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ABSTRACT

In the context of active control of rotating maasn standard optimal controller methods enabledetoff
to be made between (weighted) mean-square vibsatéon (weighted) mean-square currents injected into
magnetic bearings. One shortcoming of such coet®ik that no concern is devoted to the voltaggsired. In
practice, the voltage available imposes a strinitdition on the maximum possible rate of changeaftrol
force (force slew rate). This paper removes theeafentioned existing shortcomings of traditionatiropl
control.
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1 INTRODUCTION
Consider the negative feedback control of a pldmise equations of motion are represented by

x(t) = Ax(t)+ Bu(t) )
wherex(t) is the2n x 1 vector state of the systenn}) is ther x 1 control vector applied to the system akdnd

B are the companion and control matrices respegtivéhe dot above the denotes derivative with respect to
time.

A feedback gainG, can be calculated such that more desirable systeperties can be found. This can be
represented pictorially in figure 1.
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Figurel: Pictorial representation of control system

One such approach to determine the feedback gaitsxns to utilise optimal control. Optimal coatris
best summarised by calculating an optimal feedfaae which minimises a quadratic equation defibgd

J :% [7x" )ext)+u™ ()Rut) o @)

whereQ represents a symmetric semi-definite weightingrimgfoverning the relative importance of the system
state at timet, and similarlyR represents a symmetric positive definite matriweght the control effort.
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The quadratic expression illustrated by equatigrhé® threefold implication
= The quadratic nature of the expression ensures that

o0 the positive and negative errors are weighted équal

o the larger errors are penalised more harshly theadlar errors.
= The integral penalises the more persistent erraerarshly.

The standard approach to solve the optimal coptablem is well understood and a great deal ofditee
is available for the problem. The standard prooedsi to solve the Riccati equation [1] but methedist to
calculate the optimal control for second orderayst [2] without the need to deal with the stateesmgpproach.
The optimal control method is frequently referrechs thd.inear Quadratic Regulator (LQR) control.

A major drawback of the traditional approach toirpt control is that no emphasis is placed on tte at
which the control effort can be applied. Controtces cannot be instantaneously applied and indeeeral
applications exist where the rate at which corfiootes can be applied is sufficiently importanttarrant this
work. One such area is in the field of electronaigrbearings.

Consider magnetic bearings as a representativempatrary example of a control actuator for a dymami
system [3]. It is usual to operate these bearingl & bias current such that the net force produmgedhe
bearing in a direction is linearly proportional ttee control currents injected into the bearing. Timximum
force achievable by the bearing is dependent omigzeémum control currents which can be injected emld
be identified as control inputy(t). The role of conventional optimal control in trgirio keepu(t) small is
obvious here. Large currents would require thickdrtors in the bearing and a higher current-ratinthe
power-amplifiers.

However, the maximum rate of change of force inamnetic bearing is dependent on the rate of chahge
current. All magnetic bearings have some inductahos a finite rate of change of current requireinge
voltage on top of the voltage required to driveteady current. In many practical applications, Wiodages
associated with the rates of change of currentn@aay times greater than the steady “IR” voltagéshé
controller requires the magnetic bearing to prodeary high rates of change of force then the poaveplifiers
will require large internal voltages and the insiola between coils in the magnetic bearing will @aw be large.
Hence, for magnetic bearings, it is actually highbsirable to be able to develop optimal contrsliehich
minimize some cost function that is determined bthkrontrol input and rate of control input.

Thus conventional optimal control may not providieguate controller design. In section 2 an augatkent
system is introduced which allows the introductadrthe rate of control input into the quadratic tciuction
and the optimal control policy is developed using Euler-Lagrange equations in sections 3 andettidhs 5
and 6 present numerical examples to support thik.wo

2 AVARIANT TO TRADITIONAL OPTIMAL CONTROL

The purpose of this paper is take account of tteeahicontrol forces applied to a system by ackeolging
that forces cannot be instantaneously applied. &diheis to design practical controllers to overcothis
consequence by determining the optimal feedbaak géhus equation (2) can be altered to take adamfuthis
new condition.

T % [ X" (@xt)+u™ ()Rut) +vT (R)sv() e @)

Herev(t) represents the first derivative of the controtéwith respect to time arlrepresents a symmetric
positive definite weighting matrix of appropriatengnsion to penalize the control rate.

