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Abstract

Second order matrix equations arise in the description of real dynamical systems. Tradi-

tional modal control approaches utilise the eigenvectors of the undamped system to diago-

nalise the system matrices. A regrettable consequence of this approach is the discarding of

residual off-diagonal terms in the modal damping matrix. This has particular importance

for systems containing skew-symmetry in the damping matrix which is entirely discarded

in the modal damping matrix. In this paper a method to utilise modal control using the

decoupled second order matrix equations involving non-classical damping is proposed. An

example of modal control successfully applied to a rotating system is presented in which the

system damping matrix contains skew-symmetric components.

Keywords: modal control, second order systems, general damping, non-proportional damping,

rotor-dynamics

1 Introduction

Traditional control approaches, such as pole placement methods [1], deal with the physical

system in first order state space form. The ambitions of this paper are to control the physical

system in second order form. Very little literature is available in regards to direct second order

control, see for example [2]. Many obvious advantages over first order control are available: 1.)

Physical insight of the system is preserved. 2.) Computational efficiency, since the dimension

of the second order system is smaller than that of the state space form. 3.) Symmetry and

structure of the systems can be preserved where desired.

Many structural and dynamic systems are described by the second order equations of motion

M q̈(t) + D q̇(t) + K q(t) = S fphy(t) · (1)

where M,D,K ∈ R
n×n are the system mass, damping and stiffness matrices respectively, q(t) ∈

R
n the vector of physical coordinates, fphy(t) ∈ R

r the vector of applied forces and S ∈ R
n×r is
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a selection matrix determining the locations of applied forces. For the sake of brevity this paper

assumes that forces are available at all locations such that r = n resulting in S being equal to

an n × n identity matrix.

Modal control is a particular control method in which the physical response of a system

is divided into modes associated with corresponding natural frequencies. A standard control

approach is to move the system eigenvalues into a stable region. The essence of modal control is

that since the eigenvectors of a system do not contribute to the asymptotic stability of a system

then any effort expended on altering them represents wasted effort. This is the control approach

utilised in this paper.

Meirovitch and Baruh introduced a first-order modal control method using a state space

representation of system containing skew-symmetry in the damping matrix [3]. The modal

contributions are extracted from the physical quantities using modal filters [4] but the method

does not derive an inverse modal filter to revert the modal quantities back to the physical domain.

A backward transformation is defined which allows only one half of the modelled modes to be

controlled. Meirovitch and Baruh proposed to control only the lower order modelled modes with

justification for this being that the higher order modes are more difficult to excite hence do not

contribute significantly to the system response. The method proposed in this paper removes

this constraint by defining an inverse filter making it possible to control all the modelled modes.

Modern computers have enough computational capacity such that worries concerning the

expansion of the control problem to 2n rather than an n-dimensional problem is not an issue

for moderate values of n. However, redefining the second-order equations of motion into a

first-order realisation has the disadvantage of destroying some properties such as symmetry and

definiteness of the matrices describing the motion [5]. Here, direct second order techniques allow

the retention of the natural form of dynamic systems arising from Newtonian mechanics.

Traditional modal control for second order systems such as the ‘Independent Modal Space

Control’ (IMSC) method used by Baz et al [6] utilise the mass normalised left and right eigen-

vectors, ΦL and ΦR, of the undamped system to diagonalise the system matrices. Although the

method outlined is developed for self-adjoint systems one may realise that the same method is

applicable when this criteria is relaxed the difference being that the left and right eigenvectors

are distinct. Thus, for the non-self-adjoint one uses the distinct left and right eigenvectors of

the undamped system to attempt the diagonalisation process. For the self-adjoint case one finds

that ΦL = ΦR. The coordinate transformation q(t) = ΦR qm(t) is applied and the system
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matrices pre-multiplied by the transpose of the left eigenvectors, ΦL
T

From

ΦL
T M ΦR q̈m + ΦL

T D ΦR q̇m + ΦL
T K ΦR qm = ΦL

T fphy · (2)

one has

I q̈m + Γ q̇m + Λ2 qm = ΦL
T fphy · (3)

where qm(t) represents the modal coordinates of the system. For ease of reading the notation

indicating the dependence on time is removed.

