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AN IMMUNE-INSPIRED APPROACH TO 

ANOMALY DETECTION 

Jamie Twycross and Uwe Aickelin 

ABSTRACT 

The immune system provides a rich metaphor for computer security: anomaly detection that 

works in nature should work for machines. However, early artificial immune system 

approaches for computer security had only limited success. Arguably, this was due to these 

artificial systems being based on too simplistic a view of the immune system. We present here 

a second generation artificial immune system for process anomaly detection. It improves on 

earlier systems by having different artificial cell types that process information. Following 

detailed information about how to build such second generation systems, we find that 

communication between cells types is key to performance. Through realistic testing and 

validation we show that second generation artificial immune systems are capable of anomaly 

detection beyond generic system policies. The paper concludes with a discussion and outline 

of the next steps in this exciting area of computer security. 

INTRODUCTION 

The work discussed here is motivated by a broad interest in biologically-inspired approaches 

to computer security, particularly in immune-inspired approaches to intrusion detection. The 

first part of this chapter gives a brief overview of biologically-inspired computing and 

computer security, and introduces the field of artificial immune systems. We have developed 

an immune-inspired process anomaly detection system. Process anomaly detection is an 

important technique in computer security for detecting a range of attacks, and the second part 

of this chapter introduces and reviews current approaches to process anomaly detection, 

relating our work to other work in this area. The third section of this chapter introduces our 

own efforts to develop a prototype immune-inspired realtime process anomaly detection 

system. However, our interests are also wider, and address issues concerning how artificial 

immune systems are modelled and implemented in general. We have implemented a system, 

libtissue, in which immune-inspired algorithms can be developed and tested on real-world 

problems. The design and implementation of this system is briefly reviewed. The final part of 

this chapter presents and discusses the results of validation tests using libtissue. A number 

of datasets containing system call and signal information were generated and a simple 

algorithm was implemented to test the libtissue system. The behaviour of the algorithm is 

analysed and it is shown how the libtissue system can be used to build immune-inspired 

algorithms that detect anomalies in process behaviour. 

BIOLOGICALLY-INSPIRED APPROACHES 

Biological approaches to computer security are appealing for a number of reasons. Williamson 

(2002), discusses some of these reasons and their impact on the design of computer security 

systems. Biological organisms have developed many novel, parsimonious and effective 

protection mechanisms. As computer systems and networks become more complex traditional 

approaches are often ineffective and suffer from problems such as scalability, and biologically 

systems are important sources of inspiration when designing new approaches. The short 

position paper of Morel (2002) discusses the general design of cyber-security systems that 



provides a large distributed computer network with a high degree of survivability. He proposes 

that a cyber-security system emulates the architecture of the biological immune system. As in 

this chapter, the innate immune system is considered as central to the immune response, 

processing information and controlling the adaptive immune system. An effective cyber-

security system should emulate key features, most importantly distributed control, of the 

biological system, it should provide multiple information gathering mechanisms, and it should 

coevolve with the threat. 

In another interesting position paper Williams (1996) explores the similarities between 

people’s health and the security of complex computer systems. Humans are composed of 

distinct but tightly integrated multilayer systems, have external interfaces which can receive a 

wide range of input and which carefully balance security and functionality, and have internal 

interfaces with protection mechanisms. They are not born with many of their defenses but 

learn to protect themselves against recurring threats such as viruses, and are able to identify 

and develop defenses for new threats. The body is able to detect conditions that are likely to 

lead to injury. It is surrounded by a skin which, if damaged, leads to further response. 

Williams suggests that computer systems also need to have virtual skins with a similar 

functionality. He highlights the importance of the balance between functionality, security and 

flexibility. Humans, as with computer systems, live a complex environment where conditions 

change over time. Both computer and biological systems are very sensitive to the input they 

receive. Biological systems check and filter input at many levels and he suggests security 

systems need to do the same. He also emphasises the impossibility of accurate measurement of 

health in humans, which is reflected in the difficultly of measuring the security of computer 

systems. His general view is that the computer security industry is becoming as specialised as 

the healthcare industry, with security engineers akin to doctors.  

Our interest is in immune-inspired approaches to intrusion detection. The field of artificial 

immune systems began in the early 1990s with a number of independent groups conducting 

research which used the biological immune system as inspiration for solutions to problems in 

other domains. There are several general reviews of artificial immune system research 

(Dasgupta, 2006, Hart and Timmis, 2005), and a number of books including Dasgupta (1999) 

and de Castro and Timmis (2002) covering the field. Large bibliographies have been collated 

by Dasgupta and Azeem (2006) (over 600 journal and conference papers) and an annual 

international conference has been held since 2002 (Proceedings of the International 

Conference on Artificial Immune Systems, 2002-2007). Specifically of relevance to this 

chapter is the review of artificial immune system approaches to intrusion detection by Aickelin 

et al. (2004). 

