ in M ′: s! s′ iff s ⋍ s′.

Proof: From proposition 1(a),s ⋍ s′ impliess! s′, so it only remains to show the converse. Assume
s! s′ and that there is au ∈ S such thatTsu; we must show that there is a stateu′ ∈ S′ such thatT ′s′u′

andu! u′. If s is a terminating state, this is trivial; so assume thats is non-terminating. There must be
ans-matching ruleρ. Sinces′ L s, ρ must also bes′-matching and so, byS1, there is a stateu′ ∈ S′

such thatT ′s′u′ extendings′ by cn(ρ). Henceu′ L s′ and so, by theorem 1,u′! s′. ⊣

Corollary 1 LetM = 〈S, T, V 〉 ∈ S. For anys, s′ ∈ S and any descendantu of s, if s L s′ then there
is a descendantu′ of u such thatu L u′.

Proof: The proof is immediate from theorem 2. ⊣

We can thus partition states into equivalence classes (s, s′ ∈ [s] whenevers L s′) and transform any
modelM into a bisimular modelM≡ just by comparing the labels on states inM . The domain ofM≡

is the set of label equivalence classes inM such thatT≡[s][u] wheneverTsu andV ≡([s]) = V (s) for
somes ∈ [s]. Any formula satisfiable inM is then satisfiable inM≡, andM≡ has the handy property that
[s] L [u] implies[s] = [u].

10A model is image finite iff
S

s∈S{u | Tsu} is finite.
11Given a modelM , we can construct a modally equivalent modelN containing an infinite branch for which there can be no

bisimulationZ : M ⋍ N (if we suppose there is, we will eventually come to a point on the infinite branch inN for which the
corresponding point inM has no successor; hence they cannot be bisimilar states).

Definition 6 LetM = 〈S, T, V 〉 ∈ S andn ∈ N. DefineT nsu to hold iff there are statess0 · · · sn such
thats = s0, u = sn and, for eachi < n, Tsnsn+1.

Now we show that models inS have the property ofbelief convergence.

Theorem 3 (Belief Convergence)For any modelM = 〈S, T, V 〉 ∈ S, any stater ∈ S and anyn ∈ N, if
T nrs andT nru, then there is a states′ reachable froms andu′ reachable fromu such thats′ L u′.

Proof: Without loss of generality, consider a tree modelM ∈ S whose root isr. Lets, u both be reachable
from r in a finite number of transitions. Then there are equinumerous setsX,Y such thatV (s) = V (r)∪X
andV (u) = V (r)∪Y . Now consider the subbranch fromr to s: for each transitionTvv′ on the branch, pick
av-matching ruleρ such thatv′ extendsv by cn(ρ). Enumerate the selected rulesρ for which cn(ρ) /∈ V (u)
asρ1, . . . , ρn (from r to s). It is easy to see that there must be a stateu′ reachable fromu, on the branch
that results from firing firstρ1 and then . . . and thenρn. ThusV (u′) = V (u) ∪ { cn(ρ1), . . . , cn(ρn)} =
V (u) ∪X ′ = V (u) ∪X = V (r) ∪ Y ∪X . By similar reasoning, there must be a states′ reachable froms
with V (s′) = V (s) ∪ Y = V (r) ∪X ∪ Y . Hence,s′ L u′. ⊣

4 Finite Models and Programs

Because of our motivating interest in resource boundedness, we will sometimes want to restrict ourselves
to models in which each state is labelled by only finitely manyL-formulae, for these are the sentences
representing the agent’s basic explicit beliefs, of which any real agent may have only finitely many at any
one time. We capture this intuition in the class offinite memory models.

Definition 7 (Finite memory model) A modelM ∈ S is a finite memory model iffV (s) is finite for each
s ∈ S. Cfm is the set of all finite memory models in some classC.

An interesting feature of finite memory models inS is that each is bisimilar to a finite state model inS. This
is thefinite model property:

Theorem 4 (Finite Model Property) For any finite memory modelM = 〈S, T, V 〉 ∈ Sfm, there is a
modelM ′ containing only finitely many states and a bisimulationZ : M ⋍M ′.