The new damping matrix Γ is assumed diagonal with any remaining off-diagonal terms in

the modal damping matrix traditionally discarded [7]. However, for rotating systems involving

substantial gyroscopic terms stripping the off-diagonal terms in the damping matrix is in ef-

fect ignoring the gyroscopic terms themselves. Thus, it is proposed here to use the ‘Structure

Preserving Transformations’ (SPTs) developed by Garvey et al, [8, 9] to diagonalise the second-

order system matrices and decouple the system equations of motion without need to discard any

terms involved in the description of the system.

2 Structure Preserving Transformations

The notion of the ‘Lancaster Augmented Matrices’ (LAMs) is introduced here. For a second

order system there exists three LAMs which can be produced by inspection to be,

A0 =





−DA −MA

−MA 0



 , A1 =





KA 0

0 −MA



 , A2 =





0 KA

KA DA



 · (4)

The LAMs allow the second order system to be represented in a reduced form

Ak qA − Ak−1 q̇A = fAk k = 1, 2 · (5)

The vectors qA and fAk may be defined
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qA :=





q

q̇



 fA1 :=





fphy

0



 fA2 :=





0

fphy



 · (6)

For the purposes of this paper a ‘Structure Preserving Transformation’ (SPT) can be con-

sidered to be a coordinate transformation applied to the LAMs of one system such that the

LAMs of a new system are obtained. As such, these SPTs constitute a left and right 2n × 2n

transformation matrix, TL and TR respectively, according to

TT
L Ak TR = Bk ∀ k = 0, 1, 2 · (7)

Thus the new LAMs are represented by Bk containing the new second order system matrices

K1,D1,M1. The structure of the transformation matrices can be shown to have the following

form

TL =





FL − 1
2 GL DT

A −GL MT
A

GL KT
A FL + 1

2 GL DT
A





−1

TR =





FR − 1
2 GR DA −GR MA

GR KA FR + 1
2 GR DA





−1

·(8)

where FL,FR,GL,GR ∈ R
n×n are arbitrary pre-defined matrices subject to the necessary con-

straint

FR GT
L + GR FT

L = 0 · (9)

3 Diagonalising Structural Preserving Transformations

It is desired to decouple the original equations of motion such that the new system matrices

KB ,DB and MB are diagonal. For non-defective systems [10] it is always possible to choose

a non-unique SPT such that the entries in the new LAMs become diagonal. Such an SPT is

referred to as a ‘diagonalising SPT’ (DSPT) and a 4-step process of calculating the DSPT is

presented here.

1. Calculate the left (ΨL) and right (ΨR) eigenvectors of reduced system

A1 − τA0 · (10)

where τ ≡ d
dt

.
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2. Calculate the n monic ‘single degree of freedom’ (SDOF) systems corresponding to con-

jugate eigenvalue pairs, λj(1,2) = α ± iβ, found in step 1. For systems with real pairs of

roots the same method applies through appropriate pairing

dj = λj1 + λj2 , kj =
(λj2 + λj1)

2
− (λj2 − λj1)

2

4
, mj = 1 · (11)

j = 1, · · · , n.

3. Knowing the new diagonal system matrices form the new LAMs B0 and B1 represent-

ing the new diagonal system and calculate their corresponding left (ΘL) and right (ΘR)

eigenvectors.

4. Since the two reduced systems have identical Jordan form, appropriate scaling of the

eigenvectors yields the following equalities

ΨT
L A1 ΨR = Λ = ΘT

L B1 ΘR and ΨT
L A0 ΨR = I = ΘT

L B0 ΘR · (12)

where Λ is the diagonal matrix of corresponding eigenvalues and I is the identity matrix.