Intrusion detection systems are software systems designed to identify and prevent the 

misuse of computer networks and systems. Still a relatively young field, first discussed by 

James Anderson in his seminal 1980 paper (Anderson, 1980) and with the first working 

system described in Dorothy Denning’s 1987 paper (Denning, 1987), intrusion detection still 

faces many unresolved research issues. Many intrusion detection systems have been 

developed, representative samples of which are reviewed in Kemmerer and Vigna (2002) and 

Venter and Eloff (2003). Several excellent review papers (Axelsson, 2000, Bace and Mell, 

2001) and books (Northcutt and Novak, 2003) on intrusion detection approaches have also 

been published. There are a number of different ways to classify intrusion detection systems 

(Axelsson, 2000). In their paper, Jansen and Karygiannis (1999) discuss the shortcomings of 

current intrusion detection system technology and the advantages of and approaches to 

applying mobile agents to intrusion detection and response. They highlight the issue of false 

positives as the primary problem facing the intrusion detection system community, and this is 

one of the key issues which this chapter seeks to address, particularly in terms of the detection 

of novel attacks. 



PROCESS ANOMALY DETECTION 

In the classic paper “An Evening with Berferd in which a Cracker is Lured, Endured, and 

Studied” (Cheswick, 1992), Cheswick describes the activities of a cracker who is allowed to 

gain access to a monitored machine. Other more recent publications (Mitnick and Simon, 

2005) which have deconstructed real-world attacks have painted a similar picture. Often, the 

initial goal of an attack is to gain administrator privileges or “get root” on a machine and so 

give the attacker free reign on the system. If the attacker does not have an account on the 

system then they may try to exploit a vulnerability in a network service running on the target 

remote machine to gain access. This is termed a remote-to-local attack. Buffer overflow 

exploits are often used to subvert remote services to execute code the attacker supplies and, for 

example, open a remote command shell on the target machine. Sometimes, the attacked 

service will already be running with administrator privileges, in which case the initial attack is 

complete. Otherwise, the attacker will have access to the machine at the same privilege level 

as the attacked service is running at. In this case, or if the attacker already has a local user 

account on the target machine, they will need to perform a privilege escalation attack, called a 

user-to-root attack. Often, this will involve attacking a privileged program, such as a program 

running with administrator privileges, and, once again, subverting its execution to create a 

command shell with administrator privileges. After the initial goal of unrestricted access is 

achieved, the attacker may install rootkits to hide their presence and facilitate later access. 

Data can be copied to and from the machine, remote services such as filesharing daemons can 

be started, and, in the case of worms, this may all be done automatically without human 

intervention. 

Process anomaly detection systems are designed to detect and prevent the subversion of 

processes necessary in such remote-to-local and user-to-root attacks. A number of host-based 

intrusion detection systems have been built around monitoring running processes to detect 

intrusions, and are discussed in detail in the next section. In general, these intrusion detection 

systems collect information about a running process from a variety of sources, including from 

log files created by the process, or from other information gathered by the operating system. 

The general idea is that by observing what the process is currently doing e.g. by looking at its 

log files, we can tell whether the process is behaving normally or has been subverted by an 

attack. While log files are an obvious starting point for such systems, and are still an important 

component in a holistic security approach, it is fairly easy to execute attacks which do not 

cause any logging to take place, and so evade detection. Because of this, there has been a 

substantial amount of research into other data sources, usually collected by the operating 

system. Of these, system calls have been the most favoured approach. This section begins with 

a brief background on system calls and then reviews current system call-based approaches to 

process anomaly detection. 

Processes and System Calls 

A process is a running instance of a program. On modern multitasking operating systems 

many processes are effectively running simultaneously. For example, a server may be running 

a web server, email servers and a number of other services. A single program executable, 

when run, may create several child processes by forking (fork, 2007) or threading (pthreads, 

2007). For example, web servers typically start child processes to handle individual 

connections once they have been received. The process which created the child process is 

called the parent process. Child processes themselves may create children, sometimes 

generating a complex process tree derived from a single parent process node created when the 

executable is first run. The operating system is responsible for managing the execution of 

running processes, and associates a number, called a process identifier, with each process. This 



number uniquely identifies a process. Essentially, the operating system initialises a counter 

and assigns its value to a new process, and then increments the counter. When a process is 

started, the operating system associates other metadata with it too, such as the process 

identifier of the parent process that created it, and the user who started the process. The 

process is also allocated resources by the operating system. These resources include memory, 

which stores the executable code and data, and file descriptors, which identify files or network 

sockets which belong to the process. 

