
Prime Implicants for Modularised Non-coherent Fault Trees Using

Binary Decision Diagrams

Rasa Remenyte-Prescott, John D. Andrews

Aeronautical and Automotive Engineering , Loughborough University,

Loughborough, UK

Keywords

Fault Tree Analysis, Binary Decision Diagrams, Non-coherent systems, prime

implicants

Abstract

This paper presents an extended strategy for the analysis of complex fault trees. The

method utilises simplification rules, which are applied to the fault tree to reduce it to a

series of smaller subtrees, whose solution is equivalent to the original fault tree. The

smaller subtree units are less sensitive to the basic event ordering during BDD

conversion. BDDs are constructed for every subtree. Qualitative analysis is performed

on the set of BDDs to obtain the prime implicant sets for the original top event. It is

shown how to extract the prime implicant sets from complex and modular events in

order to obtain the prime implicant sets of the original fault tree in terms of basic

events.

1. Introduction

Fault tree analysis was first conceived in the 1960's and provides a good

representation of the system from an engineering viewpoint. This form of the failure

logic function does not however lend itself to easy and accurate mathematical

manipulation. A more convenient form for the logic function from the mathematical

viewpoint is that of a Binary Decision Diagram [1,2]. It overcomes some

disadvantages of conventional FTA techniques enabling efficient and exact qualitative

and quantitative analyses of both coherent and non-coherent fault trees.

The difficulty of the BDD method is with the conversion process of the fault tree to

the BDD. An aspect of this is that the basic events in the fault tree have to be placed

in an ordering required to construct the BDD. A good ordering gives a concise BDD

form. A bad ordering may lead to an explosion in the size of the BDD used to

represent the fault tree. To date an optimum strategy for producing BDDs for all fault

trees has not been identified.

Non-coherency introduces difficulties in the qualitative assessment of the fault tree

compared with the coherent version. The failure modes of the system, combinations

of working or failed components which result in system failure, tend to be greater in

number and larger in order than the coherent version. This can render the qualitative

evaluation intractable. The BDD method is more efficient for analysing a system

without the need for the approximations used in the traditional approach of kinetic

tree theory [3].

In this paper two simplification strategies that have been shown to be effective in

reducing the complexity of the problem are applied: reduction [4] and modularisation

[5]. The reduction technique simplifies the fault tree to its minimal logic form, whilst

modularisation breaks down the fault tree to independent subtrees that can be

analysed separately.

Then BDDs are obtained for each module in separate computations, culminating in a

set of BDDs, which together represent the original system failure diagram. A

qualitative analysis of non-coherent fault trees using BDDs is the subject of this

paper. Meta-products BDDs [6,7] used to determine the prime implicant sets are then

developed. Then prime implicant sets for every module can be calculated and

extracted for the whole system. Each of these stages is described in detail in the

following sections and demonstrated throughout by the use of an example.

2. Non-coherent fault tree structure

In a coherent fault tree each component in the system is relevant, and the structure

function is monotonically increasing [8]. A fault tree that contains only AND gates

and OR gates is always coherent. Whenever a NOT logic gate is introduced into a

fault tree, it is likely to become non-coherent. A fault tree is non-coherent when both

component failure and working states (positive and negative events) contribute cause

of the top event. For example, system failure might occur due to the recovery of a

failed component. Alternatively, during system failure, the failure of an additional

component may bring the system to a good state.

Consider an example of the traffic light system [8] shown in Figure 1.

Figure 1. Traffic light system

Cars A and B are approaching the lights on RED and should stop. Car C is

approaching the junction with lights on GREEN and should proceed. Given this

scenario, the following failure events can occur:

 A - Car A fails to stop

 B - Car B fails to stop

 C - Car C fails to continue
An accident at this crossroads can occur in two ways:

 Car A acts properly and stops (A) and car B fails to stop (B) and drives into

the back of A.

 Car A fails to stop (A) and if car C continues to move into the crossing (C), A

hits C.

The fault tree to represent the causes of an accident situation at this crossroads is

illustrated in Figure 2.