From Eq. (12) one may recognise that

(

ΘL
−T ΨL

T
)

Ak

(

ΨR ΘR
−1

)

= Bk k = 0, 1 · (13)

thus TR =
(

ΨR ΘR
−1

)

and TL =
(

ΨL ΘL
−1

)

.

It may be noted that the above process for finding the diagonalising SPT only requires one

eigenvalue problem. The eigenvectors of the diagonal LAMs, ΘL and ΘR, have a sparse form

such that their calculation is trivial.

4 Modal Filters

The ambition of this paper is to develop a new second-order modal control technique. Therefore

the necessary question arises of how to extract the second order modal contributions from the

state space system. The derivation of the modal filters for SPT-based control is presented here.
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For the purpose of this section the Laplace domain is favoured rather than the time domain and

the Laplace variable s is introduced.

With the partitioning

qA =:





qA1

qA2



 , fA1 =:





fA1,1

fA1,2



 , fA2 =:





fA2,1

fA2,2



 · (14)

it is possible to extract a definition of the original second order system from the state space

representation

q(s) = qA1 , fphy(s) = fA1,1 + s fA1,2 · (15)

Eq. (15) has been generalised such that it is assumed that the forcing part of the state space

representation, fA1, contains non-zeros. Whilst for the original system this is clearly not the

case, the definition allows the extension to the transformed problem for which fB1 is generally

fully populated. Eq. (15) can be proved mechanistically. Expanding Eq. (5) for k = 1 and

k = 2 yields

KA

(

qA2 − sqA1

)

= fA2,1 · (16)

DA

(

qA2 − sqA1

)

= fA2,2 − fA1,1 · (17)

MA

(

qA2 − sqA1

)

= −fA1,2 · (18)

Substituting fA2,2 from Eq. (5) into Eq. (17) and subtracting s multiplied by Eq. (18) yields

(

KA + sDA + s2MA

)

qA1 = fA1,1 + sfA1,2 · (19)

Hence Eq. (15) is proved. It is prudent at this juncture to point out that following similar

methodology the equations of motion may also be represented in terms of qA2.

By applying the SPTs one has the new transformed equations of motion

Bk qB − Bk−1 s qB = TL
T fAk = fBk · (20)

Thus one may extract the new second order system of equations in terms of partitions of the

new state variable qB

6



(

KB + s DB + s2 MB

)

qB(s) = fB(s) · (21)

From Eq. (15) the following are defined

qB(s) = qB1 , fB(s) = fB1,1 + s fB1,2 · (22)

The obvious question now arises, what is the relationship between the old and new coordinate

sets? Acknowledging that the system coordinates are transformed using the definition qB =

SR qA where SR = TR
−1 one has





qB1

qB2



 =





SR11 SR12

SR21 SR22









qA1

qA2



 =





SR11 qA1 + SR12 qA2

SR21 qA1 + SR22 qA2



 · (23)

The definition of qB and s qB from Eq. (22) is used to see that the new coordinate set is

related to the old through the definition

qB =
[

I 0

]

TR
−1 qA · (24)

This result allows the introduction of a “right” filter of the form

qB = U01 q + s U11 q · (25)

where Ui,j = SRj,i+1 and where qB represents the modal displacement obtained through the

right filter. The modal displacement is determined through knowledge of physical displacements

and velocities. Accordingly the modal velocity may be obtained with knowledge of the physical

accelerations to be

s qB = s U01 q + s2 U11 q · (26)

It is now necessary to introduce the left filter to allow the relationship between new and old

forcing vectors to be established.

