
COVER PAGE

Paper Title: An Immune-Inspired Approach to Anomaly Detection

Dr Jamie Twycross

School of Computer Science

University of Nottingham

Nottingham NG8 1BB

U.K.

Tel: +44 (0)115 846 8403

Fax: +44 (0)115 846 7591

jpt@cs.nott.ac.uk

Dr Uwe Aickelin

School of Computer Science

University of Nottingham

Nottingham NG8 1BB

U.K.

Tel: +44 (0)115 951 4215

Fax: +44 (0)115 846 7591

uxa@cs.nott.ac.uk

AN IMMUNE-INSPIRED APPROACH TO

ANOMALY DETECTION

Jamie Twycross and Uwe Aickelin

ABSTRACT

The immune system provides a rich metaphor for computer security: anomaly detection that

works in nature should work for machines. However, early artificial immune system

approaches for computer security had only limited success. Arguably, this was due to these

artificial systems being based on too simplistic a view of the immune system. We present here

a second generation artificial immune system for process anomaly detection. It improves on

earlier systems by having different artificial cell types that process information. Following

detailed information about how to build such second generation systems, we find that

communication between cells types is key to performance. Through realistic testing and

validation we show that second generation artificial immune systems are capable of anomaly

detection beyond generic system policies. The paper concludes with a discussion and outline

of the next steps in this exciting area of computer security.

INTRODUCTION

The work discussed here is motivated by a broad interest in biologically-inspired approaches

to computer security, particularly in immune-inspired approaches to intrusion detection. The

first part of this chapter gives a brief overview of biologically-inspired computing and

computer security, and introduces the field of artificial immune systems. We have developed

an immune-inspired process anomaly detection system. Process anomaly detection is an

important technique in computer security for detecting a range of attacks, and the second part

of this chapter introduces and reviews current approaches to process anomaly detection,

relating our work to other work in this area. The third section of this chapter introduces our

own efforts to develop a prototype immune-inspired realtime process anomaly detection

system. However, our interests are also wider, and address issues concerning how artificial

immune systems are modelled and implemented in general. We have implemented a system,

libtissue, in which immune-inspired algorithms can be developed and tested on real-world

problems. The design and implementation of this system is briefly reviewed. The final part of

this chapter presents and discusses the results of validation tests using libtissue. A number

of datasets containing system call and signal information were generated and a simple

algorithm was implemented to test the libtissue system. The behaviour of the algorithm is

analysed and it is shown how the libtissue system can be used to build immune-inspired

algorithms that detect anomalies in process behaviour.

BIOLOGICALLY-INSPIRED APPROACHES

Biological approaches to computer security are appealing for a number of reasons. Williamson

(2002), discusses some of these reasons and their impact on the design of computer security

systems. Biological organisms have developed many novel, parsimonious and effective

protection mechanisms. As computer systems and networks become more complex traditional

approaches are often ineffective and suffer from problems such as scalability, and biologically

systems are important sources of inspiration when designing new approaches. The short

position paper of Morel (2002) discusses the general design of cyber-security systems that

provides a large distributed computer network with a high degree of survivability. He proposes

that a cyber-security system emulates the architecture of the biological immune system. As in

this chapter, the innate immune system is considered as central to the immune response,

processing information and controlling the adaptive immune system. An effective cyber-

security system should emulate key features, most importantly distributed control, of the

biological system, it should provide multiple information gathering mechanisms, and it should

coevolve with the threat.

In another interesting position paper Williams (1996) explores the similarities between

people’s health and the security of complex computer systems. Humans are composed of

distinct but tightly integrated multilayer systems, have external interfaces which can receive a

wide range of input and which carefully balance security and functionality, and have internal

interfaces with protection mechanisms. They are not born with many of their defenses but

learn to protect themselves against recurring threats such as viruses, and are able to identify

and develop defenses for new threats. The body is able to detect conditions that are likely to

lead to injury. It is surrounded by a skin which, if damaged, leads to further response.

Williams suggests that computer systems also need to have virtual skins with a similar

functionality. He highlights the importance of the balance between functionality, security and

flexibility. Humans, as with computer systems, live a complex environment where conditions

change over time. Both computer and biological systems are very sensitive to the input they

receive. Biological systems check and filter input at many levels and he suggests security

systems need to do the same. He also emphasises the impossibility of accurate measurement of

health in humans, which is reflected in the difficultly of measuring the security of computer

systems. His general view is that the computer security industry is becoming as specialised as

the healthcare industry, with security engineers akin to doctors.

Our interest is in immune-inspired approaches to intrusion detection. The field of artificial

immune systems began in the early 1990s with a number of independent groups conducting

research which used the biological immune system as inspiration for solutions to problems in

other domains. There are several general reviews of artificial immune system research

(Dasgupta, 2006, Hart and Timmis, 2005), and a number of books including Dasgupta (1999)

and de Castro and Timmis (2002) covering the field. Large bibliographies have been collated

by Dasgupta and Azeem (2006) (over 600 journal and conference papers) and an annual

international conference has been held since 2002 (Proceedings of the International

Conference on Artificial Immune Systems, 2002-2007). Specifically of relevance to this

chapter is the review of artificial immune system approaches to intrusion detection by Aickelin

et al. (2004).