RED

G

R

E

E

N
A

B

C

Figure 2. Fault tree for traffic light system

Working in a top-down way the following logic expression is obtained, which is in

disjunctive normal form (minimal sum of products)

BACATop  . (1)

where “+” is OR, “·” is AND.

A qualitative analysis of the non-coherent fault tree will produce the system failure

modes known as prime implicant sets. Prime implicants are defined as combinations

of component conditions (working or failed) which are necessary and sufficient to

cause system failure. Taking the produced terms from equation 1 gives prime

implicant sets  CA and  BA .

However, unlike the reduction of the logic expression for a coherent fault tree the

logic equation for the top event in the non-coherent case does not produce a complete

list of all prime implicants. In this example, if car B fails to stop and car C continues

across the lights there will be a collision whatever A does. Therefore, the full logic

expression for the Top event is:

CBBACATop  , (2)

which can be obtained by applying the consensus law:

YXYAXAYAXA  . (3)

This example is included just as a means to demonstrate issues for non-coherent fault

trees. The increase in length of the logic equation for non-coherent fault trees can

cause difficulties for large fault trees and is at times necessary [8]. The inclusion of

NOT logic gates is used in Event Tree Analysis where there are component failures

that occur in more than one fault tree which represent the causes of the branching [9].

Also, NOT logic is important in Phased Mission Analysis [10].

It is possible to reduce the prime implicant sets to their coherent approximations prior

to the fault tree quantification. This is achieved by removing all success states and re-

minimising the expression (on the basis of likelihood is close to 1). This will give

minimal cut sets {A} and {B}.

Accident at

crossroads

TOP

Car A collides

with car C

G1

Car B collides

with car A

G2

B A

A

A C

A

3. Simplification of the fault tree structure

Dealing with complex industrial systems can result in very large fault trees, whose

analysis is time consuming. Two pre-processing techniques can be applied to the fault

tree in order to obtain the smallest possible subtrees and reduce the size of the

problem. The first part of the simplification process is a reduction technique [4] which

resizes the fault tree to its simplest form. The second part identifies independent

modules (subtrees) within the fault tree that can be dealt with separately [5]. The

linear-time algorithm is applied to the second part and a set of independent fault trees

in their simplest possible structure is obtained. It is equivalent to the original system

failure causes and is easier to manipulate during the analysis process.

The analysis strategy of coherent fault trees incorporating the simplification process

was presented in [11]. This paper provides a development of this technique in the

non-coherent case.

3.1. Reduction

This technique reduces the fault tree to its simplest form while retaining its logical

structure. It is applied in four stages:

 contraction,

 factorisation,

 extraction,

 absorption.

First of all, the fault tree is manipulated so that the NOT logic is “pushed” down the

fault tree until it is applied to basic events using De Morgan’s laws, i.e.

BABA  (4)

BABA  (5)

Then for the contraction, subsequent gates of the same type are contracted to form a

single gate so that the fault tree becomes an alternating sequence of AND and OR

gates.

During the factorisation, pairs of events that always occur together as inputs to the

same gate type are identified and combined forming a single complex event. If events

appear in their working and failed states in the fault tree, only those basic events that

appear together in their negated state under the opposite gate type can be combined.
(Note: in this sense the “AND” type gate is opposite to the “OR” type gate). By De

Morgan’s equations 4 and 5, if ba  and/or ba  appear in the fault tree, then ba 

forms a complex event, or if ba  and/or ba  appear in the fault tree, then ba 

forms a complex event. The complex events identified are then substituted into the

fault tree structure.

In the extraction stage, the two structures shown in Figure 3 are identified and

replaced in order to reduce the repeated occurrence of events to a single occurrence

and facilitate further reduction.

Figure 3. Reduction, the extraction procedure

If another component is repeated in the structure and it is repeated in its negated state,

the structures shown in Figure 4 can be simplified even more, i.e. the whole structure

is replaced by the component that appears only in one state, failed or working.