From the result of Eq. (20) it is clear that the vector fB1 = TL
T fA1. Knowing from definition

given in Eq. (6) that fA1,2 = 0 it can be deduced that
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



fB1,1

fB1,2



 =





TL,11
T TL,21

T

TL,12
T TL,22

T









fA1,1

0



 =





TL,11
T fA1,1

TL,12
T fA1,1



 · (27)

Thus one may define the left filter

fB = V01 fA1(1) + s V11 fA1(1) · (28)

with definitions

[

V01
T V11

T

]

=
[

I 0

]

TL · (29)

5 Independent Modal Control

To facilitate true independent modal control the modal equations of motion must be decoupled

both externally and internally [11]. It has so far been shown how to decouple the unforced equa-

tions of motion but the diagonalised system matrices remain coupled by the control forces unless

the controller is designed independently such that the controller matrix remains decoupled. In

practice this means that the force controller must be designed in the modal space. One can thus

define the modal equations of motion as

MB q̈m + DB q̇m + KB qm = fmod · (30)

with KB ,DB ,MB ∈ R
n×n the diagonal modal system matrices and qm ∈ R

n the modal coordi-

nates.

Eq. (30) represents n SDOF systems corresponding to each mode of vibration. It is pos-

sible to use proportional-derivative control to directly affect the modal stiffness and damping

properties of these modes. A controller of this form is introduced

fmod = Gk qm + Gd q̇m · (31)

Gk and Gd represent the diagonal modal stiffness and damping gains matrices. Direct addi-

tion to the modal damping and stiffness matrices represents direct pole placement and has the

advantage of being able to directly affect the poles of the system.
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In general as many modes can be controlled as actuators available. As previously stated

for the purpose of this paper the number of actuators is set to the number of modelled modes

without any loss of generality. For conventional second order control the modal force can be

typically converted back into the physical domain fairly easily, as illustrated by Baz et al, [6].

For the SPT approach the left filter has already been defined, and one can see that the physical

and modal forces are related by the relationship

fmod = V01 fphy + V11 ḟphy · (32)

One can rearrange Eq. (32) to give the physical force in regards to the modal force

ḟphy = V11
−1 (fmod − V01 fphy) · (33)

Since the modal filter illustrated by Eq. (33) represents a first order filter, a necessary

requirement is for the real components of eigenvalues V11
−1 V01 > 0 for the filter to be stable.

The stability of the filter is discussed later in this paper.

6 Numerical Example 1

Consider the deliberate non-classically damped second-order system with matrices

KA = diag



















50

70

90

10



















, DA =



















11 −2 0 3

−2 16 5 −1

0 5 11 2

3 −1 2 14



















, MA = diag



















1

1

1

1



















(34)

subjected to initial displacements q(0) =
[

3 9 0 0

]T

and zero initial velocities. Forces may

be applied at all locations and all of the physical displacements are available for observation.

It is decided for illustrative purposes to remove the modal damping of the third mode and

set the natural frequency of this mode to 10 Hz. The SPT method is compared directly with

the conventional IMSC method and conclusions drawn. For the respective methods one finds

the modal controller matrices to be
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fm3 spt = −14.434 q̇m3 spt + 3937.7 qm3 spt (35)

fm3 imsc = −16 q̇m3 imsc + 3877.8 qm3 imsc (36)

Figures 1 and 2 illustrate the physical and modal displacements of the system when the SPT-

modal controller is off and on respectively. As may be observed from the comparison between

the modal responses in figures 1 and 2, the third mode is successfully made undamped with a

natural frequency of 10 Hz. The modes are completely decoupled and the controller only affects

mode 3 and leaves the remaining modes unaltered. The physical effect of the controller may be

observed from the physical displacements illustrated in these figures and the obvious effect is to

make the system borderline stable, i.e. neither stable nor unstable.

Figures 3 and 4 illustrates the IMSC controller applied to the non-classically damped system.

As may be observed the third mode is again made undamped with a natural frequency of 10 Hz.

However the modal responses of the other modes is also affected. This is due to the coupling

in the damping matrix which cannot be made diagonal using the undamped eigenvectors of the

system. Thus the IMSC method does not allow true decoupling of the system matrices.