Intrusion detection systems are software systems designed to identify and prevent the

misuse of computer networks and systems. Still a relatively young field, first discussed by

James Anderson in his seminal 1980 paper (Anderson, 1980) and with the first working

system described in Dorothy Denning’s 1987 paper (Denning, 1987), intrusion detection still

faces many unresolved research issues. Many intrusion detection systems have been

developed, representative samples of which are reviewed in Kemmerer and Vigna (2002) and

Venter and Eloff (2003). Several excellent review papers (Axelsson, 2000, Bace and Mell,

2001) and books (Northcutt and Novak, 2003) on intrusion detection approaches have also

been published. There are a number of different ways to classify intrusion detection systems

(Axelsson, 2000). In their paper, Jansen and Karygiannis (1999) discuss the shortcomings of

current intrusion detection system technology and the advantages of and approaches to

applying mobile agents to intrusion detection and response. They highlight the issue of false

positives as the primary problem facing the intrusion detection system community, and this is

one of the key issues which this chapter seeks to address, particularly in terms of the detection

of novel attacks.

PROCESS ANOMALY DETECTION

In the classic paper “An Evening with Berferd in which a Cracker is Lured, Endured, and

Studied” (Cheswick, 1992), Cheswick describes the activities of a cracker who is allowed to

gain access to a monitored machine. Other more recent publications (Mitnick and Simon,

2005) which have deconstructed real-world attacks have painted a similar picture. Often, the

initial goal of an attack is to gain administrator privileges or “get root” on a machine and so

give the attacker free reign on the system. If the attacker does not have an account on the

system then they may try to exploit a vulnerability in a network service running on the target

remote machine to gain access. This is termed a remote-to-local attack. Buffer overflow

exploits are often used to subvert remote services to execute code the attacker supplies and, for

example, open a remote command shell on the target machine. Sometimes, the attacked

service will already be running with administrator privileges, in which case the initial attack is

complete. Otherwise, the attacker will have access to the machine at the same privilege level

as the attacked service is running at. In this case, or if the attacker already has a local user

account on the target machine, they will need to perform a privilege escalation attack, called a

user-to-root attack. Often, this will involve attacking a privileged program, such as a program

running with administrator privileges, and, once again, subverting its execution to create a

command shell with administrator privileges. After the initial goal of unrestricted access is

achieved, the attacker may install rootkits to hide their presence and facilitate later access.

Data can be copied to and from the machine, remote services such as filesharing daemons can

be started, and, in the case of worms, this may all be done automatically without human

intervention.

Process anomaly detection systems are designed to detect and prevent the subversion of

processes necessary in such remote-to-local and user-to-root attacks. A number of host-based

intrusion detection systems have been built around monitoring running processes to detect

intrusions, and are discussed in detail in the next section. In general, these intrusion detection

systems collect information about a running process from a variety of sources, including from

log files created by the process, or from other information gathered by the operating system.

The general idea is that by observing what the process is currently doing e.g. by looking at its

log files, we can tell whether the process is behaving normally or has been subverted by an

attack. While log files are an obvious starting point for such systems, and are still an important

component in a holistic security approach, it is fairly easy to execute attacks which do not

cause any logging to take place, and so evade detection. Because of this, there has been a

substantial amount of research into other data sources, usually collected by the operating

system. Of these, system calls have been the most favoured approach. This section begins with

a brief background on system calls and then reviews current system call-based approaches to

process anomaly detection.

Processes and System Calls

A process is a running instance of a program. On modern multitasking operating systems

many processes are effectively running simultaneously. For example, a server may be running

a web server, email servers and a number of other services. A single program executable,

when run, may create several child processes by forking (fork, 2007) or threading (pthreads,

2007). For example, web servers typically start child processes to handle individual

connections once they have been received. The process which created the child process is

called the parent process. Child processes themselves may create children, sometimes

generating a complex process tree derived from a single parent process node created when the

executable is first run. The operating system is responsible for managing the execution of

running processes, and associates a number, called a process identifier, with each process. This

number uniquely identifies a process. Essentially, the operating system initialises a counter

and assigns its value to a new process, and then increments the counter. When a process is

started, the operating system associates other metadata with it too, such as the process

identifier of the parent process that created it, and the user who started the process. The

process is also allocated resources by the operating system. These resources include memory,

which stores the executable code and data, and file descriptors, which identify files or network

sockets which belong to the process.

System calls (syscalls) are a low-level mechanism by which processes request system

resources such as peripheral I/O or memory allocation from an operating system. As a process

runs it cannot usually directly access memory or hardware devices. Instead, the operating

system manages these resources and provides a set of functions, called syscalls, which

processes can call to access these resources. On modern Linux systems there are around 300

syscalls, accessed via wrapper functions in the libc library. Some of the more common syscalls

are summarised in Table 1.1. At an assembly code level, when a process wants to make a

syscall it will load the syscall number into the EAX register, and syscall arguments into

registers such as EBX, ECX or EDX. The process will then raise the 0x80 interrupt. This

causes the process to halt execution and the operating system to execute the requested syscall.

Once the syscall has been executed, the operating system places a return value in EAX and

returns execution to the process. Operating systems other than Linux differ slightly in these

details, for example BSD puts the syscall number in EAX and pushes the arguments onto the

stack (Bovet and Cesati, 2002, syscalls, 2007). Higher-level languages provide library calls

which wrap the syscall in easier-to-use functions such as printf.

Table 1.1: Common system calls (syscalls).

number name description

1 exit terminate process execution

2 fork fork a child process

3 read read data from a file or socket

4 write write data to a file or socket

5 open open a file or socket

6 close close a file or socket

37 kill send a kill signal

90 old_mmap map memory

91 munmap unmap memory

301 socket create a socket

303 connect connect a socket

Syscalls are a much more powerful data source for detecting attacks than log file entries.