The approach pursued in this paper is to rethiekpibtorial representation of the system illusuldtg figure
1. Suppose that an augmented plant can be cotestrsigch that the input to this augmented platitasate of
control rather than the normal control vector. e&dback gains matrix could be calculated to firel dptimal
rate of control force applied to the system. Tuecept is represented pictorially in figure 2.
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Figure2: Augmented plant

As illustrated above an augmented stq{® can be formed which includes the control vectdhis can be

defined as,
&®=R8} @

Thus the augmented plant can be shown to haveliegving equations of motion
L](t) ~ o' xr Qfxen U(t) [ Txr
s Lo o ®
X, (t) = Ax, (t) + B(t) (6)

The quadratic cost illustrated by equation (2) bamewritten in terms of the new augmented stat@tsans
such that it is equivalent to the cost functiongtrated by equation (3)

Jaug :%J.: XaT (t)Qa Xa(t)"'VT (t)SV(t) dt 7)

Here the new definition d, can be seen clearly to be,

R 0r><2n
= 8
a2 o] o

3 CALCULATING THE OPTIMAL CONTROL GAIN

Equation (6) represents the dynamics of a firseosystem subjected to the constraint that thefoostion
given by equation (7) must be minimal over an iidirtime horizon. This situation represents a tainsed
variational problem. In order to solve the optimahtrol problem the system must first be conveitéd an
unconstrained control problem using the introductd the co-state vector/](t)DD ". For the sake of brevity
the time notation has been removed from here orsvaftie functioH may be defined,

H(xa,u,/l)=%xaTana+%VTS/+AT(Z\xa+§v—>'<a) 9)
and

lej: H (x,,u, ) dt (10)

In order forJ; to be stationary the necessary conditions arendiyethe Euler-Lagrange equations [4].

dt _d dH =0 (11)
dx, dt{dx,
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dH -0

— 12
y (12)
Substituting the definition dfl into equations (11) and (12) yield the results
A=-Q.x, - AT/ (13)
v=-S1BT]A (14)

It is worth reminding the reader here that the inesQ, andS are symmetric hence equations (13) and (14)
are simplified further by recognizing th@t andS equal their own transposes.

Equation (14) is substituted into the equationmofion represented by equation (6) and then cordbivith
equation (13) to form the Hamiltonian system.

] | A -BSTBT [xa|_ . [*a
B S @

The matrixL is referred to as the Hamiltonian in this case emtains the necessary conditions for the control
to minimize the quadratic cost function [5].

The co-state vectodl is related to the augmented statef the system through [5]
A=Px, (16)

This paper deals with the specific infinite horizaroblem where the end condition is assumed todoealeo
zero so that the final conditions may laéx:) =0. lItis relatively simple to subject the systenmatéinal settling

state but this is not addressed in this paper. refae knowing the initial and final states of thgstem it is
possible to solve the Hamiltonian by utilizing etioa (16).

4 THE RICCATI EQUATION

A more robust method of finding the optimal contidlto form the Riccati equation which may be sdlve
backwards through time to give the matfft). The relationship between the co-state vectorcamdrol vector
can be combined to yield the feedback control,

v=-S'BT1=-S"'B"Px, =-Gx, 17)
The Riccati equation may be formed by differentigtequation (16)
A=Px, +PX, (18)

Substituting in equation (13) fot and the equations of motion for, yields
(P+PA+ATP+Q-PBRBTP)x, =0 (19)

Equation (19) holds for any arbitrary stagestarting with known initial conditions. Therefdiee dependence of
the stateq, can be removed which impli€smust satisfy

P=-PA-A"P-Q+PBRBTP (20)

This result is known as the Riccati equation ang v solved backwards through time [1] knowing ithigal
and final conditions foP.

5 NUMERICAL EXAMPLE 1

A spring-mass system with no damping is construstech that equations of motion are governeddgt) (
represents a vector of displacements)
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Me(t) + Kalt) = Fu(t)
with matrices

1 00 2 -1 0 10
M=0 1 0|, K=|-1 2 -1|,F=|0 1
0 01 0 -1 1 0O

subjected to initial conditions  q(0)=[t -1 0]", g(0)=[0 o o]

The second order system can be converted intoofidgr state space form such that

SIS

The optimal state weighting matrices are chosamitomize the kinetic and potential energies of shistem.
The control and rate of control vectors are chasbitrarily

K 0 -1 2
Q= , R=10"1, S=10°I
0 M

wherel is the identity matrix of appropriate dimension.