Proof: For any states ∈ S, if V (s) is finite, s may only have finitely many children, each of which
are labelled by only finitely many formulae. LetR be the set of rules which label each state (byS4, all
states are labelled by precisely the same rules); clearlyR is finite. Then any states ∈ S can have at
most |{ cn(ρ) | ρ ∈ R}| matching rules. Thus a finite memory model with infinitely many states must
have an infinite branch, on which only a finite initial segmentis generated by matching rules, i.e. only
the firstn states on the branch are non-terminating states, for somen ≤ |{ cn(ρ) | ρ ∈ R}|. By S3ii,
s L s′ wheneverTss′ ands, s′ are terminating states. A modelM ′ can be obtained by selecting the first
terminating states on each branch inM , removing all the descendants ofs and adding a transitionTss. M ′

satisfiesS2 and is clearly bisimilar toM . Moreover, sinces occurred on a finite initial segment of a branch
in M ,M ′ only contains branches of finite length. It follows thatM ′ only contains finitely many states.⊣

The above has been a general characterisation of rule-basedagents which execute fixed but unspecified
set of rules. However, we are often interested in restricting our attention to agents reasoning with a specific
set of rules. Following the usual terminology, aprogramis simply a finite set of rules. One of the uses of
the current approach is testing for properties of particular programs.12 Given a programR for the agent, we
can define a subclassSR as containing just those models inS in which the agent believes all the rules inR
and no further rules.

Definition 8 (The classSR) LetR be a program (i.e. a finite set of rules). A modelM = 〈S, T, V 〉 ∈ SR

iff M ∈ S and, for all statess ∈ S, R ⊆ V (s). AnL-formulaφ is said to beSR-satisfiable iff it is satisfied
at some states in some modelM ∈ SR.

12In [24] I discuss adding additional temporal operators and path quantifiers fromcomputational tree logic(CTL), a common input
language for model checking technology. This extension allows rule-based programmers to use current model checking technology to
verify their programs.

Each classSR is a subclass ofS and each model inS is in exactly one classSR. S and its subclasses differ
with respect to (semantic) entailment and satisfiability. If R = {p ⇒ q}, thenBp ∧ ¬3Bq is S-satisfiable
but notSR-satisfiable; similarly,3Bq is aSR-consequence but not aS-consequence ofBp. The remainder
of this section surveys some properties of the classSR, including a decidability result.

Theorem 5 LetR be a program,φ be anyML formula andn = |{ cn(ρ) | ρ ∈ R}|. If φ is SR-satisfiable
at all, then it is satisfiable in a finite modelM ∈ SR containing at mostnn states.

Proof: Supposeφ is satisfiable ats in a model inSR; then it is satisfied by a tree modelM ∈ SR whose
root is s (proposition 1). ByS3, any stateu in M can have at most|R| children. Now, take any states
in M of depthn. No ρ ∈ R can bes-matching, for otherwise, some ancestor ofs must have extended its
parent by someλ /∈ { cn(ρ) | ρ ∈ R}; but S3 prohibits this. Then any state at depthn or greater must be a
terminating state. There is then a modelM ′ ∈ SR forming a rooted directed acyclic graph, bisimilar toM ,
in which s L u impliess = u (e.g. by taking equivalence classes fromM , as described above). For any
states in M ′, |{s′ | Tss′}| ≤ n and, for statesu, u′ at depthn or greater,T ′uu′ impliesu = u′. Therefore
M ′ can contain at mostnn states. ⊣

In any state in a modelM ∈ SR, only the labels in the setsR and{λ1, . . . , λn, λ | (λ1, . . . , λn ⇒ λ) ∈ R}
can have any effect on which rules do and do not match at that state. Thus, it is only these formulae that
affect the structure thatT forms onS. Labels that are not from these sets may be removed without changing
which states are accessible from which in the model. We can combine this with standard techniques to get
a notion of filtration forSR models.

Definition 9 (R-filtration) LetΓ be closed under both subformulae and negation; and set

LΓ = R∪ {α | Bα ∈ Γ} ∪ {λ1, . . . , λn, λ | (λ1, . . . , λn ⇒ λ) ∈ R}

AnR-filtration ofM = 〈S, T, V 〉 throughΓ is then a modelMΓ = 〈S, T, VΓ〉 whereVΓ(s) = V (s) ∩ LΓ.

Filtration here is rather different than in regular modal logic. Here, we must ensure that rules and the beliefs
needed for them to match are not removed from states when we filter, hence the use ofLΓ.