All of a monitored application’s interactions with the network, filesystem, memory, and other

hardware devices can be monitored. Most attacks which subvert the execution of the

monitored application will probably have to access some of these resources, and so will have

to make a number of syscalls. In other words, it is much harder to evade a syscall-based

intrusion detection system. However, monitoring syscalls is more complex and costly than

reading data from a log file, and usually involves placing hooks or stubs in the operating

system, or wrapping the monitored process in a sandbox-like system. This increases the

runtime of the monitored process, since for each syscall the monitor will spend at least a few

clock ticks pushing the data it has collected to a storage buffer. Syscall interposition systems,

which, in addition to passively gathering syscall information, also decide whether to permit or

deny the syscall, can add additional runtime overheads. Also, processes can generate hundreds

of syscalls a second, making the data load significantly higher. Other factors also need to be

taken into account when implementing a syscall monitoring or interposition system. Incorrect

replication of operating system state or other race conditions may allow syscall monitoring to

be circumvented. These factors are addressed in detail by Garfinkel (2003).

Current Approaches

The systrace system of Provos (2003) is a syscall-based confinement and intrusion

detection system for Linux, BSD and OSX systems. A kernel patch inserts various hooks into

the kernel to intercept syscalls from the monitored process. The user specifies a syscall policy

which is a whitelist of permitted syscalls and arguments. The monitored process is wrapped by

a user-space program which compares any syscalls a process tries to make (captured by the

kernel hooks) with this policy, and only allows the process to execute syscalls which are

present on the whitelist. Execution of the monitored process is halted while this decision is

made, which, along with other factors such as the switch from kernel- to user-space, adds an

overhead to the monitored process. However, due in part to the simplicity of the decision-

making algorithm (a list search on the policy file), as well as a good balance of kernel- versus

user-space, this performance impact on average is minimal, and systrace has been used to

monitor processes in production environments. As an intrusion detection system, systrace

can be run to either automatically deny and log all syscall attempts not permitted by the policy,

or to graphically prompt a user as to whether to permit or deny the syscall. The latter mode can

be used to add syscalls to the policy, adjusting it before using it in automatic mode. Initial

policies for a process are obtained by using templates or by running systrace in automatic

policy generation mode. In this mode, the monitored process is run under normal usage

conditions and permit entries are created in the policy file for all the syscalls made by the

process. The policy specification allows some matching of syscall arguments as well as syscall

numbers.

Gao et al. (2004) introduce a new model of syscall behaviour called an execution graph.

An execution graph is a model that accepts approximately the same syscall sequences as

would a model built on a control flow graph. However, the execution graph is constructed

from syscalls gathered during normal execution, as opposed to a control flow graph which is

derived from static analysis. In addition to the syscall number, stack return addresses are also

gathered and used in construction of the execution graph. The authors also introduce a course-

grain classification of syscall-based intrusion detection systems into white-box, black-box and

gray-box approaches. Black-box systems build their models from a sample of normal

execution using only syscall number and argument information. Gray-box approaches, as with

black boxes, build their models from a sample of normal execution but, as well as using

syscall information, also use additional runtime information. White-box approaches do not use

samples of normal execution, but instead use static analysis techniques to derive their models.

A prototype gray-box anomaly detection system using execution graphs is introduced by the

authors, and they compare this approach to other systems and discuss possible evasion

strategies in Gao et al. (2004).

Sekar et al. (2001) implement a realtime intrusion detection system which uses finite state

automata to capture short and long term temporal relationships between syscalls. One

advantage of using finite state automata is that there is no limit to the length of the syscall

sequence. Yeung et al. (2003) describe an intrusion detection system which uses a discrete

hidden Markov model trained using the Baum-Welch re-estimation algorithm to detect

anomalous sequences of syscalls. Lee (2000) explores a similar Markov chain model. Krugel

et al. (2003) describe a realtime intrusion detection system implemented using Snare under

Linux. Using syscall audit logs gathered by Snare, their system automatically detects

anomalies in syscall arguments. They explore a number of statistical models which are learnt

from observed normal usage. Endler (1998) presents an offline intrusion detection system

which examines BSM audit data. They combine a multi-layer perceptron neural network

which detects anomalies in syscall sequences with a histogram classifier which calculates the

statistical likelihood of a syscall. Lee and Xiang (2001) evaluate the performance of syscall-

based anomaly detection models built on information-theoretic measures such as entropy and

information cost, and also use these models to automatically calculate parameter settings for

other models.

Forrest, Hofmeyr, Somayaji and other researchers at the University of New Mexico have

developed several immune-inspired learning-based approaches. In Forrest et al. (1997) and

Hofmeyr and Forrest (2000) a realtime system is evaluated which detects anomalous processes

by analysing sequences of syscalls. Syscalls generated by an application are grouped together

into sequences, in this case sequences of six consecutive syscalls. This choice of sequence

length is discussed in Tan and Maxion (2003). A database of normal sequences is constructed

and stored as a tree during training. Sequences of syscalls are then compared to this database

using a Hamming distance metric, and a sufficient number of mismatches generates an alert.

No user-definable parameters are necessary, and the mismatch threshold is automatically

derived from the training data. Similar approaches have also been applied by this group to

network intrusion detection (Balthrop et al., 2002, Hofmeyr and Forrest, 2000). Somayaji

(2002) develops the immune-inspired pH intrusion prevention system which detects and

actively responds to changes in program behaviour in realtime. As with the method just

described, sequences of syscalls are gathered for all processes running on a host and compared

to a normal database using a similar immune-inspired model. However, if an anomaly is

detected, execution of the process that produced the syscalls will be delayed for a period of

time. This method of response, as opposed to more malign responses such as killing a process,

is more benign in that if the system makes a mistake and delays a process which is behaving

normally, this may not have a perceptible impact from the perspective of the user. The idea of

process homeostasis, with pH maintaining a host machine within certain operational limits, is

introduced. This approach was effective at automatically preventing a number of attacks.