System calls (syscalls) are a low-level mechanism by which processes request system 

resources such as peripheral I/O or memory allocation from an operating system. As a process 

runs it cannot usually directly access memory or hardware devices. Instead, the operating 

system manages these resources and provides a set of functions, called syscalls, which 

processes can call to access these resources. On modern Linux systems there are around 300 

syscalls, accessed via wrapper functions in the libc library. Some of the more common syscalls 

are summarised in Table 1.1. At an assembly code level, when a process wants to make a 

syscall it will load the syscall number into the EAX register, and syscall arguments into 

registers such as EBX, ECX or EDX. The process will then raise the 0x80 interrupt. This 

causes the process to halt execution and the operating system to execute the requested syscall. 

Once the syscall has been executed, the operating system places a return value in EAX and 

returns execution to the process. Operating systems other than Linux differ slightly in these 

details, for example BSD puts the syscall number in EAX and pushes the arguments onto the 

stack (Bovet and Cesati, 2002, syscalls, 2007). Higher-level languages provide library calls 

which wrap the syscall in easier-to-use functions such as printf. 

 

 

Table 1.1:  Common system calls (syscalls). 

 

number name description 

1 exit terminate process execution 

2 fork fork a child process 

3 read read data from a file or socket 

4 write write data to a file or socket 

5 open open a file or socket 

6 close close a file or socket 

37 kill send a kill signal 

90 old_mmap map memory 

91 munmap unmap memory 

301 socket create a socket 

303 connect connect a socket 

  

Syscalls are a much more powerful data source for detecting attacks than log file entries. 

All of a monitored application’s interactions with the network, filesystem, memory, and other 

hardware devices can be monitored. Most attacks which subvert the execution of the 

monitored application will probably have to access some of these resources, and so will have 

to make a number of syscalls. In other words, it is much harder to evade a syscall-based 

intrusion detection system. However, monitoring syscalls is more complex and costly than 

reading data from a log file, and usually involves placing hooks or stubs in the operating 

system, or wrapping the monitored process in a sandbox-like system. This increases the 

runtime of the monitored process, since for each syscall the monitor will spend at least a few 

clock ticks pushing the data it has collected to a storage buffer. Syscall interposition systems, 

which, in addition to passively gathering syscall information, also decide whether to permit or 



deny the syscall, can add additional runtime overheads. Also, processes can generate hundreds 

of syscalls a second, making the data load significantly higher. Other factors also need to be 

taken into account when implementing a syscall monitoring or interposition system. Incorrect 

replication of operating system state or other race conditions may allow syscall monitoring to 

be circumvented. These factors are addressed in detail by Garfinkel (2003). 

Current Approaches 

The systrace system of Provos (2003) is a syscall-based confinement and intrusion 

detection system for Linux, BSD and OSX systems. A kernel patch inserts various hooks into 

the kernel to intercept syscalls from the monitored process. The user specifies a syscall policy 

which is a whitelist of permitted syscalls and arguments. The monitored process is wrapped by 

a user-space program which compares any syscalls a process tries to make (captured by the 

kernel hooks) with this policy, and only allows the process to execute syscalls which are 

present on the whitelist. Execution of the monitored process is halted while this decision is 

made, which, along with other factors such as the switch from kernel- to user-space, adds an 

overhead to the monitored process. However, due in part to the simplicity of the decision-

making algorithm (a list search on the policy file), as well as a good balance of kernel- versus 

user-space, this performance impact on average is minimal, and systrace has been used to 

monitor processes in production environments. As an intrusion detection system, systrace 

can be run to either automatically deny and log all syscall attempts not permitted by the policy, 

or to graphically prompt a user as to whether to permit or deny the syscall. The latter mode can 

be used to add syscalls to the policy, adjusting it before using it in automatic mode. Initial 

policies for a process are obtained by using templates or by running systrace in automatic 

policy generation mode. In this mode, the monitored process is run under normal usage 

conditions and permit entries are created in the policy file for all the syscalls made by the 

process. The policy specification allows some matching of syscall arguments as well as syscall 

numbers. 

Gao et al. (2004) introduce a new model of syscall behaviour called an execution graph. 

An execution graph is a model that accepts approximately the same syscall sequences as 

would a model built on a control flow graph. However, the execution graph is constructed 

from syscalls gathered during normal execution, as opposed to a control flow graph which is 

derived from static analysis. In addition to the syscall number, stack return addresses are also 

gathered and used in construction of the execution graph. The authors also introduce a course-

grain classification of syscall-based intrusion detection systems into white-box, black-box and 

gray-box approaches. Black-box systems build their models from a sample of normal 

execution using only syscall number and argument information. Gray-box approaches, as with 

black boxes, build their models from a sample of normal execution but, as well as using 

syscall information, also use additional runtime information. White-box approaches do not use 

samples of normal execution, but instead use static analysis techniques to derive their models. 