Although this numerical example is simple it illustrates the advantage of the SPT method

over the conventional IMSC method due to the fact that all three system matrices may be

decoupled regardless of the structure of the damping. One may also observe that the IMSC

method results in different modeshapes. The modeshapes of the SPT method no longer match

the undamped modeshapes of the system as the IMSC modes do. However the SPT-modes

do represent physically meaningful quantities and this is observed immediately in the physical

response of the system in figure 2 when the SPT controller is on.

7 Numerical Example 2

As a numerical example, a finite element model of a rotor-disc system is considered with four de-

grees of freedom at each node (2 translational, 2 rotational). The rotor-disc system is illustrated

in Fig. 5.

The system is constructed from steel with Young’s modulus, E = 200 GPa and density

ρ = 7800 kg/m3. The model is split into 13 equal-length elements of 0.1m and the discs have

dimensions given in table 1

10



Disc Disc 1 Disc 2 Disc 3

Node 3 6 11

Thickness (m) 0.05 0.05 0.06

Inner diameter (m) 0.10 0.10 0.10

Outer diameter (m) 0.24 0.40 0.40

Table 1: Rotor example disc properties

The bearings at each end of the rotor system are deliberately isotropic with stiffness and

damping properties given in table 2.

Bearing Bearing 1 Bearing 2

Stiffness Kxx (MN/m) 50 50

Stiffness Kyy (MN/m) 70 70

Stiffness Dxx (N/m/s) 500 500

Stiffness Dyy (N/m/s) 700 700

Table 2: Rotor example bearing stiffness and damping properties

The constraint r = n is now relaxed so that control forces are applied at node 8 in the x and

y-directions and similarly the displacements in the x-direction at this node are observed. For

computational ease Guyan reduction [12] is used to reduce the model to 6 degrees of freedom

corresponding to the x and y co-ordinates at the disc locations. The system is operated at 2,500

rpm and the uncontrolled system response is illustrated in figure 6.

Modal control dictates that each actuator controls an individual mode of vibration resulting

in the number of modes to be controlled the same as the number of actuators available. The

model allows for 2 modes to be controlled. It is decided to control the first two modes of vibration

since these dominate the system response.

The single degree of freedom systems corresponding to the first two modes in modal space

are

q̈m1 + 0.37850 q̇m1 + 1.4467 × 105 qm1 = fm1 (37)

q̈m2 + 0.32708 q̇m2 + 1.5772 × 105 qm2 = fm2 (38)
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Optimal control is used to minimise the modal kinetic and potential energies such that

controller gains are

Gk =





4.999913 0 0 · · · 0

0 4.999921 0 · · · 0



 , Gd =





4.1096 0 0 · · · 0

0 4.1570 0 · · · 0



 (39)

The response of the system with the controller on is illustrated in Fig. 7. As expected

the response of the system decays much faster than that for the uncontrolled system with the

displacement converging to zero much more rapidly. This is due to targeting the first two modes

of vibration of the system which dominate the system response. The modal control technique

is indeed successfully applied to bring the system under control.

8 Reflexive SPTs and Stable Filters

Stable filters are defined when the eigenvalues of Eq. (33) have all non-negative real parts.

At this stage it is appropriate to point out the non-uniqueness of the diagonalising SPT. It is

possible to define an SPT for a SDOF system which maps the system directly back onto itself.

This means that the SPT is reflexive.

Establishing the LAMs for a SDOF system

a0 =





0 k

k d



 a1 =





k 0

0 −m



 a2 =





−d −m

−m 0



 · (40)

The SPTs for the SDOF system may be defined as

tR =





f − 1
2gd −gm

gk f + 1
2gd



 , tL =





f + 1
2gd gm

−gk f − 1
2gd



 · (41)

where f and g are arbitrary scalars. By ensuring that the determinants of tL and tR are equal

to 1 the reflexive SPT maps the single degree of freedom back onto itself completely ensuring

the same SDOF system is obtained and not a scalar multiple of itself.