THE libtissue SYSTEM

The broader aim of the research presented here is to build a software system which allows

researchers to implement and analyse novel artificial immune system algorithms and apply

them to real-world problems. We have implemented a prototype of such a system, called

libtissue, which is being used by ourselves and other researchers (Greensmith et al., 2006a,

2006b, Twycross and Aickelin, 2006) to build and evaluate novel immune-inspired algorithms

for process anomaly detection. This section briefly reviews the design and implementation of

the libtissue system, more detail of which can be found in (Twycross and Aickelin, 2006).

Figure 1.1: The architecture of libtissue. Hosts are monitored by libtissue antigen
and signal clients, which in turn provide input data to the artificial immune system algorithm,

run on a libtissue server. Algorithms are able to change the state of the monitored hosts
through response clients.

libtissue has a client/server architecture pictured in Figure 1.1. An artificial immune

system algorithm is implemented as part of a libtissue server, and libtissue clients

provide input data to the algorithm and response mechanisms which change the state of the

monitored system. This client/server architecture separates data collection by the libtissue

clients from data processing by the libtissue servers and allows for relatively easy

extensibility and testing of algorithms on new data sources. libtissue was coded in C as a

Linux shared library with client and server APIs, allowing new antigen and signal sources to

be easily added to libtissue servers from a programmatic perspective. Because

libtissue is implemented as a library, algorithms can be compiled and run on other

researchers’ machines with no modification. Client/server communication is socket-based,

allowing clients and servers to potentially run on separate machines, for example a signal or

antigen client may in fact be a remote network monitor.

Artificial immune system algorithms are implemented within a libtissue server as

multiagent systems of cells. Cells exist within an environment, called a tissue compartment,

along with other cells, antigen and signals. The problem to which the algorithm is being

applied is represented by libtissue as antigen and signals. Cells express various repertories

of receptors and producers which allow them to interact with antigen and control other cells

through signalling networks. libtissue allows data on implemented algorithms to be

collected and logged, allowing for experimental analysis of the system. A libtissue server

is in fact several threaded processes running asynchronously. An initialisation routine is first

called which creates a tissue compartment based on user-supplied parameters. During

initialisation a thread is also started to handle connections between the server and libtissue

clients, and this thread itself starts a separate thread for each connected client. After

initialisation, cells, the characteristics of which are specified by the user, are created and

initialised, and the tissue compartment populated with these cells. Cells in the tissue

compartment then cycle and input data is provided by connected libtissue clients.

libtissue clients are of three types: antigen, signal and response. Antigen clients collect

and transform data into antigen which are forwarded to a libtissue server. Currently, a

systrace antigen client has been implemented which collects process syscalls using

systrace (systrace homepage, 2007). Signal clients monitor system behaviour and provide

an artificial immune system running on the tissue server with input signals. A process monitor

signal client, which monitors a process and its children and records statistics such as CPU and

memory usage, and a network signal client, which monitors network interface statistics such as

bytes per second, have been implemented. Two response clients have been implemented, one

which simply logs an alert, and another which allows an active response through the

modification of a systrace syscall policy. All of these clients are designed to be used in

realtime experiments and for data collection for offline experiments with tcreplay.

The implementation is designed to allow varied artificial immune system algorithms to be

evaluated on real-world, realtime systems and problems. When testing intrusion detection

systems it is common to use preexisting datasets such as the Lincoln Labs dataset (Lincoln

Labs DARPA Intrusion Detection Evaluation datasets, 2007). However, the project

libtissue has been built for is focused on combining measurements from a number of

different concurrent data sources. Preexisting datasets which contain all the necessary sources

are not available. Therefore, to facilitate experimentation, a libtissue replay client, called

tcreplay, was also implemented. This client reads in log files gathered from previous

realtime runs of antigen and signal clients. It also has the facility to read logfiles generated by

strace (strace homepage, 2007) as an optional source of antigen in place of the systrace

client. It then sends the information in these logs to a libtissue server. Variable replay rates

are available, allowing data collected from a realtime session to be used to perform many

experiments quickly. Having such a replay facility is important in terms of reproducibility of

experiments. In reality, the majority of experimental runs are scripts which take data and

parameter files as input and run a tissue server and tcreplay client.

VALIDATION OF APPROACH

We wanted to verify that useful algorithms could be implemented and applied to a real-world

problem. This section reviews the details of this validation. It discusses how data on a process

anomaly detection problem was generated. It then presents a simple anomaly detection

algorithm which we have implemented to test the libtissue system. Results from an

analysis of the behaviour and performance of the libtissue system and the algorithm are

then presented. Lastly, an example of how this algorithm and the libtissue system can be

used to detect anomalies in process behaviour is given.

Dataset Generation

In order to gather data for the process anomaly detection problem, a small experimental

network with three hosts was set up. One host, the target, runs software, in this case a Redhat

6.2 server, with a number of vulnerabilities. The other two hosts act as clients which interact

with the target machine, either attempting to exploit its vulnerabilities or simulating normal

usage. Because the experimental network contains vulnerable hosts, access between it and the

public campus network is tightly controlled. While minimal, this setup permits realistic

network-based attack and normal usage scenarios to be played out. Physically, the network

exists on a single Debian Linux host running two VMware guest operating systems. The host

and guests are connected via a virtual VMware host-only network. This setup was chosen as it

allows for relatively fast configuration and restoration of the experimental network when

compared with one in which each host is a physically separate machine connected via the

standard network infrastructure of switches and so on. Redhat 6.2 was chosen because the

default installation installs a number of programs with vulnerabilities (Redhat Linux 6.2

Security Advisories, 2002) and because many well-documented exploits are available for these

vulnerabilities. Tests were carried out with the rpc.statd daemon (rpc.statd, 2007), which

provides a status monitoring service to other NFS clients and servers. The default version of

rpc.statd shipped with Redhat 6.2 has a format string vulnerability which allows a remote

user to execute arbitrary code with root privileges on the server (Multiple Linux Vendor

rpc.statd Remote Format String Vulnerability, 2000). An exploit, statdx2 (Bugtraq: statdx2 -

Linux rpc.statd revisited, 2002), has been released which levers this vulnerability and, by

default, injects shellcode which causes a remote root shell to be opened on the attacker’s

machine, allowing unrestricted access to the server. This vulnerability has also been used in

automated attacks such as the Ramen worm.