Figure 4. Reduction, the extraction procedure in non-coherent case

During absorption, structures were identified that could be further simplified through

the application of the absorption and idempotent laws to the fault tree logic. The

simplification process can be applied when an event is repeated in the branch of the

fault tree structure. The gate with the first occurrence of the repeated event is called a

primary gate and a gate with the second occurrence of the repeated event is called a

secondary gate. There can be two types of the repetition in a non-coherent system, i.e.

a component can be repeated in the same state or it can be repeated in its negated

state.

Considering the first case, if the primary and the secondary gates with an event in

common are of different type (Figure 5(i)), the structure is simplified by removing the

whole secondary gate and its descendants. If the primary and the secondary gates are

of the same type (Figure 5(ii)), the structure is simplified by deleting the occurrence

of the event beneath the secondary gate.

b a c a

a

c b

restructure

b a c a

a

c b

restructure

(i) (ii)

(i) (ii)

a

b a b a

restructure

b a b a

restructure

a

Figure 5. Reduction, the absorption procedure

If a component is repeated in its negated state, the absorption rule can again be

applied. In this case the absorption cannot be applied if the primary gate is an OR

gate. Therefore, if the primary gate is an AND gate and the secondary gate is an OR

gate (Figure 6(i)), then the structure is simplified by deleting the occurrence of the

event beneath the secondary gate. If both the primary gate and the secondary gate are

AND gates (Figure 6(ii)), the whole secondary gate can be deleted. The order of

appearance of positive and negative events in primary and secondary gates is

irrelevant.

Figure 6. Reduction, the absorption procedure in non-coherent case

The above four steps are repeated until no further changes take place in the fault tree.

An example of the application of these rules to a fault tree is demonstrated

considering the fault tree shown in Figure 7.

(i)

c b

a a

c

b

d a

(ii)

a

b

c a

c b

a

(ii)

b a a

b

c a

(i)

c

a

b

d a

a

b

d c

Figure 7. Example fault tree

 Figure 8. Reduced fault tree 1

Figure 9. Reduced fault tree 2

G4

i f

Top

a b G1

e h G5

c G2 d

f e h

G3

h e

G5

2000

Top

2002

G2

G1

G4

i

2001

f

2002

2002

2002

2000

Top

G2

G1

2001

f 2002

Contraction was performed for gates G1 and G3, which are of the same type, forming

a single gate. Factorisation was performed three times: for the pair of basic events a

AND b for the pair of basic event c OR d and for the pair of basic events e AND h,

creating complex events 2000, 2001 and 2002 respectively. Basic events e OR h

form complex event 2002 . The corresponding complex event data are shown in Table

1. The extraction procedure was applied to gates G4 and G5, extracting the repeated

event f. The simplified fault tree is shown in Figure 8. Finally, the absorption was

applied to gate G2 removing gate G5. No further simplification is possible. The final

reduced tree is shown in Figure 9.

Table 1. The complex event data

Reduction has simplified the example fault tree. In the original tree there were six

gates, in the reduced tree there are 3 gates. There were thirteen events in the original

fault tree, eight of them different; in the reduced tree there are five events, and four of

them are different. For large systems the degree of simplification is far more

significant.

Having reduced the fault tree to a more concise form, the second pre-processing

technique of modularisation is considered.

3.2. Modularisation

The modularisation technique identifies independent subtrees within the fault tree.

Every module contains no basic events that appear elsewhere in the fault tree and it

can be analysed separately. The results from each module are substituted into the

higher level fault trees where modules occur and further stages of the analysis are

performed.

For the purposes of the process basic events in their positive or negative form are

considered as the same entity as it is only the vent label that is important in

identifying independent modules. Using the linear-time algorithm [5] the independent

modules can be identified after just two depth-first traversals of the fault tree. During

the first time of the traversal the step number at the first, second and final visits to

every node (gate and event) is recorded. Then the maximum (Max) of the last visits

and the minimum (Min) of the first visits of the descendants (any gates or events

appearing below that gate) of each gate are calculated. Step numbers for every node in

the example fault tree, Max and Min of the gates and events for the reduced tree in

Figure 9 are presented in Tables 2, 3 and 4 respectively.