Lemma 2 LetΓ be as above,M = 〈S, T, V 〉 ∈ SR andMΓ be theR-filtration ofM throughΓ. Then for
anyφ ∈ Γ ands ∈ S: M, s φ iff MΓ, s φ.

Proof: By induction on the complexity ofφ. If φ is anML primitive this is trivial. So assume that, for
all ψ ∈ Γ of complexityk < n and any states ∈ S: M, s ψ iff ML, s ψ. We show this holds for all
φ ∈ Γ of complexityn. Theonly if direction is trivial; in theif direction, consider these cases:

φ := ¬ψ. ThenM, s 1 ψ and, by hypothesis,MΓ, s 1 ψ, henceMΓ, s φ.

φ := ψ1 ∧ ψ2. ThenM, s ψ1 andM, s ψ2. By hypothesis,MΓ, s ψ1 andMΓ, s ψ2, hence
MΓ, s φ.

φ := 3ψ. Then there is as′ ∈ S such thatM, s′ ψ andTss′. By hypothesis,MΓ, s
′
 ψ and

henceMΓ, s φ.

The other Boolean cases are similar; it follows thatMΓ, s φ. ⊣

Lemma 3 LetΓ be as above,M ∈ SR andMΓ be theR-filtration ofM throughΓ. ThenMΓ ∈ SR.

Proof: It follows from lemma 2 that any ruleρ is s-matching inM iff it is s-matching inMΓ and that
ρ ∈ VΓ(s) iff ρ ∈ V (s). SinceT is common to bothM andMΓ, S1-4 are satisfied and henceMΓ ∈ SR.⊣

Definition 10 Let sub(φ) be the set of subformulae ofφ, i.e.:

sub(Bα) = {Bα}

sub(¬φ) = sub(3φ) = sub(φ)

sub(φ ∧ ψ) = sub(φ ∨ ψ) = sub(φ→ ψ) = sub(φ) ∪ sub(ψ)

and letCl(φ) besub(φ) closed under negation.

Theorem 6 (Finite Memory Property) Let R be a program andφ be anyML formula. If φ is R-
satisfiable, then it is satisfiable in a finite memory modelM ∈ Sfm

R .

Proof: Assume thatM, s satisfiesφ. LetMΓ be theR-filtration ofM throughΓ = Cl(φ). By lemma 2,
MΓ, s φ and, by lemma 3,MΓ ∈ SR. SinceCl (φ) andR are both finite,V (s) is finite for everys ∈ S,
henceMΓ ∈ Sfm

R . ⊣

Theorem 7 (Decidability) LetR be a program andφ be anyML formula. Then it is decidable whether
φ is SR-satisfiable.

Proof: Supposeφ is R-satisfiable; then it is satisfied at the rootr of some tree modelM ∈ SR. LetMΓ

be theR-filtration ofM throughΓ = Cl(φ). By inspecting the proof of theorem 6,MΓ, r φ,MΓ ∈ Sfm
R

andVΓ(r) = V (s) ∩ LΓ, with LΓ as definition 9. Letn = |{ cn(ρ) | ρ ∈ R}|. By inspecting the proof of
theorem 5, a modelM ′

Γ can be obtained that has at mostnn states (e.g. by taking equivalence classes from
MΓ, as described above). Thus ifφ has anS-model, one can be found by considering each model with no
more thennn states whose root is labelled by a subse t ofLΓ. SinceLΓ is bounded by the size ofφ andR,
we have an upper bound on the search for a model. We therefore have a terminating algorithm that will find
anSR model forφ if one exists. ⊣

5 Axiomatization and Complexity

Given some such programR, it is easy to axiomatize the logic of the classSR. The abbreviation

match(λ1, . . . , λn ⇒ λ)
df
= Bλ1 ∧ · · · ∧ Bλn ∧ ¬Bλ

is helpful. The axiom system shown in figure 2 is calledΛR. A6 says that, when a belief is added, it must
have been is added by some matching rule instance inR. A7 says that, if all matching rule instances in the
current state areρ1, . . . , ρn, then each of the successor states should contain the consequent of one of those
instances.