In order to collect the data, that is process syscall information and appropriate context

signals, the target system was instrumented. The Redhat nfslock init script was modified to

start rpc.statd wrapped by strace (strace homepage, 2007), which logged all the syscalls

made by rpc.statd and its children. At the same time, a specially written application called

process_monitor was started which monitors a process and all of its child processes. At

regular intervals, one tenth of a second in this case, it takes a snapshot of the process table

which it then traverses, recording the process identifiers of all the processes which are children

of the monitored process. The monitor then logs the current name of the monitored process,

the total number of children including itself owned by the process, the total CPU usage of the

process and its children, and the total memory usage of the process and its children. Pairs of

strace and process_monitor logs were collected on the instrumented target machine

while rpc.statd was utilised in a number of different scenarios. These logs were then parsed

to form a single tcreplay logfile for each of the scenarios. An antigen entry in the

tcreplay log was created for every syscall recorded in the strace log. A signal entry was

created for each recording of CPU usage in the process_monitor log. While the strace

log actually contains much more information, the use of just the syscall number is more than

sufficient for testing the example algorithm described in the next section. It would be expected

that a more complex algorithm would require additional complexity in both the antigen and

range of signals it is provided with, such as the addition of information about syscall

arguments, sequences of syscalls, or instruction pointer addresses.

The monitored scenarios are divided into three groups based on whether the type of

interaction with the rpc.statd server is a successful attack, a failed attack, or normal usage.

Statistics for the datasets are given in Table 1.2. All the datasets followed a similar pattern. The

data was generally very bursty in terms of syscalls per second, with relatively long periods of

no syscalls punctuated by bursts of up to 1102 syscalls per second (success1). All datasets

contain an initial one second burst of 405 syscalls executed by rpc.statd during normal

startup. Syscalls generated by rpc.statd at shutdown, a burst of between 17 and 29 syscalls

caused by typing halt on the server, are also present in the normal and failure datasets. They

are not present in the success datasets as the rpc.statd process is replaced by a shell process

during the exploit and so not able to go through normal shutdown. In both successful attacks

there are three bursts of between 98 and 1102 syscalls. The user interaction on the resulting

remote shell (typing exit) creates 5 syscalls. The unsuccessful attacks produced a single burst

of 96 and 62 syscalls (failure1 and failure2 respectively). The actions of the NFS client in

normal2 result in a single burst of 16 syscalls.

Table 1.2: Statistics for the six datasets gathered.

dataset total time total antigen max antigen rate

success1 55 1739 1102

success2 36 1743 790

failure1 54 518 405

failure2 68 495 405

normal1 38 434 405

normal2 104 450 405

The twocell Algorithm

Figure 1.2: The two different cell types implemented in twocell.

The cells in twocell, shown in Figure 1.2, are of two types, labelled Type 1 and Type 2,

and each type has different receptor and producer repertories, as well as different cell cycle

callbacks. Type 1 cells are designed to emulate two key characteristics of biological APCs:

antigen and signal processing. In order to process antigen, each Type 1 cell is equipped with a

number of antigen receptors and producers. A cytokine receptor allows Type 1 cells to respond

to the value of a signal in the tissue compartment. Type 2 cells emulate three of the

characteristics of biological T cells: cellular binding, antigen matching, and antigen response.

Each Type 2 cell has a number of cell receptors specific for Type 1 cells, VR (variable-region)

receptors to match antigen, and a response producer which is triggered when antigen is

matched. Type 2 cells also maintain one internal cytokine, an integer which is incremented

every time a match between an antigen producer and VR receptor occurs. If the value of this

cytokine is still zero, that is no match has occured, after a certain number of cycles, set by the

cell_lifespan parameter, then the values of all of the VR receptor locks on the cell are

randomised.

A tissue compartment is created and populated with a number of Type 1 and 2 cells.

Antigen and signals in the compartment are set by libtissue clients based on the syscalls a

process is making and its CPU usage. Type 1 and 2 cells have different cell cycle callbacks.

Type 1 cells ingest antigen through their antigen receptors and present it on their antigen

producers. The period for which the antigen is presented is determined by a signal read by a

cytokine receptor on these cells, and so can be made dependant upon CPU usage. Type 2 cells

attempt to bind with Type 1 cells via their cell receptors. If bound, VR receptors on these cells

interact with antigen producers on the bound Type 1 cell. If an exact match between a VR

receptor lock and antigen producer key occurs, the response producer on Type 2 cells produces

a response, in this case a log entry containing the value of the matched receptor.

System Dynamics

In experiments it is important to have a baseline with which to compare algorithmic

performance. In terms of syscall policies such a baseline can be generated, and is here termed

a naive policy. A naive syscall policy is generated for a process, such as rpc.statd, by

recording the syscalls it makes under normal usage, as in the normal1 and normal2 datasets. A

permit policy statement is then created for all syscalls seen in the datasets. This baseline is not

too unrealistic when compared to how current systems such as systrace automatically

generate a policy. Similarly to a naive policy, one way in which twocell can be used to

generate a syscall policy is by running it with normal usage data during a training phase.