Complex

event
Gate value Event 1 Event 2

2000 AND a b

2001 OR c d

2002 AND e h

Step

number
1 2 3 4 5 6 7 8 9 10 11

Node Top 2000 G1 2001 2002 G2 2002 f G2 G1 Top

Table 2. Step numbers for every node in the fault tree

Table 3. Data for gates in the fault tree Table 4. Data for events in the fault tree

The rules for identifying a gate as heading a module are:

 The first visit to each descendant of a gate is after the first visit to the gate and

 The last visit to each descendant of a gate is before the second visit to the gate.

The following gates can be identified as heading modules:

Top, G1.

Gate G2 can not be a module because one its descendant (event 2002) is visited

before visiting parent gate.

Gate G1 is replaced by modular event M1. Two separate fault trees, shown in Figure

10, now replace the fault tree in Figure 9.

Figure 10. The two modules obtained for the fault tree shown in Figure 9

Gate Top G1 G2

1
st

visit
1 3 6

2
nd

visit
11 10 9

Final

visit
11 10 9

Min 2 4 5

Max 10 9 8

Event 2000 2001
2002,

2002
f

1
st

visit
2 4 5 8

2
nd

visit
2 4 7 8

Final

visit
2 4 7 8

Top

M1
2000

M1:

G2

G1

2001

f 2002

2002

2002

Having reduced the fault tree to its minimal form and identified all the independent

modules the next stage is to obtain the BDDs.

4. Conversion to binary decision diagrams

Every independent fault tree is converted to a BDD. The variable ordering needs to be

established before the conversion process. In this paper the variable ordering scheme

for every module is set to be left-right top-down. For examples as small as these the

variable ordering is largely irrelevant. Following the chosen scheme gives the

orderings of basic events:

Top: 2000 < M1,

M1: 2001 < 2002 < f,

The BDD construction algorithm is described in reference [2]. The resulting SFBDD

encodes the structure function of a non-coherent fault tree. The background of it is to

assign an ordered triple to each node in the SFBDD:

ite(x,f1,f0), (6)

here x is the Boolean variable representing a basic event as the node and f1 and f0 are

the logic functions on its 1 branch and 0 branch respectively. ite is described as if-

then-else operation, i.e.

If x occurs

 then consider f1,

 else consider f0.

endif

SFBDD construction then moves through the fault tree in a bottom-up manner. Basic

events are assigned ite structures. For example, a basic event a is expressed as:

a = ite(a,1,0). (7)

Alternatively, a basic event a is assigned an ite structure:

a = ite(a,0,1). (8)

When dealing with gates their input events, J and H, are expressed in the ite form, the

following rules are applied:

If J = ite(x,f1, f0) and H = ite(y,g1, g0),

then









),,,(

),,,(

0101

0101

LLLLx

KKKKx
HJ

ifre

ifre

ordering.theinif

ordering,theinif

yx

yx





(9)

Applying these rules to the fault tree in Figure 10 results in the set of SFBDDs

presented in Figure 11.

Figure 11. The obtained SFBDDs for the modules shown in Figure 10

The qualitative and quantitative analyses can be carried out since the complete set of

SFBDDs have been computed. Now the calculation of prime implicant sets will be

presented using the SFBDDs obtained from simplified fault trees.

5. Calculation of prime implicant sets

Knowledge of prime implicant sets can be valuable in gaining an understanding of the

system. It can also help to develop a repair schedule for failed components if a system

cannot be taken off line for repair. The SFBDD which encodes the structure function

cannot be used directly to produce the complete list of prime implicant sets of a non-

coherent fault tree. For example, consider a general component x in a non-coherent

system. Component x can be in a failed or working state, or can be excluded from the

failure mode. In the first two situations x is said to be relevant, in the third case it is

irrelevant to the system state. Component x can be either failure relevant (the prime

implicant set contains x) or repair relevant (the prime implicant set contains x). A

general node in the SFBDD, which represents component x, has two branches. The 1

branch corresponds to the failure of x; therefore, x is either failure relevant or

irrelevant. Similarly, the 0 branch corresponds to the functioning of x and so x is

either repair relevant or irrelevant. Hence it is impossible to distinguish between the

two cases for each branch and the prime implicant sets cannot be identified from the

SFBDD.