Cl all classical propositional tautologies

K 2(φ→ ψ) → (2φ→ 2ψ)

A1 Bρ whereρ ∈ R

A2 ¬Bρ whereρ 6∈ R

A3 Bα→ 2Bα

A4 B(λ1, . . . , λn ⇒ λ) ∧ Bλ1 ∧ · · · ∧ Bλn ⇒ 3Bλ

A5 3(Bα ∧ Bβ) → Bα ∨ Bβ

A6 3Bα → (Bα ∨

_

λ1,...,λn⇒λ∈R,λ=α

Bλ1 ∧ · · · ∧ Bλn)

A7 matchρ1 ∧ · · · ∧ matchρn ∧

^

ρ 6=ρi≤n,ρ∈R

¬matchρ→ 2

“

Bcn(ρ1) ∨ · · · ∨ Bcn(ρn)
”

n > 1

A8 3⊤

MP
φ φ→ ψ

ψ

N
φ

2φ

Figure 2: Axiom schemes forΛR

A derivation in ΛR is defined in a standard way, relative toR: φ is derivable from a set of formulae
Γ (written Γ ⊢R φ) iff there is a sequence of formulaeφ1, . . . , φn whereφn = φ and eachφi is either an
instance of an axiom schema, or a member ofΓ, or is obtained from the preceding formulae byMP or N.
Suppose an agent’s programR contains the rulesρ1, . . . , ρn. This agent is guaranteed to reach a state in
which it believesα in k steps, starting from a state where it believesλ1, . . . ,λm, iff

Bρ1 ∧ . . . ∧ Bρn ∧ Bλ1 ∧ . . . ∧ Bλm ⇒ 2
k
Bα

is derivable inΛR (again,2kα is an abbreviation for22 · · ·2α, k times). We now show thatΛR is the
logic of the classSR (the proofs of lemmas 4 and 5 are standard).

Lemma 4 (Lindenbaum lemma) Any set of formulaeΓ can be expanded to aΛR-maximal consistent set
Γ+.

A canonical modelMR = 〈S, T, V 〉 is built in the usual way. States inS areΛR-maximal consistent sets;
Tsu iff {φ | 2φ ∈ s} ⊆ u (or equivalently, iff{3φ | φ ∈ u} ⊆ s). Finally,V (s) = {α ∈ L | Bα ∈ s}, for
eachs ∈ S.

Lemma 5 (Existence and Truth lemma) For anyφ and any states in MR: (i) if there is a formula3φ ∈
s then there is a stateu in MR such thatTsu andφ ∈ u; and (ii) MR, s φ iff φ ∈ s.

Lemma 6 LetMR be a canonical model and letα ∈ L ands, u ∈ S. Then (i) ifTsu andα ∈ V (u) but
α /∈ V (s), thenV (u) = V (s) ∪ {α}; and (ii) α in part (i) must be a literal.

Proof: Part (i) follows from the definition of ‘’ together with the truth lemma and the fact that states are
closed under axiomsA3 andA5. The former axiom ensures thats is a subset ofu, the latter ensures thatα
is the only new belief. For part (ii), if we supposeα were some rule we would haveα ∈ R and soα ∈ s,
contrary to hypothesis. ⊣

Theorem 8 (Completeness)ΛR is strongly complete with respect to the classSR: given a programR, a
set ofML-formulaeΓ and anML-formulaφ, Γ R φ only if Γ ⊢R φ.

Proof: ExpandΓ to aΛR-maximal consistent setΓ+ from which we build a canonical modelMR. From
the truth lemma, it follows thatMR,Γ+

 Γ. It remains only to show thatMR is in the classSR, i.e. that
MR satisfiesS1–S4. S4 is clearly satisfied; the remaining cases are:

MR satisfiesS1: Assume there is ans-matching ruleρ. Given the truth lemma, it is easy to see that each
of its antecedents is a member ofs, whereas its consequent is not.A4 and the existence lemma guarantee
an accessible stateu which, given lemma 6, is the extension ofs by cn(ρ).

MR satisfiesS2: Supposes is a terminating state. By axiomA8, there is an accessible states′. By axiom
A6, α ∈ V (s′) impliesα ∈ V (s) for any literalα (this holds because there are no matching rules ats). It
then follows from axiomsA1–A3 thatV (s′) = V (s), henceS2 is satisfied.

MR satisfiesS3: SupposeTsu for statess, u in MR. By definition,{φ | 2φ ∈ s} ⊆ u. By axiomA7,
there must be one literal believed inu but not ins, namely the consequent of eitherρ1 or . . . orρn. Then
by the argument just used, it follows thatu is the extension ofs by this new belief. ⊣

Theorem 9 Given a particular programR, the problem of deciding whether a formulaφ is satisfiable in a
modelM ∈ SR is NP-complete.