During the run, responses made by Type 2 cells are recorded. At the end of each run, a syscall

policy is created by allowing only those syscalls responded to, and denying all others. Since

interactions in libtissue are stochastic, looking at the average results over a number of runs

helps to understand the behaviour of implemented algorithms. A script was written to start the

twocell server and then after 10 seconds start the tcreplay client and replay a dataset in

realtime. twocell was allowed to continue running for a further minute after replay had

finished. This process was repeated 20 times for both the normal1 and normal2 datasets,

yielding 40 individual syscall policies. A single average twocell policy was then generated

by allowing all syscalls which were permitted in any of the 40 individual policies. It was found

that all of the 38 syscalls that were permitted in the naive policy were also permitted in the

average policy.

Table 1.3: The syscall policy generated by twocell for the normal2 dataset and the frequency of response for each syscall.

syscall frequency

gettimeofday(78) 1

listen(304) 1

send(309) 1

select(142) 2

poll(168) 3

recvfrom(312) 8

fcntl(55) 9

fstat(108) 9

open(5) 22

close(6) 34

In order to examine more closely how twocell responds, a single run of the twocell

algorithm was observed. Following the same general procedure as the previous experiment,

twocell was run once with the normal2 dataset. The resulting policy is shown in Table 1.3,

along with the frequencies with which the permitted syscalls were responded to. During the

run, the time at which a Type 2 cell produced a response to a particular syscall was also

recorded, and the rate at which these responses occured was calculated. This clearly showed a

correlation between the rate of incoming syscalls and the rate of responses produced by Type 2

cells. Cells initially do not produce any response until syscalls occur, and then produce a burst

of responses for a relatively short period before settling down to an unresponsive state once

again. This is to be expected, as antigen (syscalls) enter and are passed through twocell until

their eventual destruction after being presented on Type 1 cell antigen producers.

Classification Accuracy

An example is now given of how the classification accuracy and error of a libtissue

algorithm can be evaluated. In terms of syscall policies, a particular policy can be considered

successful in relation to the number of normal syscalls it permits versus the number of attack

syscalls it denies. The naive policy and average twocell policy generated from datasets

normal1 and normal2 in the experiment above were evaluated in such a way. The number of

syscalls both policies permitted and denied when applied to the four datasets in the attack and

failed attack groups was recorded. Syscalls within these groups were labelled as either

generated by an attack or by normal usage. For each dataset, Table 1.4 shows the percentages

of attack and normal syscalls in the dataset, together with the percentage of syscalls permitted

by the naive and twocell policies. From the results, the tendency of the naive policy was to

permit the vast majority of syscalls, whether attack related or not. The twocell-generated

policy behaved much more selectively, denying a slightly larger proportion of syscalls in the

success1 and success2 datasets than it permitted. For the failure1 and failure2 dataset the

converse was true.

Table 1.4: Comparison of the performance of a naive policy and a twocell policy generated from the normal2 dataset.

dataset success1 success2 failure1 failure2

normal syscalls 23% 23% 81% 87%

attack syscalls 76% 76% 18% 12%

naive permit 90% 90% 99% 99%

naive deny 9% 9% 0% 0%

twocell permit 47% 47% 69% 68%

twocell deny 52% 52% 30% 31%

Discussion

The dataset, algorithm and experiments presented in this section show how a novel algorithm

has been developed and applied using the libtissue system. Runs used on average around

1%, and never more than 3%, of the available CPU resources, showing that it is

computationally viable to process realtime data using our approach. The collection and

analysis of the rpc.statd data has brought to light the potential usefulness of a number of

novel data sources which can be use in conjuction with syscall information. The experiments

we conducted compared an algorithm, twocell, implemented with libtissue, to a baseline

standard approach, and showed how the agents in twocell responded in different ways to

normal and attack sessions. By measuring the response of the agents, we use our algorithm to

classify sessions as normal or attack. This experiment showed that the performance twocell

is at least comparable to current approaches.

More widely, the validation experiments with the twocell algorithm and the rpc.statd

dataset show the feasibility of using libtissue to implement artificial immune systems as

multiagent systems and apply them to real-world problems. The twocell algorithm has also

provided a necessary stepping-stone on the route to developing more complex algorithms. We

are preparing to publish results of experiments with an algorithm which is able to detect a

number of novel attacks with a low false-positive rate. To evaluate this and other algorithms

we have created a second dataset which contains a wider range of normal and attack usage that

the rpc.statd dataset. The new dataset, which was created by monitoring a wuftpd FTP

server, contains syscalls and 13 different signals including CPU usage, memory usage, and

socket and file usage statistics.

In order to generate realistic normal usage of the wuftpd server, we recreated normal

sessions seen on a production network on an instrumented experimental network much like the

setup for the rpc.statd dataset. Data on real FTP client-server interaction can be readily

obtained from network packet traces collected by network-based monitors. Such packet traces

are technically fairly easy to gather but, more importantly, traces are also already available

publically, removing the need to gather this data altogether. Use of public datasets also

contributes to the reproducibility of experiments. By reassembling network packets

transmitted between client and server a sufficiently complete record of an FTP session can be

reproduced. The dataset used (LBNL-FTP-PKT dataset, 2003) contains all incoming

anonymous FTP connections to public FTP servers at the Lawrence Berkeley National

Laboratory over a ten-day period and is available from the Internet Traffic Archive (Internet

Traffic Archive, 2007). The traces contain connections between 320 distinct FTP servers and

5832 distinct clients and provide a rich source of normal usage sessions, and we initially used

the traces for one FTP server over two days.

CONCLUSIONS

In this chapter we have given a overview of biologically-inspired approaches to computer

security, in particular immune-inspired approaches. We then discussed in detail an intrusion

detection problem, process anomaly detection, and reviewed current research in this area. A

system, libtissue, which we have built for implementing immune-inspired algorithms was

then detailed, and the results of validation experiments using an artificial immune system

implemented with libtissue and applied to process anomaly detection were presented and

discussed.

