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Two-dimensional Stokes flow driven by elliptical paddles
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A fast and accurate numerical technique is developed for solving the biharmonic equation in a
multiply connected domain, in two dimensions. We apply the technique to the computation of slow
viscous flow (Stokes flow) driven by multiple stirring rods. Previously, the technique has been
restricted to stirring rods of circular cross section; we show here how the prior method fails for
noncircular rods and how it may be adapted to accommodate general rod cross sections, provided
only that for each there exists a conformal mapping to a circle. Corresponding simulations of the
flow are described, and their stirring properties and energy requirements are discussed briefly. In
particular the method allows an accurate calculation of the flow when flat paddles are used to stir a
fluid chaotically. © 2007 American Institute of Physics. [DOI: 10.1063/1.2789970]

I. INTRODUCTION

In this paper we investigate a two-dimensional model for
a highly viscous Newtonian fluid, stirred in a vat by the
motion of one or more stirring rods: a “batch stirring device”
(or BSD)." As one might expect from everyday experience, a
fluid can readily be stirred effectively in such a device,"”
even in the Stokes flow regime, as examined here. The key to
effective operation of the BSD is that it should generate cha-
otic advection,®” in which the Lagrangian paths of fluid par-
ticles are chaotic. A particularly attractive feature of the
BSD, as noted by Boyland, Aref, and Stremler,1 is that it
allows one to use a multiplicity of stirring rods. Then if these
rods are made to undergo topologically nontrivial motions, it
is possible to build-in certain desirable stirring characteristics
to the resulting motion.

However, reliable simulation of the motion of fluid par-
ticles in the BSD necessitates a knowledge of the corre-
sponding velocity field to high accuracy. This poses a par-
ticular numerical challenge, even though the governing
equation is simply the (linear) biharmonic equation V*y=0
for the stream function ¢, because the flow domain geometry
is complicated and time dependent. It is perhaps not surpris-
ing then that, so far, numerical investigations of the BSD
have simplified the geometry by employing stirring rods of
circular cross section and (apart from the work of
Vikhanskys) a vat that is itself also of circular cross section.

For a circular cross section of both vat and rods, an exact
expression for ¢ is available when there is only one stirring
rod,’ but for more than one stirring rod no such exact expres-
sion is known, and it is necessary to compute the velocity
field numerically. The computation may be carried out in a
particularly accurate and efficient manner using complex-
variable techniques:“’8 the stream function is posed as the
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sum of appropriate singularities, together with corrections in
the form of complex power series. The coefficients in these
series decay rapidly, and so only a small number of terms
need be kept to provide an extremely accurate numerical
expression for the velocity field. The method is far superior,
both in terms of accuracy and efficiency, than comparable
finite-difference techniques, for instance. Furthermore, nu-
merical solutions based on this technique agree well with
careful laboratory experiment58 with two circular stirring
rods (see also Refs. 2 and 3).

However, the choice of a circular cross section for the
stirring rods is a default, driven by its simplicity rather than
any inherent practical desirability. In preference, one might
choose the cross-sectional profile of a paddle, or an impeller.
Unfortunately, the complex-variable numerical technique of
Refs. 4 and 8 drastically worsens in performance if it is
applied naively to noncircular rod cross sections. So in this
paper we show how the technique can be modified to accom-
modate stirring rods of general cross section, provided only
that the cross section of each rod may be mapped confor-
mally to a circle; as particular cases, we describe elliptical
rods and flat paddles.

The paper is arranged as follows: In Sec. II, we intro-
duce the complex-variable formulation of the mathematical
problem for Stokes flow in the BSD. We illustrate the nu-
merical difficulties inherent in applying the solution tech-
nique of Refs. 4 and 8 directly to the problem with noncir-
cular rod cross sections, and demonstrate a resolution. The
instantaneous streamlines generated by various paddle mo-
tions are shown in Sec. III. These indicate how an increase in
the eccentricity of the stirring rods, from circular to flat, pro-
gressively influences the flow field. In Sec. IV, we describe
some numerical particle advection experiments, to show how
“dyed” fluid is stirred by the BSD in various modes of op-
eration. Our conclusions are given in Sec. V.