Proof: Clearly the problem is NP-hard. Letn = |{ cn(ρ) | ρ ∈ R}|. From theorem 5, anySR-satisfiable
sentenceφ has a tree modelM ∈ SR containing no more thannn states which, given the proof of theorem
6, is no larger than|φ|nn. Given any Kripke structureM ′, states in M ′ and a modal formulaψ, it takes
time polynomial in the size ofM ′ andψ to check whetherM ′, s ψ [8]. The crucial point here is that
|R|, and hencenn, is constant inSR. Thus, we can guess a modelM ∈ SR of size no greater than|φ|nn

and check whetherφ is satisfied at the root ofM in time polynomial in|φ|. It follows that the problem of
deciding whetherφ is SR-satisfiable is in NP. ⊣

One of the main practical uses of models in a classSR is to check whetherR satisfies certain properties,
specified as an input formulaφ. One may want to check a range of different programs against adifferent
property: for example, suppose a developer requires an agent which can never move into a state in which
φ holds. On discovering thatφ is SR1

-satisfiable, she must rejectR1. If R2 is the next generation of
the program, thenφ needs to be checked forSR2

-satisfiability. The evolution fromR1 to R2 may have
added a large number of rules to the program. This example highlights that it is not just the scalability of
satisfiability checking givenφ as an input that should concern us. How the problem scales with the size of
the agent’s program is also crucial.13 An interesting problem to consider, therefore, is the one that takes
botha formulaφ and a programR as its input and determines whetherφ is SR satisfiable. I call this the
S-SAT problem. The complexity of the problem should be investigated in terms of|R| and|φ| rather than
in terms of|φ| alone.

Theorem 10 S-SAT is in PSPACE.

Proof: The proof is similar to the proof that the K-satisfiability problem has a PSPACE-implementation
in [8]. An S-Hintikka set over a programR and a setΣ is like a standard Hintikka set but, in addition,
contains all instances of axiom schemesA1–A8 overΣ. A witness setis then defined as in [8]. The key
result is that aS-Hintikka setH overR andΣ is SR-satisfiable iff there is a witness set generated byH
overR andΣ. A formulaφ can then be tested for satisfiability by settingΣ = Cl(φ)∪ {Bα | α ∈ Cl(R)}.
A correct algorithm calledwitnesscan then be given which returnstrue on inputH,R,Σ iff H is aSR-
satisfiableS-Hintikka set overR andΣ. The final stage establishes thatwitnesshas an implementation on
a non-deterministic Turing machine that only requires space polynomial in|φ| and|R|. Since NPSPACE =
PSPACE, this establishes thatS-SAT is in PSPACE. The full proof is given in [24]. ⊣

6 Related Work

Early work in epistemic logic on rule-based system, influenced by work in AI, is found in Konolige’s
Deduction Model of Belief[25]. As here, semantics is given in terms of sets of formulae, with Biα true iff
agenti hasα in its belief set. Each agenti is assigned a set of deduction rulesρi, which need not be logically
complete (and in fact must not be to avoid closure of belief under classical consequence). A belief set is
then obtained by closing an agent’s knowledge base under itsrules. This is what [13] term a “final tray”
model of belief (p. 1), reporting what an agentwould derive, given unlimited time and memory. Agents
with a functionally complete set of deduction rules are therefore modelled as believing all tautologies and
all consequences of their beliefs and so logical omniscience is only avoided by considering agents with
depleted logical ability.

In [22, 23], Ho Ngoc Duc presents an epistemic logic based on dynamic logic. If r is an inference
rule that the agent can use, then〈r〉 is the usual dynamic modality ‘after executing (i.e. reasoning using)
r, it is possible that . . . ’ where the blank will usually be filled with a belief ascription. Ho introduces a
future modality〈F 〉, defined as the iterated set of all choices of actionsr1, . . . , rn available to the agent:
F = (r1 ∪ · · · ∪ rn)∗. 〈F 〉Bφ then says that the agent can come to believe thatφ and[F]Bφ says that the
agent must believe thatφ at some point in the future. The notion of the future here is thus an idealised one,
considering all the states in a temporally unbounded reasoning process. For example, ifp is a propositional
(modality-free) tautology, then〈F 〉Bp is a theorem. It is not even correct to read〈F 〉Bp as ‘the agent can
believep at some point in the (idealised) future’ (just consider a tautology p so large thatno agent could
come to hold the sentence in its memory). The〈F 〉 operator thus ignores resource bounds.