A prototype gray-box anomaly detection system using execution graphs is introduced by the 

authors, and they compare this approach to other systems and discuss possible evasion 

strategies in Gao et al. (2004). 

Sekar et al. (2001) implement a realtime intrusion detection system which uses finite state 

automata to capture short and long term temporal relationships between syscalls. One 

advantage of using finite state automata is that there is no limit to the length of the syscall 

sequence. Yeung et al. (2003) describe an intrusion detection system which uses a discrete 

hidden Markov model trained using the Baum-Welch re-estimation algorithm to detect 

anomalous sequences of syscalls. Lee (2000) explores a similar Markov chain model. Krugel 

et al. (2003) describe a realtime intrusion detection system implemented using Snare under 



Linux. Using syscall audit logs gathered by Snare, their system automatically detects 

anomalies in syscall arguments. They explore a number of statistical models which are learnt 

from observed normal usage. Endler (1998) presents an offline intrusion detection system 

which examines BSM audit data. They combine a multi-layer perceptron neural network 

which detects anomalies in syscall sequences with a histogram classifier which calculates the 

statistical likelihood of a syscall. Lee and Xiang (2001) evaluate the performance of syscall-

based anomaly detection models built on information-theoretic measures such as entropy and 

information cost, and also use these models to automatically calculate parameter settings for 

other models. 

Forrest, Hofmeyr, Somayaji and other researchers at the University of New Mexico have 

developed several immune-inspired learning-based approaches. In Forrest et al. (1997) and 

Hofmeyr and Forrest (2000) a realtime system is evaluated which detects anomalous processes 

by analysing sequences of syscalls. Syscalls generated by an application are grouped together 

into sequences, in this case sequences of six consecutive syscalls. This choice of sequence 

length is discussed in Tan and Maxion (2003). A database of normal sequences is constructed 

and stored as a tree during training. Sequences of syscalls are then compared to this database 

using a Hamming distance metric, and a sufficient number of mismatches generates an alert. 

No user-definable parameters are necessary, and the mismatch threshold is automatically 

derived from the training data. Similar approaches have also been applied by this group to 

network intrusion detection (Balthrop et al., 2002, Hofmeyr and Forrest, 2000). Somayaji 

(2002) develops the immune-inspired pH intrusion prevention system which detects and 

actively responds to changes in program behaviour in realtime. As with the method just 

described, sequences of syscalls are gathered for all processes running on a host and compared 

to a normal database using a similar immune-inspired model. However, if an anomaly is 

detected, execution of the process that produced the syscalls will be delayed for a period of 

time. This method of response, as opposed to more malign responses such as killing a process, 

is more benign in that if the system makes a mistake and delays a process which is behaving 

normally, this may not have a perceptible impact from the perspective of the user. The idea of 

process homeostasis, with pH maintaining a host machine within certain operational limits, is 

introduced. This approach was effective at automatically preventing a number of attacks. 

THE libtissue SYSTEM 

The broader aim of the research presented here is to build a software system which allows 

researchers to implement and analyse novel artificial immune system algorithms and apply 

them to real-world problems. We have implemented a prototype of such a system, called 

libtissue, which is being used by ourselves and other researchers (Greensmith et al., 2006a, 

2006b, Twycross and Aickelin, 2006) to build and evaluate novel immune-inspired algorithms 

for process anomaly detection. This section briefly reviews the design and implementation of 

the libtissue system, more detail of which can be found in (Twycross and Aickelin, 2006). 

  



 

Figure 1.1:  The architecture of libtissue. Hosts are monitored by libtissue antigen 
and signal clients, which in turn provide input data to the artificial immune system algorithm, 

run on a libtissue server. Algorithms are able to change the state of the monitored hosts 
through response clients. 

libtissue has a client/server architecture pictured in Figure 1.1. An artificial immune 

system algorithm is implemented as part of a libtissue server, and libtissue clients 

provide input data to the algorithm and response mechanisms which change the state of the 

monitored system. This client/server architecture separates data collection by the libtissue 

clients from data processing by the libtissue servers and allows for relatively easy 

extensibility and testing of algorithms on new data sources. libtissue was coded in C as a 

Linux shared library with client and server APIs, allowing new antigen and signal sources to 

be easily added to libtissue servers from a programmatic perspective. Because 

libtissue is implemented as a library, algorithms can be compiled and run on other 

researchers’ machines with no modification. Client/server communication is socket-based, 

allowing clients and servers to potentially run on separate machines, for example a signal or 

antigen client may in fact be a remote network monitor. 