© 2007 American Institute of Physics
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FIG. 1. A batch stirring device (BSD): viscous, incompressible fluid occu-
pies the multiply connected region between the circular vat |z|=a, where
z=x+iy, and m stirring rods (here drawn with elliptical cross section, for
m=3). The arrows illustrate how the stirring rods may rotate about their axes
and translate, in order to stir the fluid.

Il. MATHEMATICAL FORMULATION

We suppose for definiteness that a highly viscous, in-
compressible fluid undergoes two-dimensional motion in a
circular cylindrical vat whose wall is given by |z|=a, where
z=x+1y (see Fig. 1). Inside the vat are m stirring rods, not
necessarily of circular cross section. Let z=d j(t) be the cen-
ter of the jth stirring rod (j=1,...,m); for a noncircular
cross section, dj(t) might denote the centroid, for example.
Denote the boundary of this rod by B;. Suppose that the jth
stirring rod translates with velocity (U;, V) and rotates about
the point z=d; with angular velocity ();. Then the no-slip
boundary condition may be stated as

M+lU=U]+lVJ+lQJ(Z—dJ) OnBj (]'=l,...,m) (1)
and
u+iv=0 onlz=a, (2)

where (u,v) is the fluid velocity.
For Stokes flow, the stream function ¢, in terms of which
(u,v)=(ty,~1,), satisfies the biharmonic equation9

V4y=0. (3)

In this complex-variable formulation, the general solution to
Eq. (3) may be written as

Pz.2:0) = R{Zf(z:0) + (230}, (4)

for some functions f and g, which are analytic functions of z,
and where R denotes the real part of its argument. Because
the fluid responds instantaneously to the boundary forcing,
time may be considered to be a parameter characterizing the
instantaneous configuration of the BSD when determining
the functions f and g. The problem is to determine f and g
consistent with the boundary conditions (1) and (2). Once
is known, the velocity components may readily be derived
from Eq. (4) using
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FIG. 2. Parameters of the jth elliptical stirring rod.

J
u+iv=—2i—lf; (5)
az

the vorticity w and pressure p follow from'?

p—inw=8uif' (z;1), (6)

where u is the coefficient of viscosity of the fluid, and where
the prime denotes a z-derivative.

In what follows, we focus particularly on stirring rods of
elliptical cross section, although the numerical technique de-
veloped below is by no means limited in this way. We denote
the major and minor semiaxes of the jth elliptical stirring rod
by a; and b;, respectively, with the major axis orientated at
an angle 6,(¢) to the real axis (see Fig. 2). We shall later
require a map from the boundary of this rod to the unit circle

w=expi, 0<¢d<2m, (7)

which is achieved by the Joukowski transformation'®

z=d;+ %lj(w + cjz-w'l)em/, ®)
where
a.—b.
lj=aj+bj andeZ _;L.

It is important to note that we consider Eq. (8) to be a map-
ping between the region outside the circle in the w plane
described by Eq. (7) and the region outside the jth ellipse in
the z plane described by Egs. (7) and (8) together. This speci-
fication of the domain and range of Eq. (8) is of particular
importance when Eq. (8) is inverted to obtain w=w(z;1),
since in general Eq. (8) has two solutions for w given any
point z outside the jth ellipse. The solution of relevance is
the one with |w(z;1)|[>1.

There are two special cases worthy of note. The first is
the circular cross section, for which a j=bj, where the angle
0; is irrelevant [and may therefore be taken in Eq. (8) to be
zero]; here the map (8) becomes simply z=d;+a;w. The sec-
ond is the flat plate of length 24; (i.e., with 5;=0), for which
z=dj+aj(w+w")e”’.i/2.

