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I. Introduction
Asecond order system can be represented in the form

M §(e)+ D4(1)+ K glt)= Fule) (1)

We)= P q(e)+ P> 4(e) @
where M,D,K € R"" are the system mass, damping and stiffness matrices, respectively, q(t) € R" represents the
vector of generalised coordinates of the system, u(t)e R" is the vector of applied forcing and the F € R"*"and

B, P, e RP™" matrices represent locations of applied forces and observations respectively. For the purpose of this

paper we allow the concept of the output y(?) to be a collection of displacements and velocities. The justification for
this statement is that we are concerned only with redeeming the structure of the second order system matrices M, D
and K, within this paper.

It is well known that the structure of the second order linear system permits representation in first order state

space form
S o) e

RS i @

with x; (t) = q(t) and x, (t) =X (t) The first order equations of motion illustrated above may be simplified where the

definitions in the equation are apparent

x(e)= Ax(e)+ Bu(t) , »(t)=Cx(t) (5)
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Many applications exist which destroy the second order properties contained in the state space representation.
One such example is the model reduction technique balanced truncation [1]. The purpose of this note is to find a

similarity transformation, 7, such that the zeros and identity can be re-established into the appropriate locations of

the 4 and B matrices.

A=T7'4T , B=T'B , C=CT (6a, b, ¢)

As an illustrative example to justify the ambitions of this note the author wishes to draw attention to the control
problem. Currently the majority of linear control methods deal with the physical system in first order form however
there is a growing subset of control techniques dealing with the control problem in second order form. Many
obvious advantages of second order control over first order control exist: 1.) Physical insight of the system is
preserved. 2.) Computational efficiency, since the dimension of the second order system is smaller than that of the
state space form. 3.) Symmetry and structure of the systems can be preserved where desired. Thus the technique
outlined in this note help regain some of these advantages.

The author wishes to draw attention here to previous work on the same ambition by Friswell et al [2] but the
method proposed in this work is far simpler in application. The ambition of this note is to yield a simpler method
rather than produce a new result. This fact the author feels is a worthwhile criterion. Friswell et al showed that a
necessary condition for a system to be truly second order is that the equality CB = 0 holds true. Indeed this equality
holds in the event of transformation to the C and B matrices. We assume here without loss of generality that the new

mass matrix M, is equal to the identity matrix of appropriate dimension.

A coordinate transformation known as a Structural Preserving Equivalence (SPE) [3] is known to exist which
yields the appropriate form of the state space companion matrix, 4. However the transformation pays no attention to

the structure of the state space input matrix, B. We show here that the SPE has the form

X -1
T= {X A} (7

with X € R"*?" being an arbitrary full rank matrix.

To see that T does reproduce the correct form for A, perform the substitutions implied by Egs. (6a) and (7) and

observe that



XA{;;]JEB 1] ®)

Noting that to yield the new forcing matrix B we pre-multiply the original forcing matrix B by T~' hence we

can gain a direct relationship to the arbitrary matrix X. We may split matrices 4, B and X into n dimensional blocks

A A T
x=[x, x,] . Az[A:l A;j s Bz[BlT BZT] ©)
to yield the result
EZT—IB:|: (XlBl +XZBZ) i| (10)
(XlAll +X2A21)Bl +(X1A12 +X2A22)Bz

QR factorization may be used to solve the problem of finding a matrix X which can provide the necessary

structure in the forcing matrix B . Using QR factorization we define the orthogonal matrix Q e R and upper

triangular matrix R € R*"*" such that

B=0R (11)

The matrix Q may be separated into

o=[0 0,] (12)

where O, has dimension 2n x r and O has dimension 2n x (2n - r). Therefore the matrix X can be solved such that

xX=y0," (13)

Any matrix X satisfying equation (13) where ¥ gyx(2n=r)

is an arbitrary full rank matrix will satisfy X B = 0.
Thus, the formulation yields the second order equations of motion in the form illustrated by equation (1) from first
order equations of no specific structure. The inputs and the outputs of the system have physical realization but the

generalized coordinates do not. Due to the non-uniqueness of the matrix ¥ we may observe that the set of all

possible second order systems may be reached provided the initial system is non-defective. Indeed the new system

matrices extracted from A are non-unique and the possibility to obtain more desirable system matrices is apparent.



It is worth noting at this point for systems where the dimensions n = r = p, if equality C B = 0 holds X can be
arbitrarily set equal to C which will ensure that P, .., will be equal to zero thus ensuring a full second order

structure. This can be seen from the equality X B = 0.

II. Numerical Example

The initial A, B and C matrices are arbitrarily generated to be

(73 42 45 69 63 79] [19 93] (40 59

69 8 41 65 73 92 90 34 41 57

35 49 90 98 38 84 57 66 66 72
A= , B= , C=

17 8 1 55 1 37 63 39 84 51

16 46 30 40 42 62 23 63 37 78

19 46 5 20 75 73] 155 70| 143 49|

Through QR factorization Q, correct to 4 decimal places is found to be

[-0.3359 —0.1218 -0.4028 -0.3705]
—-0.2907 —0.5077 0.0824 -0.2458
0.8732 -0.0676 —0.1288 -0.1358
—-0.1578 0.8468 —0.0864 -0.1562
—-0.0322  0.0568  0.8881 -0.0482
|-0.1190 -0.0507 —0.1347 0.8701 |

0, =

Setting Y to be equal to an n x (2n-r) identity matrix, the new second order matrices reported to 4 decimal places

can be extracted from the new transformed state space matrices assuming the new mass, M,,,, is equal to the

identity.
10364.8151 64724562 -4122.6942 -230.2870  1.2515 73.3022
K, .., =|-27244.9504 -14969.2395 9799.2364 | , D, =| 490.4981 -152.1700 -65.8903
-1306.7350  -738.7757 384.9582 28.0318 0.0948  -36.5430
2718.0236  1153.6079 -295.6068 -312.8549] 6.1189 634117

Fypp =| -3547.7159  -9542.6998 , P,,.,, =|-198.5391 -251.8346| , P,,,, =|-0.7732 -1.1320
670.6649  -922.2557 149.9955  187.1044 -3.9578 -4.7629



III. Conclusion

This note has shown a method to recreate the second order equations of motion of the form illustrated by
equation (1) from a first order system which has no specific form. A numerical method has demonstrated the

simplicity and effectiveness of the algorithm.
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