Artificial immune system algorithms are implemented within a libtissue server as 

multiagent systems of cells. Cells exist within an environment, called a tissue compartment, 

along with other cells, antigen and signals. The problem to which the algorithm is being 

applied is represented by libtissue as antigen and signals. Cells express various repertories 

of receptors and producers which allow them to interact with antigen and control other cells 

through signalling networks. libtissue allows data on implemented algorithms to be 

collected and logged, allowing for experimental analysis of the system. A libtissue server 

is in fact several threaded processes running asynchronously. An initialisation routine is first 

called which creates a tissue compartment based on user-supplied parameters. During 

initialisation a thread is also started to handle connections between the server and libtissue 

clients, and this thread itself starts a separate thread for each connected client. After 

initialisation, cells, the characteristics of which are specified by the user, are created and 

initialised, and the tissue compartment populated with these cells. Cells in the tissue 

compartment then cycle and input data is provided by connected libtissue clients. 

libtissue clients are of three types: antigen, signal and response. Antigen clients collect 

and transform data into antigen which are forwarded to a libtissue server. Currently, a 

systrace antigen client has been implemented which collects process syscalls using 

systrace (systrace homepage, 2007). Signal clients monitor system behaviour and provide 

an artificial immune system running on the tissue server with input signals. A process monitor 

signal client, which monitors a process and its children and records statistics such as CPU and 

memory usage, and a network signal client, which monitors network interface statistics such as 



bytes per second, have been implemented. Two response clients have been implemented, one 

which simply logs an alert, and another which allows an active response through the 

modification of a systrace syscall policy. All of these clients are designed to be used in 

realtime experiments and for data collection for offline experiments with tcreplay. 

The implementation is designed to allow varied artificial immune system algorithms to be 

evaluated on real-world, realtime systems and problems. When testing intrusion detection 

systems it is common to use preexisting datasets such as the Lincoln Labs dataset (Lincoln 

Labs DARPA Intrusion Detection Evaluation datasets, 2007). However, the project 

libtissue has been built for is focused on combining measurements from a number of 

different concurrent data sources. Preexisting datasets which contain all the necessary sources 

are not available. Therefore, to facilitate experimentation, a libtissue replay client, called 

tcreplay, was also implemented. This client reads in log files gathered from previous 

realtime runs of antigen and signal clients. It also has the facility to read logfiles generated by 

strace (strace homepage, 2007) as an optional source of antigen in place of the systrace 

client. It then sends the information in these logs to a libtissue server. Variable replay rates 

are available, allowing data collected from a realtime session to be used to perform many 

experiments quickly. Having such a replay facility is important in terms of reproducibility of 

experiments. In reality, the majority of experimental runs are scripts which take data and 

parameter files as input and run a tissue server and tcreplay client. 

VALIDATION OF APPROACH 

We wanted to verify that useful algorithms could be implemented and applied to a real-world 

problem. This section reviews the details of this validation. It discusses how data on a process 

anomaly detection problem was generated. It then presents a simple anomaly detection 

algorithm which we have implemented to test the libtissue system. Results from an 

analysis of the behaviour and performance of the libtissue system and the algorithm are 

then presented. Lastly, an example of how this algorithm and the libtissue system can be 

used to detect anomalies in process behaviour is given. 

Dataset Generation 

In order to gather data for the process anomaly detection problem, a small experimental 

network with three hosts was set up. One host, the target, runs software, in this case a Redhat 

6.2 server, with a number of vulnerabilities. The other two hosts act as clients which interact 

with the target machine, either attempting to exploit its vulnerabilities or simulating normal 

usage. Because the experimental network contains vulnerable hosts, access between it and the 

public campus network is tightly controlled. While minimal, this setup permits realistic 

network-based attack and normal usage scenarios to be played out. Physically, the network 

exists on a single Debian Linux host running two VMware guest operating systems. The host 

and guests are connected via a virtual VMware host-only network. This setup was chosen as it 

allows for relatively fast configuration and restoration of the experimental network when 

compared with one in which each host is a physically separate machine connected via the 

standard network infrastructure of switches and so on. Redhat 6.2 was chosen because the 

default installation installs a number of programs with vulnerabilities (Redhat Linux 6.2 

Security Advisories, 2002) and because many well-documented exploits are available for these 

vulnerabilities. Tests were carried out with the rpc.statd daemon (rpc.statd, 2007), which 

provides a status monitoring service to other NFS clients and servers. The default version of 

rpc.statd shipped with Redhat 6.2 has a format string vulnerability which allows a remote 

user to execute arbitrary code with root privileges on the server (Multiple Linux Vendor 



rpc.statd Remote Format String Vulnerability, 2000). An exploit, statdx2 (Bugtraq: statdx2 - 

Linux rpc.statd revisited, 2002), has been released which levers this vulnerability and, by 

default, injects shellcode which causes a remote root shell to be opened on the attacker’s 

machine, allowing unrestricted access to the server. This vulnerability has also been used in 

automated attacks such as the Ramen worm. 