There is a number of techniques developed for calculating prime implicant sets. The

first approach was presented by Courdet and Madre [6] and further developed by

Dutuit and Rauzy [7] where a meta-products BDD is formed. This technique is used

in the paper. Some other alternative techniques for calculating prime implicant sets

were presented by Sasao in [12], by Rauzy in [13] and by Contini in [14]. They use

alternative notations for the representation of prime implicants.

In meta-products BDD method developed an alternative notation is developed that

associates two variables with every component x. The first variable, Px, denotes

relevancy and the second variable, Sx, denotes the type of relevancy, i.e. failure or

repair relevant. A meta-product, MP(π), is the intersection of all the system

components according to their relevancy to the system state and π represents the

prime implicant set encoded in meta-product MP(π).

Top:

1

2000

0

0

1

1 0

M1

0

M1:

1

2001

1

0

1

1

2002

0

1

1 0

f

0

F1

F2

F3

F4

F5























tobelongsxnorxneitherifP

xifSP

xifSP

MP

x

xx

xx

)((10)

The proposed algorithm is used for calculating the meta-products BDD of a fault tree

from the SFBDD. The meta-products BDD is always minimal, therefore it encodes

the prime implicant sets exactly.

In order to present the algorithm, consider node F in a SFBDD, where F = ite(x, F1,

F0). The meta-products BDD, that describes prime implicant sets using equation 12,

is expressed as:

PI(F) = ite(Px, ite(Sx, P1, P0), P2), (11)

where

P2 = PI(F1·F0), (12)

P1 = PI(F1) · 2P , (13)

P0 = PI(F0) · 2P . (14)

x is the first element in the variable ordering, PI(F) represents the structure of a meta-

products BDD.

P2 encodes the prime implicants for which x is irrelevant, P1 encodes the prime

implicants for which x is failure relevant and P0 encodes the prime implicants for

which x is repair relevant.

If not all the basic events in the variable ordering appear on the particular path, then

PI(F) = ite(
jxP , 0, PI(F)). (15)

here xj is before xi and xj does not appear on the current path from the root node to

node F.

If F is a terminal node, then

PI(0) = 0, (16)

PI(1) = ite(
ixP , 0, ite(

1ixP , 0,…, ite(
nxP , 0, 1))). (17)

where xi, …, xn are basic events from the variable ordering that have not yet been

considered in the process.

Consider the BDD for Top module in Figure 11. Applying equations 11-14 to node F1

gives:

PI(F1) = ite(P2000, ite(S2000, PI(F2) · 1, PI(0) · 1), PI(F2 · 0)) = ite(P2000, ite(S2000,

PI(F2), 0), 0).

In the same way applying equations 11-14 to node F2 gives:

PI(F2) = ite(PM1, ite(SM1, 1, 0), 0)).

The meta-products BDD is obtained for Top module.

Then the BDD for module M1 is investigated. Applying equation 13 to node F3 gives:

PI(F3) = ite(P2001, ite(S2001, PI(1) ·  4FPI , PI(F4) ·  4FPI , PI(F4)).

First of all, PI(1) is calculated. Since there are two more variables in the ordering

scheme that were not investigated yet, i.e. 2002 < f, according to equation 17 we get:

PI(1) = ite(P2002, 0, ite(Pf, 0, 1)).

Then PI(F4) is calculated applying equations 11-14:

PI(F4) = ite(P2002, ite(S2002, PI(F5) ·  5FPI , PI(1) ·  5FPI , PI(F5)).

PI(1) is calculated in the same. Since there is only one variable left in the ordering

scheme, i.e. variable f, according to equation 17 it gives:

PI(1) = ite(Pf, 0, 1).