Downloaded 08 Nov 2007 to 128.243.220.42. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



113102-3 Two-dimensional Stokes flow

Method of solution

To determine ¢, we begin with Eq. (4), so that the gov-
erning biharmonic equation is satisfied identically. We then
pose particular forms for f and g, and determine the associ-
ated coefficients by minimizing the residual error in the
boundary conditions.

One motivation for the form of ¥ posed below is the
exact expression available in the case of a single stirring rod
of circular cross section, i.e., for m=1 and a, :b1.3 There,
is comprised of a Stokeslet and rotlet singularity inside the
stirring rod, together with their image singularities in the vat
wall, with the appropriate locations of the singularities being
determined by geometrical considerations. If one did not
have such an exact solution on hand, then a highly accurate
numerical solution for ¢ could be determined by writing ¢ as
the sum of Stokeslet and rotlet singularities at the center of
the stirring rod, together with a compensating series in in-
verse powers of z—d,. The strengths of the singularities and
the coefficients in the series could then readily be determined
by minimizing the mean squared error in the boundary con-
ditions, evaluated at a large number of boundary points. This
series solution proves to converge rapidly, and with only 20
or so terms can provide a numerical solution as accurate as
that obtained from the exact formula for ¢; the basis for the
high accuracy is the spectral convergence of a Fourier series
for an infinitely differentiable periodic function (such as the
prescribed boundary conditions).

For m>1 circular stirring rods, the stream function may
efficiently be written similarly as the sum of Stokeslet and
rotlet singularities, one of each type located at the center of
each stirring rod, together with series in inverse powers of
z—d; for each j=1,...,m ¥ The singularity strengths and
the coefficients in the various series are again computed nu-
merically by minimizing the residual error in the boundary
conditions, and the series again prove to be rapidly conver-
gent. One is thus able to compute the velocity field to high
accuracy and hence carry out reliable numerical dye-
advection experiments, to evaluate the stirring properties of
the resulting flows.

It is worthwhile now considering rather more precisely
how an appropriate form for ¢ may be derived from the
specification of the problem above. Since the pressure and
vorticity must be single-valued, it follows from Eq. (6) that
f'(z;1) is a single-valued function of z. Thus (if we suppress
the time-dependence of the coefficients), f'(z;7) may be writ-
ten in the form

m ®

= E&HEE Fi_

jlkl(z d])k

This form represents f’(z;¢) as comprising a Taylor series
about the origin and separate Laurent series about each of
the rod centers, and gives the most general permissible form
for f'(z;t). Integration with respect to z then gives f(z;7) in
the form
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— Y 1. S
kOk ]E;kzz(k—l)(z d;)*v
E Fylog(z—d)). 9)

Since the velocity field must also be single-valued, it follows
from Egs. (4) and (5) that the quantity f(z;0)+zf'(Z;1)
+g'(Z;1) is a single-valued function of position. But f(z;7)
has already been forced to be single-valued, so it follows that
f(z;1)+g'(Z;1) is single-valued, and hence that g’(z;f) may
be written in the form

m

g @0 =2 G+ +EF s« log(z—d));

k=0 j=1 k=1 d )k
the logarithm terms in g’(z;f) are chosen so that f(z;?)
+g'(z;1) contains logarithms of the form F, log|z—
which is single-valued. Then upon integration we find

e % b+ _Ekzﬂk—l)( a)*
+> Gjlog(z—d;)
j=1
2 F,(z—d)[log(z~d;) - 1]. (10)

The nature of the logarithmic terms that arise in the
stream function ¢y now deserve special consideration. We see
from Egs. (4), (9), and (10) that the “zlogz” terms in ¢
arising from the jth stirrer take the form F;,Z log|z—d,|* and
its complex conjugate. The corresponding “log z”” terms in ¢
arise from two sources in Eq. (10), and take the form

Hjlog(z—dj)+1?1jlog(2—c7j). (11)

However, this expression is more general than permitted by
the full problem, as we see by considering the flux of fluid
through the jth boundary. Since the boundaries are all imper-
meable, this flux must be zero. But the flux is simply [¢];,
i.e., the change in ¢ upon traversing the boundary counter-
clockwise. From Eq. (11), [w]j:ZWiHj—Zwiﬁj. Since this
quantity must be zero, it follows that H f is real-valued, and
hence that the jth “log z” contribution to ¢ may be written in
the form,

H;loglz—djf.