In order to collect the data, that is process syscall information and appropriate context 

signals, the target system was instrumented. The Redhat nfslock init script was modified to 

start rpc.statd wrapped by strace (strace homepage, 2007), which logged all the syscalls 

made by rpc.statd and its children. At the same time, a specially written application called 

process_monitor was started which monitors a process and all of its child processes. At 

regular intervals, one tenth of a second in this case, it takes a snapshot of the process table 

which it then traverses, recording the process identifiers of all the processes which are children 

of the monitored process. The monitor then logs the current name of the monitored process, 

the total number of children including itself owned by the process, the total CPU usage of the 

process and its children, and the total memory usage of the process and its children. Pairs of 

strace and process_monitor logs were collected on the instrumented target machine 

while rpc.statd was utilised in a number of different scenarios. These logs were then parsed 

to form a single tcreplay logfile for each of the scenarios. An antigen entry in the 

tcreplay log was created for every syscall recorded in the strace log. A signal entry was 

created for each recording of CPU usage in the process_monitor log. While the strace 

log actually contains much more information, the use of just the syscall number is more than 

sufficient for testing the example algorithm described in the next section. It would be expected 

that a more complex algorithm would require additional complexity in both the antigen and 

range of signals it is provided with, such as the addition of information about syscall 

arguments, sequences of syscalls, or instruction pointer addresses. 

The monitored scenarios are divided into three groups based on whether the type of 

interaction with the rpc.statd server is a successful attack, a failed attack, or normal usage. 

Statistics for the datasets are given in Table 1.2. All the datasets followed a similar pattern. The 

data was generally very bursty in terms of syscalls per second, with relatively long periods of 

no syscalls punctuated by bursts of up to 1102 syscalls per second (success1). All datasets 

contain an initial one second burst of 405 syscalls executed by rpc.statd during normal 

startup. Syscalls generated by rpc.statd at shutdown, a burst of between 17 and 29 syscalls 

caused by typing halt on the server, are also present in the normal and failure datasets. They 

are not present in the success datasets as the rpc.statd process is replaced by a shell process 

during the exploit and so not able to go through normal shutdown. In both successful attacks 

there are three bursts of between 98 and 1102 syscalls. The user interaction on the resulting 

remote shell (typing exit) creates 5 syscalls. The unsuccessful attacks produced a single burst 

of 96 and 62 syscalls (failure1 and failure2 respectively). The actions of the NFS client in 

normal2 result in a single burst of 16 syscalls. 

 

Table 1.2:  Statistics for the six datasets gathered. 

 

dataset total time total antigen max antigen rate 

success1 55 1739 1102 

success2 36 1743 790 

failure1 54 518 405 

failure2 68 495 405 

normal1 38 434 405 

normal2 104 450 405 



  

The twocell Algorithm 

  

 

Figure 1.2:  The two different cell types implemented in twocell. 

The cells in twocell, shown in Figure 1.2, are of two types, labelled Type 1 and Type 2, 

and each type has different receptor and producer repertories, as well as different cell cycle 

callbacks. Type 1 cells are designed to emulate two key characteristics of biological APCs: 

antigen and signal processing. In order to process antigen, each Type 1 cell is equipped with a 

number of antigen receptors and producers. A cytokine receptor allows Type 1 cells to respond 

to the value of a signal in the tissue compartment. Type 2 cells emulate three of the 

characteristics of biological T cells: cellular binding, antigen matching, and antigen response. 

Each Type 2 cell has a number of cell receptors specific for Type 1 cells, VR (variable-region) 

receptors to match antigen, and a response producer which is triggered when antigen is 

matched. Type 2 cells also maintain one internal cytokine, an integer which is incremented 

every time a match between an antigen producer and VR receptor occurs. If the value of this 

cytokine is still zero, that is no match has occured, after a certain number of cycles, set by the 

cell_lifespan parameter, then the values of all of the VR receptor locks on the cell are 

randomised. 

A tissue compartment is created and populated with a number of Type 1 and 2 cells. 

Antigen and signals in the compartment are set by libtissue clients based on the syscalls a 

process is making and its CPU usage. Type 1 and 2 cells have different cell cycle callbacks. 