BIBLIOGRAPHY
U. Aickelin, J. Greensmith, and J. Twycross. Immune System Approaches to Intrusion

Detection - A Review. In Proc. of the 3rd International Conference on Artificial

Immune Systems, LNCS 3239, pages 316–329, Catania, Italy, 2004.

J. P. Anderson. Computer Security Threat Monitoring and Surveillance. James P.

Anderson Co., Fort Washington, PA, 1980.

S. Axelsson. Intrusion Detection Systems: A Survey and Taxonomy. Technical Report

99-15, Department of Computer Engineering, Chalmers University, March 2000.

R. Bace and P. Mell. Intrusion Detection Systems. Technical Report NIST Computer

Science Special Reports SP-800-31, National Institute of Standards and Technology,

November 2001.

J. Balthrop, F. Esponda, S. Forrest, and M. Glickman. Coverage and generaliszation in an

artificial immune system. Proc. of the 4th Annual Genetic and Evolutionary

Computation Conference, pages 3–10, 2002.

D. P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly and Associates,

2002.

Bugtraq: statdx2 - Linux rpc.statd revisited. Published online at

http://seclists.org/lists/bugtraq/2000/Oct/0170.html, 2000.

B. Cheswick. An Evening with Berferd in which a cracker is Lured, Endured, and

Studied. In Proc. of the 1st Winter USENIX Conference, pages 163–174, San

Francisco, CA, January 1992.

D. Dasgupta. Advances in artificial immune systems. IEEE Computational Intelligence

Magazine, 1 (4):40–49, 2006.

D. Dasgupta. Artificial Immune Systems and Their Applications. Springer Verlag, 1999.

D. Dasgupta and R. Azeem. Artificial immune system: A bibliography. Published online

at http://ais.cs.memphis.edu/papers/ais_bibliography.pdf,
2006.

L. N. de Castro and J. Timmis. Artificial Immune Systems: A New Computational

Intelligence Approach. Springer, 2002.

D. E. Denning. An Intrusion Detection Model. IEEE Transactions on Software

Engineering, 13 (2):222–232, 1987.

D. Endler. Intrusion Detection Applying Machine Learning to Solaris Audit Data. In

Proc. of the IEEE Annual Computer Security Applications Conference, pages 268–

279, Scottsdale, AZ, 1998.

fork. Linux man page (2), 2007.

S. Forrest, S. Hofmeyr, and A. Somayaji. Computer immunology. Communications of the

ACM, 40(10):88–96, 1997.

D. Gao, M. K. Reiter, and D. Song. On Gray-Box Program Tracking for Anomaly

Detection. In Proc. of the 13th USENIX Security Symposium, pages 103–118, San

Diego, CA, August 2004.

T. Garfinkel. Traps and Pitfalls: Practical Problems in in System Call Interposition based

Security Tools. In Proc. of the Network and Distributed Systems Security

Symposium, pages 162–177, 2003.

J. Greensmith, U. Aickelin, and J. Twycross. Articulation and Clarification of the

Dendritic Cell Algorithm. In Proc. of the 5th International Conference on Artificial

Immune Systems, LNCS 4163, pages 404–417, Oeiras, Portugal, 2006a.

J. Greensmith, J. Twycross, and U. Aickelin. Dendritic Cells for Anomaly Detection. In

Proc. of the IEEE World Congress on Computational Intelligence, pages 664–671,

Vancouver, Canada, 2006b.

E. Hart and J. Timmis. Application Areas of AIS: The Past, The Present and The Future.

In Proc. of the 4th International Conference on Artificial Immune Systems, LNCS

3627, pages 483–497, Banff, Canada, 2005.

S. Hofmeyr and S. Forrest. Architecture for an Artificial Immune System. Evolutionary

Computation Journal, 8(4): 443–473, 2000.

Internet Traffic Archive. http://ita.ee.lbl.gov/, 2007.

W. Jansen and T. Karygiannis. Mobile Agent Security. Technical report, NIST Special

Publication 800-19, 1999.

R. Kemmerer and G. Vigna. Intrusion Detection: A Brief History and Overview. Security

and Privacy, Supplement to IEEE Computer Magazine, pages 27–30, 2002.

C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the Detection of Anomalous System

Call Arguments. In Proc. of the 8th European Symposium on Research in Computer

Security, pages 326–343, Gjovik, Norway, October 2003.

LBNL-FTP-PKT dataset. Available online at http://www-

nrg.ee.lbl.gov/LBNL-FTP-PKT.html, 2003.

W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In Proc. of

the IEEE Symposium on Security and Privacy, pages 130–143, 2001.

Lincoln Labs DARPA Intrusion Detection Evaluation datasets. Available online at

http://www.ll.mit.edu/IST/ideval/, 2007.

K. D. Mitnick and W. L. Simon. The Art of Intrusion: The Real Stories Behind the

Exploits of Hackers, Intruders and Deceivers. Wiley, 2005.

B. Morel. Immunology and the survivability of mission critical cyber-based systems. In

Proc. of the 4th Information Survivability Workshop, pages 21–24, 2002.

Multiple Linux Vendor rpc.statd Remote Format String Vulnerability. Published online at

http://www.securityfocus.com/bid/1480, 2000.

S. Northcutt and J. Novak. Network Intrusion Detection. New Riders, 3rd edition, 2003.

Proceedings of the International Conference on Artificial Immune Systems.

http://www.artificial-immune-systems.org/, 2002-2007.

N. Provos. Improving Host Security with System Call Policies. In Proc. of the 12th

USENIX Security Symposium, pages 257–272, Washington, D.C., August 2003.

pthreads. Linux man page (7), 2007.