PI(F5) is obtained applying equations 11-14 to node F5. i.e.

PI(F5) = ite(Pf, ite(Sf, 1, 0), 0).

During the negation of PI(F5) terminal vertices 1 and vertices 0 are swapped in the

meta-products BDD. Therefore,

 5FPI = ite(Pf, ite(Sf, 0, 1), 1).

Since there are no repeated parts between PI(1) and  5FPI ,

PI(1) ·  5FPI = PI(1).

Then the calculation of PI(F4) is completed:

PI(F4) = ite(P2002, ite(S2002, 0, ite(Pf, 0, 1)), ite(Pf, ite(Sf, 1, 0), 0)).

 4FPI is obtained in the same way, swapping terminal vertices 1 and 0. Because

there are no repeated parts between PI(1) and  4FPI ,

PI(1) ·  4FPI = PI(1).

This assures that the meta-products BDD produced is in its minimal form. The

calculation of the meta-products BDD for module M1 is completed. The set of

resulting meta-products BDDs for two fault trees in Figure 11 is shown in Figure 12.

Figure 12. Meta-products BDDs for calculating prime implicant sets

Now it is possible to obtain the meta-products and identify the prime implicant sets.

First module

Top
},2000{ 120002000

11
MSPSP MM 

Second module

M1

}2001{200220012001  fPPSP

}2002{200220022001  fPSPP

}{20022001 fSPPP ff 

1

1

1 0

1 0

0

P2000

0

S2000

0

PM1

0

1

1 0

SM1

0

1 0

1 0

1 0

P2001

0

S2001

0

P2002

1

0 1

Pf

0
1 0

1

0

Pf

1 0

Sf

0

0

P2002

0

1

S2002

0

1

0 1

Pf

0

(i) (ii)

For example, in the second meta-product P2001 signifies that component 2001 is

relevant and S2001 signifies that component 2001 is failure relevant. 2002P and fP

mean that components 2002 and f are irrelevant. Hence the prime implicant obtained

is {2001}.

The prime implicant sets have been produced for every independent module, that

contain modular and complex events. It is essential to be able to analyse the system in

terms of its original components, therefore, the next stage of the qualitative analysis

has to consider the extraction of the combinations of component failures from every

complex and modular event.

A key point of the expansion algorithm, which is the same as the MOCUS method

[15] for calculating minimal cut sets from fault trees, is that an AND gate increases

the number of basic events in each prime implicant set and an OR gate increases the

number of prime implicant sets in the system. A two dimensional array is created.

Each line in the array represents a prime implicant set. At the start the top event gate

is located in the first row and the first column of the two-dimensional array. Then

repeatedly the array is scanned replacing:

1. Each complex event which is an OR gate by a vertical expansion including

the input events to the gate (duplicating all other events in this row)

2. Each complex event which is an AND gate by a horizontal expansion

including the input events to the gate

3. Each modular event (original or negated) by a vertical and/or horizontal

expansion including the list of prime implicant sets obtained from the

meta-products BDD, which represents the modular event (original or

negated

until only basic events appear in the array.

If prime implicant sets need to be produced for the negated modular event, the

original BDD for this event need to be negated, replacing its terminal vertices 1 to

vertices 0 and the other way round. Then the meta-products BDD for the negated

modular event can be computed using the algorithm presented in references [6,7].

Calculation of prime implicant sets using this algorithm was performed and shown in

Figure 13.

Figure 13. Extracting prime implicant sets from modular and complex events

First module – Top – has produced one prime implicant set

{2000, M1},

which replace the top event in the array, as shown in Figure 13(ii). Since complex

event 2000 = a AND b, its inputs a and b replace the gate in a horizontal expansion.

The obtained array is shown in Figure 13(iii). Also, module M1 can be replaced. M1

produces three prime implicant set

{2001}, { 2002 }, {f}.

This set results in a vertical expansion in the array. The resulting array is shown in

Figure 13(iv).

Then the expansion of the inputs for complex event 2001 and event 2002 give two

more horizontal expansions, shown in Figure 13(v).