This highlights an important point. Avoiding logical omniscience is not an end in itself. Evidently,
what is therefore required is a logic which not only avoids logical omniscience, but that captures thestages
of reasoning are captured, rather than just the idealised endpoint. Step logic [13] attempts to overcome
this problem by indexing beliefs by time points orsteps. Each step corresponds to a cycle in the agent’s
reasoning. Step logic deduction rules take the form:

t: α1 · · · αn

t+ 1: α

13In fact, this can often be the more important factor of the two, for the size of many programs currently in use far exceeds the size
of the formulae that it is useful to check for satisfiability.

However, a semantics is not provided for any step logic in [13]. A minimal possible worlds semantics for
step logic are found in [29] and [12]. Belief is defined as a relation between a world and a set of sets of
worlds, based on Scott-Montague (or neighbourhood/minimal) structures; an axiomatization is found in
[29]. However, agents are modelled as believing all propositional tautologies and their beliefs as closed
under equivalence. This is a limitation of Scott-Montague semantics, which deals with theintensionsof
believed sentences (equivalent sentences necessarily have identical intensions). Grant, Kraus and Perlis
provide a first-order axiomatization and model theory for step logic in [20]. Not all of the models they
describe are adequate representations of an agent’s beliefs, in that a particular model may contain ‘extra’
sentences not derivable from the agent’s previous beliefs.Accordingly, they introduce the notion ofknowl-
edge supported models. This suggests that the framework is not ideally suited to modelling belief obtained
by rule-based reasoning.

Timed Reasoning Logic (TRL) is introduced in [5, 6]. The focus is on modelling different rule applica-
tion and conflict resolution strategies in rule-based systems, building on the step logic approach. Semantics
are provided in terms of syntacticlocal models. TRL uses labelled formulae rather than the modal met-
alanguage adopted here. In [36], TRL is used to model assumption-based reasoning in resource-bounded
agents. Such ways of reasoning cannot be modelled by step logic, in which implications must be deal with
by forming instances of Hilbert axioms. One major difference between TRL and the present approach is
that an agent’s current state together with its rules determines a unique next state. It is thus not possible
to distinguish between the beliefs that an agent can derive from those it must derive in a certain number of
steps. This is a limitation of TRL (and step logic) that has been addressed int he present work.

Ågotnes [1] considers a logic offinite syntactic epistemic states. As with TRL and the Deduction Model,
the semantics is based on sets of sentences. An unusual feature of [1] is that syntactic operators takesets
of sentences as their arguments.△i{φ1, . . . , φn} says that agenti believes at least thatφ1, . . . , φn are true.
Similarly,▽i{φ1, . . . , φn} says that agenti believes at the most thatφ1, . . . , φn are true. The syntax of what
an agent believes at a time thus closely follows the semantics. A semantics is provided by game-theoretic
structures, allowing expressive ATL modalities to be incorporated in the logic. Given a set of agentsG,
the path quantifier〈〈G〉〉 allows sentences to express co-operation between members of G to achieve some
result. This approach forms the basis of [3] and [2].

7 Future Work

This paper has presented a basic framework for modelling rule-based agents in a simplified, monotonic
setting. One of the principal applications of the logic thathas been developed is to verify that a rule-based
program satisfies certain criteria. To this end, the addition of computational tree logic (CTL) modalities
would constitute an increase in expressivity and allow the resulting language to be used as an input to
model checkers. Note that the3 modality discussed here corresponds to the CTL modalityEX (EXφ
holds iff φ holds at the next step of some branch). This is a minor amendment to the syntax; the models
themselves remain identical. The aim in this paper was explicitly to restrict attention to a single rule-based
agent. As with most modal logics, it is surprisingly easy to add multiple agents to the formalism (add a
valuationVi for each agenti and plausible rules about communication between agents); see [4].