Type 1 cells ingest antigen through their antigen receptors and present it on their antigen 

producers. The period for which the antigen is presented is determined by a signal read by a 

cytokine receptor on these cells, and so can be made dependant upon CPU usage. Type 2 cells 

attempt to bind with Type 1 cells via their cell receptors. If bound, VR receptors on these cells 

interact with antigen producers on the bound Type 1 cell. If an exact match between a VR 

receptor lock and antigen producer key occurs, the response producer on Type 2 cells produces 

a response, in this case a log entry containing the value of the matched receptor. 

System Dynamics 

In experiments it is important to have a baseline with which to compare algorithmic 

performance. In terms of syscall policies such a baseline can be generated, and is here termed 

a naive policy. A naive syscall policy is generated for a process, such as rpc.statd, by 

recording the syscalls it makes under normal usage, as in the normal1 and normal2 datasets. A 

permit policy statement is then created for all syscalls seen in the datasets. This baseline is not 

too unrealistic when compared to how current systems such as systrace automatically 

generate a policy. Similarly to a naive policy, one way in which twocell can be used to 



generate a syscall policy is by running it with normal usage data during a training phase. 

During the run, responses made by Type 2 cells are recorded. At the end of each run, a syscall 

policy is created by allowing only those syscalls responded to, and denying all others. Since 

interactions in libtissue are stochastic, looking at the average results over a number of runs 

helps to understand the behaviour of implemented algorithms. A script was written to start the 

twocell server and then after 10 seconds start the tcreplay client and replay a dataset in 

realtime. twocell was allowed to continue running for a further minute after replay had 

finished. This process was repeated 20 times for both the normal1 and normal2 datasets, 

yielding 40 individual syscall policies. A single average twocell policy was then generated 

by allowing all syscalls which were permitted in any of the 40 individual policies. It was found 

that all of the 38 syscalls that were permitted in the naive policy were also permitted in the 

average policy. 

 

Table 1.3:  The syscall policy generated by twocell for the normal2 dataset and the frequency of response for each syscall. 

 

syscall frequency 

gettimeofday(78) 1 

listen(304) 1 

send(309) 1 

select(142) 2 

poll(168) 3 

recvfrom(312) 8 

fcntl(55) 9 

fstat(108) 9 

open(5) 22 

close(6) 34 

  

In order to examine more closely how twocell responds, a single run of the twocell 

algorithm was observed. Following the same general procedure as the previous experiment, 

twocell was run once with the normal2 dataset. The resulting policy is shown in Table 1.3, 

along with the frequencies with which the permitted syscalls were responded to. During the 

run, the time at which a Type 2 cell produced a response to a particular syscall was also 

recorded, and the rate at which these responses occured was calculated. This clearly showed a 

correlation between the rate of incoming syscalls and the rate of responses produced by Type 2 

cells. Cells initially do not produce any response until syscalls occur, and then produce a burst 

of responses for a relatively short period before settling down to an unresponsive state once 

again. This is to be expected, as antigen (syscalls) enter and are passed through twocell until 

their eventual destruction after being presented on Type 1 cell antigen producers.  

Classification Accuracy 

An example is now given of how the classification accuracy and error of a libtissue 

algorithm can be evaluated. In terms of syscall policies, a particular policy can be considered 

successful in relation to the number of normal syscalls it permits versus the number of attack 

syscalls it denies. The naive policy and average twocell policy generated from datasets 

normal1 and normal2 in the experiment above were evaluated in such a way. The number of 

syscalls both policies permitted and denied when applied to the four datasets in the attack and 

failed attack groups was recorded. Syscalls within these groups were labelled as either 

generated by an attack or by normal usage. For each dataset, Table 1.4 shows the percentages 

of attack and normal syscalls in the dataset, together with the percentage of syscalls permitted 



by the naive and twocell policies. From the results, the tendency of the naive policy was to 

permit the vast majority of syscalls, whether attack related or not. The twocell-generated 

policy behaved much more selectively, denying a slightly larger proportion of syscalls in the 

success1 and success2 datasets than it permitted. For the failure1 and failure2 dataset the 

converse was true.  

 

Table 1.4:  Comparison of the performance of a naive policy and a twocell policy generated from the normal2 dataset. 