The prime implicant sets in the array contain only basic events, therefore the

calculation is finished. The prime implicant sets of the example fault tree, presented in

Figure 7 are:

{a,b,c}, {a,b,d}, {a,b, h }, {a,b, e }, {a,b,f}.

6. Comparison of qualitative analyses using original and simplified fault trees

An analysis has been conducted on the fault tree to BDD conversion process. In this

analysis some example fault trees were converted to BDDs and then qualitative

analysis performed. Sixteen example fault trees were analysed by applying the BDD

method to both the original and the simplified fault trees. Table 5 provides a summary

of the results for each fault tree.

Top

(i) (ii) (iii)

2000 M1 M1 a b

c a b

d a b

a b

h a b

f a b

e

2001 a b

a b

f a b

2002

(iv)

(v)

E
x
a
m

p
le

N
u
m

b
e
r

o
f

g
a
te

s

N
u
m

b
e
r

o
f

b
a
s
ic

 e
v
e
n

ts

N
u
m

b
e
r

o
f

c
o
m

p
le

x
 e

v
e
n
ts

N
u
m

b
e
r

o
f

m
o
d
u

le
s

N
u
m

b
e
r

o
f

n
o
d
e
s
 i
n
 B

D
D

w
it
h

s
im

p
lif

ic
a
ti
o
n
s

N
u
m

b
e
r

o
f

n
o
d
e
s
 i
n
 B

D
D

w
it
h

o
u
t

s
im

p
lif

ic
a
ti
o
n
s

N
u
m

b
e
r

o
f

p
ri
m

e
 i
m

p
lic

a
n
t

s
e
ts

T
im

e
 t

a
k
e
n

w
it
h

s
im

p
lif

ic
a
ti
o
n
s

T
im

e
 t

a
k
e
n

w
it
h

o
u
t

s
im

p
lif

ic
a
ti
o
n
s

1 13 46 23 5 1188 81155 41310 0.172 66.86

2 17 58 39 1 5303 172219 42318 0.64 434.782

3 17 63 35 1 13738 105184 53217 1.828 109.729

4 15 69 44 1 31824 594918 1357 7.562 1573.391

5 21 16 1 1 11281 14769 20 0.687 0.938

6 27 20 2 1 4452 17459 38 0.172 1.609

7 39 27 1 1 43300 66166 105 8.25 19.734

8 27 61 31 1 50765 - 373 9.219 -

9 32 66 19 1 66406 - 67 18.421 -

10 22 55 27 1 10583 683695 339 0.859 4130.425

11 26 48 8 1 94827 336024 47 33.295 630.488

12 32 38 4 1 13656 30671 50 0.844 3.297

13 27 57 28 1 31123 533913 203 4.421 1796.779

14 21 29 13 1 13464 109767 46 1.063 61.653

15 25 41 17 1 10270 77215 74 0.547 18.921

16 20 35 9 1 34633 134464 64 6.64 99.027

Table 5. Calculation results for example fault trees

The second and the third columns give some indications of the complexity of the

example fault trees, presenting the number of gates and basic events.

The results of the two simplification techniques are shown in the fourth and fifth

columns, which represent the number of complex and modular events respectively.

The reduction technique has reduced the size of the problem remarkably, especially

for examples 2, 3 and 4. The modularisation technique extracted five independent

modules for example 1. No more modules were extracted for other examples since the

complex factors had already reduced the tree structure to its most efficient form.

The sixth and seventh columns show the number of nodes in BDDs, which were

obtained using the simplified and the original fault tree data respectively. A sum of

number of nodes in SFBDDs and meta-products BDDs is examined since both types

of BDDs are used in the qualitative analysis of non-coherent fault trees. The

simplification procedure decreased the size of the BDDs significantly.

The number of nodes decreased by approximately one half at least when the

simplification rules on the fault trees were applied. Extraction of modules and

complex events had a crucial effect on the biggest trees (examples 8 and 9) because it

enabled the conversion process of fault trees to BDDs, whereas due to the size of the

BDDs, the process failed if the original fault tree structures were used. BDDs could

not be formed in the memory resources available.