In light of the discussion above, we are now able to write
down an appropriate form for the stream function for the
problem of stirring by circular stirring rods, using Egs. (9)
and (10). However, if one applies the same series solution
when the stirring rods are noncircular, the rapid convergence
is dramatically lost, as we shall illustrate below, because a
series in z—d; no longer corresponds to a Fourier series when
evaluated on the jth rod. In particular, it becomes infeasible
to compute the stream function for elliptical paddles of even
moderate eccentricity, for example. Fortunately the rapid
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convergence can be recovered by a straightforward modifi-
cation to the form of the series solution, which involves con-
formally mapping each boundary to the unit circle (L. N.
Trefethen, personal communication). Specifically, if w lies
on the unit circle, as in Eq. (7), and if w=w(z) provides a
conformal mapping that takes z € B3; to the unit circle, and
maps the region outside one boundary to that outside the
other, then the sums in the ansatz for i should simply be
written in terms of the w;(z) rather than z—d;. The key point
is that sums in powers of w;(z) do correspond to spectrally
convergent Fourier series.

It should be emphasized that the method does not in-
volve applying a single conformal mapping from the entire
flow domain to some simpler region of the complex plane;
this would be an exceedingly difficult task, and the mapping
would change at each time step. Rather, the use of conformal
mappings is purely a device to improve the numerical con-
vergence properties of the various series.

In solving the present problem with circular stirring
rods,* we previously used a “circle theorem” for the bihar-
monic equationsll’12 to modify the form of ¢ to ensure that
the no-slip boundary condition on the vat wall is satisfied
automatically; essentially the modification involves append-
ing to  appropriate images in this wall. However, the use of
the circle theorem, while mathematically elegant, adds con-
siderably to the algebraic complexity of ¢, and here we adopt
instead the simpler device of including in ¢ an additional
series in positive powers of z [cf. Egs. (9) and (10)], whose
coefficients are determined in the process of minimizing the
error in the boundary conditions. (We note that inverse pow-
ers of z are inappropriate, since the origin will often lie in the
flow domain and a singularity is inappropriate there.) The
boundary conditions on |z|=a are then imposed numerically
in the same way as on the stirring rods, as described below.

We are finally in a position to write down the stream
function, in the form

= 9%2 (pj,lz"' Qj,1)10g|wj(Z)|
j=1

m+l n
+ R D (paz+q 0w @), (12)
j=1 k=2
where the terms for j=1,...,m correspond to the respective

stirring rods, and j=m+1 corresponds to the vat wall. In Eq.
(12), we have introduced the notational trick of writing
w,e1(2)=1/z; thus the terms for j=m+1 provide a series in
positive powers of z, leading to spectral convergence for the
vat wall boundary condition (2). The series are truncated at
k=n to provide our numerical approximation (cf. Refs. 4 and
8). The Stokeslet and rotlet singularities mentioned above
correspond, respectively, to the terms with coefficients p; ,
and g; ;. With ¢ given by the ansatz (12), all physical quan-
tities (velocity, vorticity, and pressure) are single-valued,
provided Eq. (8) is inverted appropriately to find w(z). In
particular, the fluid velocity is from Eq. (5),
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FIG. 3. Maximum absolute error € in the boundary velocity for a single
circular paddle (a;=b,=0.3) centered at z=0.5+0i and rotating about its
axis (Q,=1, U;=V,=0), plotted against the number of terms n taken in Eq.
(8). Note the exponential decay of € with n, until limits of machine precision
are reached.