 

dataset success1 success2 failure1 failure2 

normal syscalls 23% 23% 81% 87% 

attack syscalls 76% 76% 18% 12% 

naive permit 90% 90% 99% 99% 

naive deny 9% 9% 0% 0% 

twocell permit 47% 47% 69% 68% 

twocell deny 52% 52% 30% 31% 

  

Discussion 

The dataset, algorithm and experiments presented in this section show how a novel algorithm 

has been developed and applied using the libtissue system. Runs used on average around 

1%, and never more than 3%, of the available CPU resources, showing that it is 

computationally viable to process realtime data using our approach. The collection and 

analysis of the rpc.statd data has brought to light the potential usefulness of a number of 

novel data sources which can be use in conjuction with syscall information. The experiments 

we conducted compared an algorithm, twocell, implemented with libtissue, to a baseline 

standard approach, and showed how the agents in twocell responded in different ways to 

normal and attack sessions. By measuring the response of the agents, we use our algorithm to 

classify sessions as normal or attack. This experiment showed that the performance twocell 

is at least comparable to current approaches. 

More widely, the validation experiments with the twocell algorithm and the rpc.statd 

dataset show the feasibility of using libtissue to implement artificial immune systems as 

multiagent systems and apply them to real-world problems. The twocell algorithm has also 

provided a necessary stepping-stone on the route to developing more complex algorithms. We 

are preparing to publish results of experiments with an algorithm which is able to detect a 

number of novel attacks with a low false-positive rate. To evaluate this and other algorithms 

we have created a second dataset which contains a wider range of normal and attack usage that 

the rpc.statd dataset. The new dataset, which was created by monitoring a wuftpd FTP 

server, contains syscalls and 13 different signals including CPU usage, memory usage, and 

socket and file usage statistics. 

In order to generate realistic normal usage of the wuftpd server, we recreated normal 

sessions seen on a production network on an instrumented experimental network much like the 

setup for the rpc.statd dataset. Data on real FTP client-server interaction can be readily 

obtained from network packet traces collected by network-based monitors. Such packet traces 

are technically fairly easy to gather but, more importantly, traces are also already available 

publically, removing the need to gather this data altogether. Use of public datasets also 

contributes to the reproducibility of experiments. By reassembling network packets 

transmitted between client and server a sufficiently complete record of an FTP session can be 

reproduced. The dataset used (LBNL-FTP-PKT dataset, 2003) contains all incoming 



anonymous FTP connections to public FTP servers at the Lawrence Berkeley National 

Laboratory over a ten-day period and is available from the Internet Traffic Archive (Internet 

Traffic Archive, 2007). The traces contain connections between 320 distinct FTP servers and 

5832 distinct clients and provide a rich source of normal usage sessions, and we initially used 

the traces for one FTP server over two days. 

CONCLUSIONS 

In this chapter we have given a overview of biologically-inspired approaches to computer 

security, in particular immune-inspired approaches. We then discussed in detail an intrusion 

detection problem, process anomaly detection, and reviewed current research in this area. A 

system, libtissue, which we have built for implementing immune-inspired algorithms was 

then detailed, and the results of validation experiments using an artificial immune system 

implemented with libtissue and applied to process anomaly detection were presented and 

discussed. 
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KEYWORDS 

Artificial Immune System: A relatively new class of meta-heuristics that mimics aspects of the 

human immune system to solve computational problems. This method has shown particular 

promise for anomaly detection. Previous artificial immune systems have shown some 

similarities with evolutionary computation. This is because they focus on the adaptive immune 

system. More recent approaches have combined this with aspects of the innate immune system 

to create a second generation of artificial immune systems. 

Adaptive Immune System: Central components of the adaptive immune system are T cells 

and B cells. The overall functionality of the adaptive immune system is to try and eliminate 

threats through antibodies, which have to be produced such that they match antigen. This is 

achieved in an evolutionary-like manner, with better and better matches being produced over a 

short period of time. The adaptive system remembers past threats and hence has the capability 

of responding faster to future similar events. 

Innate Immune System: Central components of the innate immune system are antigen 

presenting cells and in particular dendritic cells. Until recently, the innate system was viewed 

as less important than the adaptive system and its main function was seen as an information 

pre-processing unit. However, the latest immunological research shows that it is the innate 

system that actually controls the adaptive system. Above all, dendritic cells seem to be the key 

decision makers. 

T Cells: Created in the thymus (hence the ‘T’), these cells come in different subtypes. 

Cytotoxic T cells directly destroy infected cells. T helper cells are essential to activate other 

cells, e.g. B cells. T reg cells suppress inappropriate responses. 

Dendritic Cells: These belong to the class of antigen presenting cells. During their life, 

dendritic cells ingest antigen and redisplay it on their surface. In addition, dendritic cells 

mature differently depending on the context signals they are exposed to. Using these two 

mechanisms, these cells differentiate between dangerous and non-dangerous material and then 

activate T cells. 

Process Anomaly Detection: A method of detecting intrusions on computer systems. The 

aim is to detect misbehaving processes, as this could be a sign of an intrusions. The detection 

is based on syscalls, i.e. activities by the processes, and context signals, e.g. CPU load, 

memory usage or network activity. 
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