A more challenging development would be to drop the monotonicity requirement. Nonmonotonic rea-
soning is important in many areas of AI: see [19]. In fact, a good deal of practical reasoning is nonmono-
tonic. Makinson comments that “almost all of our everyday reasoning is nonmonotonic; purely deductive,
monotonic inference takes place only in rather special contexts, notably pure mathematics” [28, p. 19].
Nonmonotonic reasoning in rule-based systems can arise in anumber of ways. One is when certain condi-
tions determine which rule should be fired in the next cycle. Situations can arise in whichρ may fire but,
if the agent were to know more information,ρ would not be fired. The resulting consequence relation is
nonmonotonic.

Another route to nonmonotonicity in rule-based systems is to consider rules of the form

P1, . . . , Pn ⇒ ∼Q

where∼Q instructs the agent to removeQ from its working memory. Firing such a rule does not lead
to a new belief; but it can lead to the agent having one less belief. Amending the current framework to
allow for such nonmonotonic rule-based inference would increase its applicability in many areas of AI. A
starting point is to amend the requirement that one state extends another when there is a transition to the

first from the second. Instead, define anamendoperation ‘◦’ on 2L × L such thatX ◦ p = X ∪ {p} and
X ◦ ∼p = X − {p}. Then, whenever there is ans-matching ruleρ, there is a stateu such thatTsu andu
amendss by cn(ρ). In this system, the order in which rules fire matters. Moreover, it is no longer the case
that if Γ entailsφ thenΓ ∪ {ψ} entailsφ. It would be interesting to see which of the properties discussed
above hold of this logic; this is left for future work.

8 Summary

This paper presents a framework for modelling resource bounded reasoners that derive new beliefs from
old through inference. The approach is designed to handle inference rules of many types. The example of
rule-based programs was chosen here as it allows a simple testbed for the framework. The resulting models
of rule-based agents have a number of interesting properties: the equivalence between label identity, modal
equivalence and bisimulation, and the belief convergence property. When a particular program is specified,
a logic with a decidable satisfaction relation is obtained,which can be easily axiomatized. The interesting
satisfiability problem in the resulting logics is in PSPACE.

Not all reasoners are rule-based in the restricted sense used here. Many agents revise their beliefs (and
indeed their rules); conclusions can be withdrawn as well asasserted; agents reason inductively and abduc-
tively as well as deductively; agents make assumptions and see what follows. These forms of reasoning have
not been addressed here. Nevertheless, resource-bounded reasoners using any of these forms of reasoning
will amend their set of beliefs in a step-by-step way according to their chosen set of rules. By treating these
transitions from one belief state to the next as the foundation for a semantics, a fine-grained account of
resource-bounded reasoning is possible in which the problems of logical omniscience never arise.

References

[1] ThomasÅgotnes.A Logic of Finite Syntactic Epistemic States. PhD thesis, Department of Informatics,
University of Bergen, Norway, April 2004.

[2] ThomasÅgotnes and N. Alechina. The dynamics of syntactic knowledge. Technical Report 304, Dept.
of Informatics, Univ. of Bergen, Norway, 2005.

[3] ThomasÅgotnes and M. Walicki. Syntactic knowledge: A logic of reasoning, communication and
cooperation. InProceedings of the Second European Workshop on Multi-AgentSystems (EUMAS
2004), 2004.

[4] N. Alechina, M. Jago, and B. Logan. Modal logics for communicating rule-based agents. InProceed-
ings of ECAI 06, 2006.

[5] N. Alechina, B. Logan, and M. Whitsey. A complete and decidable logic for resource-bounded agents.
In Proc. Third International Joint Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS 2004). ACM Press, July 2004.

[6] Natasha Alechina, Brian Logan, and Mark Whitsey. Modelling communicating agents in timed rea-
soning logics. Inproc. JELIA 04, pages 95–107, Lisbon, September 2004.

[7] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a fipa-compliant
agent framework.Software Practice and Experience, 21(2):103–128, 2001.

[8] Patrick Blackburn, Maarten de Rijke, and Yde Venema.Modal Logic. Cambridge University Press,
New York, 2002.

[9] Business rules community website, accessed 13-03-06.http://www.brcommunity.com/,
2006.

[10] Eros Corazza.Reflecting the Mind: Indexicality and Quasi-Indexicality. Oxford University Press,
2004.

[11] Eros Corazza. Singular propositions, quasi-singularpropositions, and reports. In Kepa Korta, editor,
Semantics, Pragmatics, and Rhetoric. CSLI, Stanford, 2004.