m

u+iv=—i\p;logw;(2)|
j=1

1 wi(z)
+=(pi1Z+q +Diz+q )~
2(p],1Z q],l p],lZ q],l)wj(z_)
m+l n W’(_)
. - _ _ i\2
-ix > I’j,kW} “@) + Pz + g0 (1 —k)—=
Jj=1 k=2 Wj(Z)

(13)

To compute appropriate values for the coefficients in Eq.
(12), we minimize (numerically) the residual squared error in
the boundary conditions, computed at a large number of
points. Specifically, around each boundary (i.e., around each
stirring rod and around the vat wall) we place N=5n points;
around the vat wall, the relevant points are equispaced, while
for the jth stirring rod, these points are equally spaced in ¢
around w;(¢)=exp i¢ (this generally clusters points around
the more highly curved ends of the rods). The redundancy
factor N/n=5 is the result of some trial and error, and has no
other particular significance. We let r be a vector comprising
the real and imaginary parts of all the unknown coefficients
in Eq. (12), and x be a vector of expressions for the values of
u and v at all the (m+1)N sample points on the various
boundaries, obtained from Eq. (13). The desired boundary
values of the velocity components at the corresponding
points are then collected in a vector ®. Denoting by M the
matrix with elements M;;=dy;/ dr;, we see that the boundary
conditions (1) and (2) amount to the matrix equation Mr
=®. A least-squares solution is found by first computing the
singular value decomposition of M =USV’, where S is the
diagonal matrix of the singular values {s;}. The least squares
choice of parameters is then given by r=VS U ®, where the
elements of the diagonal matrix S™ are {s}l}, except where s;
is less than some numerical tolerance, in which case the cor-
responding element of S” is set to zero. The whole procedure
is accomplished easily in MATLAB (see the Appendix), with
the least-squares calculation performed using the matrix
pseudoinverse r=pinv(M) * Phi.

Figure 3 shows the maximum absolute error € in the
computed boundary velocities for a flow generated by a
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FIG. 4. Maximum absolute error € in the boundary velocity for a single
elliptical paddle with a;=0.3, centered at z=0.5+07 and moving with unit
speed parallel to the x-axis (U;=1, V,=0,=0), for n=21 and a range of
values of b;. Comparison between solution expressed in terms of w, (lower
curve) or in terms of z;=2(z—d;)/l, (upper curve), see text. Note the huge
errors in a naive application of the prior method (upper curve) and the
dramatic advantage of the present formulation (8), even for moderate eccen-
tricity of the stirring rod.

single stirring rod. The rod is circular, with a;=b;=0.3, and
rotates with unit angular velocity about its axis, at d;=0.5
+0i. The error appears to decrease exponentially with in-
creasing truncation parameter 7, until the limits of machine
precision are reached.

Figure 4 shows the effects upon € of varying the eccen-
tricity of an elliptical stirring rod, and demonstrates the ne-
cessity of the conformal mappings implicit in Eq. (12). Here
the truncation parameter is fixed to be n=21 and the major
semiaxis of the rod is a;=0.3. The remarkable feature of this
figure is the extremely poor performance (upper curve) ob-
tained by naively adopting the formulation in Ref. 4 for the
stream function, so that the series in Eq. (12) are written in
powers of 2(z—d;)/1; rather than powers of w;. That method
is unusable for even modest departures from a circular cross
section. The lower curve in Fig. 4 shows how the current
method resolves the difficulty, and shows that in a proper
formulation the residual numerical error is largely insensitive
to the aspect ratio b,/a; of the stirring rod cross section;
indeed, we find similar results down to b= 1077, and even in
the limiting case of a perfectly flat paddle with b;=0.

For various values of m (the number of stirring rods),
and for various eccentricities of the stirring rods, we find that
we are generally able to satisfy the boundary conditions es-
sentially to within machine precision. This gives us some
confidence that our expression (12) for the stream function
does indeed provide sufficient generality.

lll. STREAMLINES OF THE FLOW

In this section we illustrate some typical streamlines, for
m=1,2,3; here, lengths are scaled so that the vat has a unit
radius. These results provide some insight into the effects
upon the flow of a noncircular cross section for the stirring
elements.