Redhat Linux 6.2 Security Advisories. Published online at

https://rhn.redhat.com/errata/rh62-errata-security.html,
2002.

rpc.statd. Linux man page (8), 2007.

R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast Automaton-Based Method for

Detecting Anomalous Program Behaviors. In Proc. of the IEEE Symposium on

Security and Privacy, pages 144–155, 2001.

A. Somayaji. Operating System Stability and Security Through Process Homeostasis.

PhD thesis, University Of New Mexico, 2002.

strace homepage. http://sourceforge.net/projects/strace/, 2007.

syscalls. Linux man page (2), 2007.

systrace homepage. http://www.systrace.org/, 2007.

K. Tan and R. Maxion. Determining the operational limits of an anomoly-based intrusion

detector. IEEE Journal on Selected Areas in Communications, 21 (1):96–110, 2003.

J. Twycross and U. Aickelin. libtissue - Implementing Innate Immunity. In Proc. of the

IEEE World Congress on Computational Intelligence, pages 499–506, Vancouver,

Canada, July 2006.

H. Venter and J. Eloff. A Taxonomy for Information Security Technologies. Computers

and Security, 22(4):299–307, 2003.

J. Williams. Just sick about security. In Proc. of the New Security Paradigms Workshop,

pages 139–146. ACM Press, 1996.

M. M. Williamson. Biologically inspired approaches to computer security. Technical

Report HPL-2002-131, HP Laboratories Bristol, 2002.

N. Ye. A Markov Chain Model of Temporal Behavior for Anomaly Detection. In Proc. of

the 2000 IEEE Workshop on Information Assurance and Security, pages 171–174,

2000.

D. Y. Yeung and Y. Ding. Host-based intrusion detection using dynamic and static

behavioral models. Pattern Recognition, 36(1):229–243, 2003.

KEYWORDS

Artificial Immune System: A relatively new class of meta-heuristics that mimics aspects of the

human immune system to solve computational problems. This method has shown particular

promise for anomaly detection. Previous artificial immune systems have shown some

similarities with evolutionary computation. This is because they focus on the adaptive immune

system. More recent approaches have combined this with aspects of the innate immune system

to create a second generation of artificial immune systems.

Adaptive Immune System: Central components of the adaptive immune system are T cells

and B cells. The overall functionality of the adaptive immune system is to try and eliminate

threats through antibodies, which have to be produced such that they match antigen. This is

achieved in an evolutionary-like manner, with better and better matches being produced over a

short period of time. The adaptive system remembers past threats and hence has the capability

of responding faster to future similar events.

Innate Immune System: Central components of the innate immune system are antigen

presenting cells and in particular dendritic cells. Until recently, the innate system was viewed

as less important than the adaptive system and its main function was seen as an information

pre-processing unit. However, the latest immunological research shows that it is the innate

system that actually controls the adaptive system. Above all, dendritic cells seem to be the key

decision makers.

T Cells: Created in the thymus (hence the ‘T’), these cells come in different subtypes.

Cytotoxic T cells directly destroy infected cells. T helper cells are essential to activate other

cells, e.g. B cells. T reg cells suppress inappropriate responses.

Dendritic Cells: These belong to the class of antigen presenting cells. During their life,

dendritic cells ingest antigen and redisplay it on their surface. In addition, dendritic cells

mature differently depending on the context signals they are exposed to. Using these two

mechanisms, these cells differentiate between dangerous and non-dangerous material and then

activate T cells.

Process Anomaly Detection: A method of detecting intrusions on computer systems. The

aim is to detect misbehaving processes, as this could be a sign of an intrusions. The detection

is based on syscalls, i.e. activities by the processes, and context signals, e.g. CPU load,

memory usage or network activity.

BIOGRAPHIES

Dr Jamie Twycross is a Research Associate in the Department of Computer Science at The

University of Nottingham. He is working on a large interdisciplinary project investigating the

application of immune-inspired approaches to computer security. His research interests

include biologically-inspired approaches to computing, computer security and networking, and

robotics.

Dr Uwe Aickelin currently holds an advanced Research Fellowship awarded by EPSRC

(the UK’s largest Funding Council). He is also a Reader in Computer Science at The

University of Nottingham and a member of the Automated Scheduling, Optimisation and

Planning Research group (ASAP). Dr Aickelin has been awarded over 2 million EPSRC

research funding as Principal Investigator in Artificial Immune Systems and Computer

Security.

INDEXING TEMPLATE

Term 1 – Artificial Immune System

� Also known as: AIS, immune-inspired system

� Associated in manuscript with: Process Anomaly Detection System

� Notable appearances of this term can be found on:

Page 2 – definition of artificial immune systems

Term 2 – Intrusion Detection

� Associated in manuscript with: Intrusion Detection System

� Notable appearances of this term can be found on:

Page 3 – definition of intrusion detection

Term 3 – Intrusion Detection System

� Also known as: IDS

� Associated in manuscript with: Process Anomaly Detection System

� Notable appearances of this term can be found on:

Page 3 – definition of intrusion detection systems

Term 4 – Process Anomaly Detection System

� Associated in manuscript with: Intrusion Detection System

� Notable appearances of this term can be found on:

Page 3 – definition of process anomaly detection system

Term 5 – System Call

� Also known as: Syscall

� Associated in manuscript with: Process

� Notable appearances of this term can be found on:

Page 4 – definition of system call

Term 6 – Process

� Associated in manuscript with: System Call

� Notable appearances of this term can be found on:

Page 4 – definition of process

Term 7 – libtissue

� Associated in manuscript with: Artifical Immune System, Process Anomaly Detection

System

� Notable appearances of this term can be found on:

Page 7 – definition of libtissue