The augmented plant is constructed utilizing thenfshown by equation (5) and the new weighting ioedr
satisfy equation (7). By standard optimal congqmbroach the optimal controller gain for the augted system
is found to be,

aug

02396 0.1132 -0.2171 0.0512 0.0220 0.0346 0.0270 0.0142
01132 0.3335 00543 -0.1938 0.0692 0.0378 0.0615 0.0291

The response to the initial conditions is illusthin figure 3. This gives the quadratic cdgf, = 161.

Displacement
Velocity
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force
force rate
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time, sec time, sec

Figure 3: Optimal augmented system response to initial d¢mdi

Traditional optimal control yields the controllgsied to the original system illustrated by eqoat{1)
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G = 28722 -02698 -07495 39676 -0.0467 -0.1413
" 71-01232 48708 -30562 -0.0467 44429 19914

Subjecting the traditional optimal controller tethame quadratic cost function illustrated by dqodf7) yields
the costq = 24,835. The response is illustrated in figure 4. Wvisrth noting the necessary difference in scale
for the forces and force rates in figures 3 and 4.

As apparent from figures 3 and 4, the LQR apprgaoiides no weighting to the rate at which the éois
applied so the force is applied more quickly bnmggihe state of the system under control much guittkan that
of the augmented plant method. But examinatiothefcosts defined from equation (7) of the twoeayst alone
illustrates the expense of doing so. The LQR approximately 154 times larger than that ofdbgmented
system.
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Figure4: LQR system response to initial conditions

6 NUMERICAL EXAMPLE 2

A rotor dynamic system illustrated by figure 5 isdrlled using finite elements with 4 degrees oédi@n at
each nodal point representing twist and displacéroeardinates. The system model is reduced in sineg
Guyan reduction [6] to a smaller dimension anddpémal control system as outlined in this docurnsglied.
All dimensions marked on the figure are in millimest (mm) and each element is 10mm in length. Tee s
shaft is of diameter 30mm and the diameters ofthminimum discs illustrated at points Out 1 and @are of
diameter 150mm. Bearings 1 and 2 constrain thi2sysuch that displacements at these points is zero

1 Out 1 I Out 2

bearing 1 bearing 2
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Figure5: Rotor Dynamic Model

The initial conditions are such that the rotor eysthas been dropped yielding an initial velocity thoe
entire system being equal to 10 m/s. The contnaiefs are applied at the location of the arromndiated. The
output displacements are calculated at the cehtreedwo discs.

The weighting matrices are chosen to penalise igatements of the system at the locations ofdtbes
more harshly than other locations. Thus the Q{madrset equal to the identity matrix except fodes 1, 2, 31,
32, 33, 34, 35 and 36, corresponding to the disations, and are weighted such that they are ¢qu#l0. The
weighting on the force and force rate are givemesl16l and 107, respectively, wheré is the identity matrix
of appropriate dimension.
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Figure 6: Rotor Dynamic Model Response to Control

The quadratic costs for the augmented and LQR cbitpproaches ard.4580x10™ and 6.4463x10%
respectively. This means that the augmented approgpresents a sizeable reduction, approximat@dy, 3n
cost compared with the LQR problem. Much of theéduction in cost is due to the peak control ratetlie
augmented system being approximately 40% of th& peatrol rate for the LQR system as illustratedigure
6. This has immediate relevence to the magnitidine force applied to the system resulting in zeable
reduction in the magnitude of peak force againriouting to the reduction in quadratic cost.

7 CONCLUSION

In this paper an extension to the optimal controbfem has been presented in which the rate ofalomas
been incorporated. Numerical examples have bezsepted and compared with the traditional LQR agugro

For the first numerical example presented it cdagdargued that the weighting placed on the forte ima
substantially larger than the weighting placed o force so the LQR approach is immediately disataged
due to no inclusion of the rate to the control feab This is precisely the key message that thoas are
trying to present in this paper because there apiglications where the weighting on the rate attwkhe force
can be applied will be much higher than weightitaced on the force itself. The second numericalhgXe
illustrates that the method yields itself to preatisituations and again appropriately penaliseddice rate as
required.
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