There have been extensive previous studies of the
streamline topology due to the motion of circular stirring
rods in a device such as described here. We have elsewhere”
given some typical streamline patterns for m=1. For m=2,
Jana, Metcalfe, and Ottino"® found a variety of possible to-
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FIG. 5. Streamlines for a paddle of length 0.4, centered z=0.2+0.0i. Top
row: 6;=0. Translation (a) in the x-direction, (b) in the y-direction, (c) at a
45° angle. Bottom row: 6, =m/6. Translation (d) in the x-direction, (e) in the
y-direction, (f) at a 45° angle.

pologies, even in the restricted problem that has a symmetri-
cal configuration of stirring rods (but not necessarily sym-
metrical motions) and rotation of each rod about a fixed axis
only (i.e., no translation). The catalog of streamline topolo-
gies in this case was extended by Price, Mullin, and Kobine.?
All three of these papers involved a combined numerical and
experimental investigation, and demonstrated excellent
agreement between the two approaches. An exploration of
the possibilities for m=3 was begun by Hajjarn.14 The results
presented below, for one, two, and three elliptical paddles,
are intended to be illustrative of the sorts of streamline pat-
terns that might be found in “reasonable” configurations of a
BSD; they are clearly far from comprehensive. We note that
the parameter space to be explored for elliptical paddles is
significantly larger than that for circular paddles due to the
nontrivial effects of orientation and aspect ratio in the former
case.

Because the previous work highlighted above has fo-
cused exclusively on the case of circular stirring rods, we
focus here on properly elliptical paddles, and primarily on
the (admittedly rather arbitrary) case with aspect ratio b;/a,
=103, We shall refer in our discussion below to such
paddles as flat, and to 2a; as the length of the paddle (al-
though one might argue that the term “length” strictly makes
sense only if b;=0). Each of our plots of the stream function
¢ shows contours in equal increments; to some extent this
allows “differentiation by eye” to estimate the velocity field,
although it does mean that some of the weaker (and therefore
less significant) eddies may not be visible in the plots that are
presented here. Also shown, as dashed lines, are separatrices
of the flow.

Figure 5 shows streamlines generated by translation of a
single flat paddle, of length 0.4 (i.e., with a;=0.2), instanta-
neously centered at z=0.2+0.0i. In each case, two eddies are
formed, one clockwise and one counterclockwise. For the
case 0,=0 (first row of the figure), so that the flow domain
has symmetry about the x-axis, the streamlines generated by
the paddle resemble those due to a circular stirring rod: mo-
tion parallel to either the x- or y-axis generates streamlines
with symmetry about the x-axis; motion at a 45° angle, for
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FIG. 6. Streamlines for a paddle of length 0.4, with 6, =0, rotating about its
axis. Left: centered at z=0.2+0.0i. Right: centered at z=0.6+0.0i.

instance, breaks this symmetry. Of course, as the second row
of the figure shows, with a different orientation of the flat
paddle, the streamlines are no longer symmetrical in the
x-axis even when the paddle motion is parallel to one of the
axes.

Figure 6 shows streamlines generated by a paddle rotat-
ing about its axis, when placed at two different locations on
the diameter of the vat. In each case there are three eddies,
one in the same sense as the paddle, and two others, away
from the paddle, in the opposite sense. The smallest eddy is
very weak; we have verified its existence by plotting stream-
lines in higher resolution (not shown here). This behavior is
in contrast to that of a circular stirring rod, where a rod
placed near the center of the vat seems to generate a single
eddy, while a sufficiently off-center rod generates two (cf.
Ref. 3).