Utilising the reflexive SPTs for the SDOF systems in numerical experiments suggest that it

is always possible to find a stable filter. This remains to be proved formally but the authors

are content with the results from numerical trials. It is shown in Numerical Example 3 how to

stabilise the filter matrices for a system which provides an initially unstable filter.
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9 Numerical Example 3

The use of the reflexive SPTs in the search for stable modal filters is now demonstrated. For

ease of illustration an arbitrary symmetric system is generated. Taking the arbitrary symmetric

matrices to be

MA = diag



















1

1

1

1



















DA =



















36 37 34 0

37 53 50 6

34 50 52 12

0 6 12 9



















KA =



















91 75 55 69

75 68 60 52

55 60 154 109

69 52 109 186



















(42)

Since the system matrices are symmetric the resulting left and right SPT matrices are sym-

metric. Thus from Eq. (8)one may report the the SPT construction matrices to be

FR = FL =



















−0.72015 −0.46656 0.76672 −0.51586

0.34606 −0.17101 0.77114 1.2528

−0.25642 1.2115 0.54219 0.059283

−0.024509 0.054717 0.10386 0.051386



















(43)

GR = GL =



















0.042865 −0.05958 0.029348 0.037665

0.070925 −0.014486 −0.056858 0.013429

−0.051694 −0.03146 0.041829 0.036735

0.022864 −0.0049255 0.012063 −0.0082306



















(44)

Generating the V01 and V11 filter matrices using Eq. (29) it is apparent that the real part

of the eigenvalues of
(

V11
−1 V01

)

are not all positive. Thus the filter is unstable. Utilising the

(2 × 2) reflexive SPT applied to the first mode of the system allows the eigenvalues of the filter

to be moved. Defining f = sin(α) and g = cos(α) where 0 ≤ α ≤ 2π. The variation of the

minimum component of the real eigenvalue versus angle α is illustrated in Fig. 8. By varying α

the eigenvalues of the filter changes. Thus the reflexive SPT can be used to move the eigenvalues

of the filter into a stable region. Indeed n reflexive SPTs can be applied simultaneously to span

a possible n-dimensional non-linear space containing the stable filters.
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10 Conclusions

In this paper a novel modal control method has been presented which can be applied to non-

classically damped systems. The method has been demonstrated through numerical examples

and it has been illustrated that individual modes can be controlled and stable filters found

numerically through the non-uniqueness of the SPTs.

The premise of this paper is to introduce possible new methods into the area of rotating

machinery where skew-symmetry and gyroscopic coupling are regularly found in the system

damping matrices. The method requires that no information be destroyed unlike conventional

techniques which require that skew-symmetry be ignored for the modal control techniques to be

usable.

Usually, systems require reduction in size due to numerical considerations. Traditional Guyan

reduction models do not take into account damping properties. Alternative methods such as

balanced truncation [7], traditionally place the system into state space form before reduction,

thus destroying the second order properties of the system. Few methods have been developed

to reduce the models in size for second order systems. It would thus be beneficial to develop

second order model reduction methods that take into account damping whilst preserving second

order form.
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Figure 1: Numerical example 1 - Uncontrolled physical and modal responses, SPT method
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Figure 2: Numerical example 1 - Controlled physical and modal responses, SPT method
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Figure 3: Numerical example 1 - Uncontrolled physical and modal responses, IMSC method
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Figure 4: Numerical example 1 - Controlled physical and modal responses, IMSC method
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Figure 5: Example 2, Rotor-Disc system

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

time, s

ph
y 

di
sp

la
ce

m
en

t

Figure 6: Example 2, uncontrolled physical displacements to initial conditions
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Figure 7: Example 2, SPT-modal controlled physical displacements to initial conditions

0 50 100 150 200 250 300 350
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

as
in

h(
m

in
 r

ea
l e

ig
en

va
lu

e

angle α

Figure 8: Variation of angle α versus sinh−1(min. real eigenvalue)
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