The eighth column represents the number of prime implicant sets in the solution. This

again indicates the complexity of the problem. The last two columns respectively give

the time taken to perform the analysis if simplified and original fault trees were used.

The time decreased when simplification rules were applied because smaller BDDs

were obtained. Since the conversion process for example 8 and 9 failed, the entries

for the time are not reported because analysis was unable to be performed.

7. Conclusions

This paper presents a procedure by which large fault trees can be simplified prior to

conversion to their Binary Decision Diagram form for analysis. Non-coherent fault

trees are examined. Simplification is performed in two phases, the first reduces the

fault tree to its more concise form and retains the underlying problem structure. The

second phase identifies independent modules which can be analysed separately. In

doing this the problem can be solved efficiently. Having performed the simplification

the problem is solved in terms of the new modular structure and complex events. A

means of calculating prime implicant sets in terms of the original basic events is

presented. The efficiency of the simplification process is analysed using some

example fault trees and it is compared with the analysis of fault trees that were not

simplified. A comparison of two methods illustrates a favourable degree of efficiency

in the simplification of fault trees prior to conversion to their BDD form for analysis.

8. References

1. Bryant, R.E. Graph-Based Algorithms for Boolean Function Manipulation', IEEE

Trans. Computers, C-35, No.8, pp677-690, (1986)

2. Rauzy, A. New Algorithms for Fault Tree Analysis, Reliab Eng Syst Safety, 40,

pp203-211 (1993).

3. Vesely, W.E. A Time Dependent Methodology for Fault Tree Evaluation, Nuclear

Design and Engineering, 13, pp337-360, (1970).

4. Platz, O. and Olsen, J.V. FAUNET: A program Package for Evaluation of Fault

Trees and Networks, Research Establishment Risk Report, No. 348, DK-4000

Roskilde, Denmark, Sept. (1976)

5. Dutuit, Y. and Rauzy, A. A Linear-Time Algorithm to Find Modules of Fault

Trees, IEEE Trans. Reliability, 45, No.3, pp422-425, (1996)

6. Courdet, O. and Madre, J.-C. A New Method to Compute Prime and Essential

Prime Implicants of Boolean Functions, Advanced Research in VLSI and Parallel

Systems, pp113-128 (1992)

7. Dutuit, Y. and Rauzy, A. Exact and Truncated Computations of Prime Implicants

of Coherent and Non-Coherent Fault Trees with Aralia, Reliability Engineering

and System Safety, 58, pp225-235 (1997)

8. Andrews, J.D. To Not or Not to Not!!, Proceedings of the 18
th

 International System

Safety Conference, pp267-274 (2000)

9. Andrews, J.D. and Dunnett, S.J. Improved Accuracy in Event Tree Analysis,

Foresight and Precaution. Cottam, Harvey, Pape and Tate (eds). Proceedings of

ESREL 2000, SARS and SRA-EUROPE annual conference, pp1525-1532, (2000)

10. La Band, R.A. and Andrews, J.D. Phased Mission Modelling Using Fault Tree

Analysis, Proceedings of the IMechE Part E Journal of Process Mechanical

Engineering, 218, pp83-91, (2004)

11. Reay, K.A. and Andrews, J.D. A Fault Tree Analysis Strategy Using Binary

Decision Diagrams, Reliability Engineering and System Safety, 78, pp45-56,

(2002)

12. Sasao, T. Ternary Decision Diagrams and their Applications, Representations of

Discrete Functions, Chapter 12, pp269-292 (1996)

13. Rauzy, A. Mathematical Foundation of Minimal Cutsets, IEEE Transactions on

Reliability, volume 50, 4, pp389-396 (2001)

14. Contini, S. Binary Decision Diagrams with Labelled Variables for Non-Coherent

Fault Tree Analysis, European Commission, Joint Research Centre (2005)

15. Andrews, J.D. and Moss, T.R. Reliability and Risk Assessment, Professional

Engineering Publishers, (2002)