Figure 7 shows the evolution of the instantaneous
streamlines as a paddle rotates about its axis, at a fixed loca-
tion. There appear to be three eddies in the streamline plot at
any instant. This flow differs significantly from the corre-
sponding (steady) flow due to a circular rod; here the geom-
etry of the device is time-dependent, hence the flow is time-
dependent. This simple observation has profound
consequences for the motion of the fluid: with a circular rod,
all particle paths are time-periodic; with a paddle, some may
be chaotic, thereby greatly enhancing mixing.

Figure 8 shows two paddles, whose centers lie on a di-
ameter of the vat, one stationary and the other rotating about
its axis. At any instant one can identify three eddies; how-
ever, their topology varies significantly with time. For ex-
ample, the main, central eddy sometimes encloses only the
right paddle, and sometimes encloses both. We see from the
central panel of Fig. 8 a mechanism by which fluid near the

FIG. 7. Streamlines for a paddle of length 0.4, centered at z=0.6+0.0i,
rotating about its axis. From left to right: 6,=0, 7/4, 7/2.
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FIG. 8. Streamlines for two paddles, each of length 0.4, centered at z
=+0.4+0.0i. The left paddle is stationary while the right paddle rotates
about its axis. In each case, 6,=0 for the left paddle. For the right paddle,
from left to right: 6,=0, w/4, /2.

left paddle can mix with the bulk. A further feature of note is
that small recirculation zones appear intermittently on the
stationary paddle.

Figure 9 shows the streamlines generated by two
paddles, each rotating about its axis with the same angular
speed, but in opposite senses. If the paddles are both initially
aligned with the vat diameter on which their centers lie, say,
then a symmetry of the streamlines about the orthogonal di-
ameter is maintained during operation of the device, causing
a significant barrier to mixing, since fluid particles are not
advected between left and right halves of the device (see left
and center panels of the figure). At different instants in the
motion of the paddles, there may be two eddies (left panel),
or up to six (center panel). If the initial orientations of the
paddles are chosen instead so that they are never simulta-
neously in alignment with their common diameter (right
panel), then the left-right symmetry of the flow is broken,
thus removing a significant impediment to mixing of the
fluid between the two sides.

Figure 10 shows the streamlines for two paddles rotating
in the same sense. We have chosen the orientations of the
paddles so that they are exactly in-phase. In the left and
center panels, ¢,=0 for each paddle at the instant shown, and
there are five eddies. The right panel illustrates the stream-
lines later in the motion of the device (6;=m/2 for j=1,2),
with six eddies.

In the next section we shall describe simulations of stir-
ring by a three-paddle device, and so we illustrate in Fig. 11
some streamlines for this case. The paddles are initially cen-
tered at z=0 and at z=+4/7+0i and each have a length of
2/7; the leftmost paddle is stationary while the other two
rotate about the point z=2/7+0i. Finally, we compare in this
figure the streamlines generated by paddles with those for
circular stirring rods. Although the streamlines are little dif-

FIG. 9. Streamlines for two paddles, each of length 0.4, centered at
z=+0.4+0.0, rotating with equal but opposite angular velocities. Left: 6;
=0 for both paddles. Center: ¢;=m/2 for both paddles. Right: 6,=/2,
6,=0.
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FIG. 10. Streamlines for two paddles, each of length 0.4. The paddles rotate
with equal angular velocities, in the same sense. Left: paddles centered at
z=+0.3+0.0i, ;=0 (j=1,2). Center: paddles centered at z=+0.5+0.0i, 0
=0 (j=1,2). Right: paddles centered at z=+0.5+0.0i, 6=7/2 (j=1,2).

ferent in the two cases, some differences emerge when we
calculate the power input required to drive the device in the
two cases. For the situation shown in the last two panels of
Fig. 11, with the rightmost stirring rods rotating with angular
velocity () about the point z=2/7+0i, the power input per
unit area (and per unit length in the third coordinate direc-
tion) is kuQ)?, where k=1.725 (paddles) or k=2.131 (circles).
Correspondingly, for stirring rods instantaneously lying
along a common diameter, with the rightmost pair again ro-
tating about the point z=2/7+0i with angular velocity € (cf.
first panel of the figure), the requisite power inputs have k
=1.603 (paddles) and k=1.932 (circles). In each configura-
tion the power input required for the paddles is almost 20%
less than for the circular stirring rods.