[12] J. Elgot-Drapkin, S. Kraus, M. Miller, M. Nirkhe, and D.Perlis. Active logics: A unified formal
approach to episodic reasoning. Technical Report CS-TR-4072, University of Maryland, Department
of Computer Science, 1999.

[13] J. Elgot-Drapkin, M. Miller, and D. Perlis. Memory, reason and time: the Step-Logic approach. In
R. Cummins and J. Pollock, editors,Philosophy and AI: Essays at the Interface, pages 79–103. MIT
Press, Cambridge, Mass., 1991.

[14] R. Fagin and J.Y. Halpern. Belief, awareness and limited reasoning.Artificial Intelligence, 34:39–76,
1988.

[15] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi.Reasoning About Knowledge. MIT press, 1995.

[16] R. Fagin, J.Y. Halpern, and M.Y. Vardi. A nonstandard approach to the logical omniscience problem.
In R. Parikh, editor,Theoretical Aspects of Reasoning about Knowledge: Proc. Third Conference, San
Fransisco, California, 1990. Morgan Kaufmann.

[17] Jerry Fodor. Psychosemantics: The Problem of Meaning in the Philosophy of Mind. MIT Press,
Cambridge, Mass., 1987.

[18] Jerry Fodor.A Theory of Content and Other Essays. MIT Press, Cambridge, Mass., 1990.

[19] M. Ginsberg. AI and nonmonotonic reasoning. In D.M. Gabbayet al, editor,Handbook of Logic in
Artificial Intelligence and Logic Programming. Volume 3: Nonmonotonic Reasoning and Uncertain
Reasoning, pages 1–33. Clarendon Press, Oxford, 1994.

[20] John Grant, Sarit Kraus, and Donald Perlis. A logic for characterizing multiple bounded agents.
Autonomous Agents and Multi-Agent Systems, 2000.

[21] J. Hintikka.Knowledge and belief: an introduction to the logic of the twonotions. Cornell University
Press, Ithaca, N.Y., 1962.

[22] D.N. Ho. Logical omniscience vs. logical ignorance. InC.P. Pereira and N. Mamede, editors,Pro-
ceedings of EPIA’95, volume 990 ofLNAI, pages 237–248. Springer, 1995.

[23] D.N. Ho. Reasoning about rational, but not logically omniscient, agents.Journal of Logic and Com-
putation, 5:633–648, 1997.

[24] Mark Jago.Logics for Resource-Bounded Agents. PhD thesis, University of Nottingham, 2006. Forth-
coming.

[25] K. Konolige. A Deduction Model of Belief. Morgan Kaufman, 1986.

[26] J. E. Laird, A. A. Newell, and P. S. Rosenbloom. Soar: An architecture for general intelligence.
Artificial Intelligence, 33:1–64, 1987.

[27] H. J. Levesque. A logic of implicit and explicit belief.In National Conference on Artificial Intelli-
gence, pages 1998–202, 1984.

[28] David Makinson.Bridges from Classical to Nonmonotonic Logic, volume 5 ofTexts in Computing.
King’s College Publications, 2005.

[29] M. Nirkhe, S. Kraus, and D. Perlis. Thinking takes time:a modal active-logic for reasoning in time.
Technical Report CS-TR-3249, University of Maryland, Department of Computer Science, 1994.

[30] John Perry. Belief and acceptance.Midwest Studies in Philosophy, 5:553–54, 1980.

[31] John Perry.The Problem of the Essential Indexical. Oxford University Press, Oxford, 1993.

[32] S. Poslad, P. Buckle, and R. G. Hadingham. The fipa-os agent platform: Open source for open stan-
dards. InProceedings of the Fifth International Conference and Exhibition on the Practical Appli-
cation of Intelligent Agents and Multi-Agents (PAAM2000), pages 355–368, Manchester, April 2000.

[33] A. Sloman and B. Logan. Building cognitively rich agents using the sim agent toolkit.Communica-
tions of the ACM, 42(3):71–77, March 1999.

[34] R. Stalnaker. The problem of logical omniscience I.Synthese, 89:pp.425–440, 1991.

[35] M. Whitsey. Logical omniscience: a survey. Technical Report NOTTCS-WP-2003-2, School of
Computer Science and IT, University of Nottingham, 2003.

[36] M. Whitsey. Timed reasoning logics: An example. InProc. of the Logic and Communication in
Multi-Agent Systems workshop (LCMAS 2004). Loria, 2004.