IV. NUMERICAL SIMULATIONS OF STIRRING

We describe in this section numerical simulations of stir-
ring by circular rods and elliptical paddles. In each case,
passive “dyed” tracer particles are simulated—these move
with the flow but do not influence it. We employ two diag-
nostics of the stirring. The first, the iterated mapping plot,
gives qualitative information about the long-time behavior of
fluid particles, and indicates regions of regular and chaotic
Lagrangian particle paths. Although its relevance to short-
time mixing may be disputed,]3 the iterated mapping does
provide a strong visual indication of the extent, if any, of the
chaotic regions. The second diagnostic is the rate of stretch
of a finite material line. This diagnostic is computationally
expensive if we maintain adequate resolution of the expo-
nentially growing line. In our calculations we dynamically
insert particles into the initial line so as to maintain an ac-
ceptable tolerance between neighboring particles in the
stretched line (cf. Ref. 15). Then, at least at modest compu-
tational expense, it is feasible to track the line only for a few
periods of the flow.

FIG. 11. First three plots: streamlines for three paddles, each of length 2/7.
The leftmost paddle is stationary while the other two rotate about a point
midway between their centers. Right: corresponding flow generated by cir-
cular stirring rods, of diameter 2/7.

Phys. Fluids 19, 113102 (2007)

(b)‘(c)‘

FIG. 12. (a) Simple mixer with two paddles generates only regular motion
because transformation to a rotating frame results in a time-independent
problem. (b) Dual-impeller mixer, shown for counter-rotating paddles; this
initial condition yields a flow symmetrical under reflection in the y-axis if
the angular velocities of the impellers are equal and opposite. (¢) Dual-
impeller mixer with this symmetry broken by “staggering” the orientation of
the paddles.

A. Two paddles

With two paddles, an easily constructed mixer is as fol-
lows [see Fig. 12(a)]: two paddles are placed with their cen-
ters on some diameter of the vat, with their major axes point-
ing along this diameter. The diameter in question then
rotates. However, this design fails to generate chaotic par-
ticle paths; only regular fluid particle motions are generated,
because in a frame of reference rotating appropriately about
the vat center with the paddles the flow is steady.

Figures 12(b) and 12(c) show two variants of a simple
“dual-impeller” design that does generate chaos. In each case
the left paddle rotates clockwise and the right paddle coun-
terclockwise, with equal angular speeds. However, if the de-
vice maintains symmetry about the y-axis during operation,
for example by starting both paddles horizontally or verti-
cally, then there are many small (but visible) regular regions
in the chaotic sea [see Fig. 13(a)]. Far better is to “stagger”
the paddles, as in Fig. 12(c). Figure 13(b) shows the corre-
sponding dramatic improvement if the major axes of the
paddles are orthogonal, rather than parallel, at the start of
their motion.

For the configuration in Fig. 13(b), we show in Fig. 14
that the aspect ratios of the paddles need not be far from
unity to generate a significant chaotic region. (Recall that for
circular stirring rods the flow is steady and all trajectories are
regular.) The size of the regular regions around the paddles
evidently decreases as the paddles become less circular. In all

FIG. 13. Iterated mapping plots for two paddles, corresponding to Figs.
12(b) and 12(c). In each case the paddles are centered at £0.4+0i; a;=0.3,
and b;=0.1 (for j=1,2). (a) 6;=-27t and 6,=2t, for left and right paddles,
respectively. (b) 6,=2m(1/4~1) and 6,=2t.
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FIG. 14. Iterated mapping plots for two paddles. In each case the paddles
are centered at £0.4+0i with a_,-=0.3 (for j=1,2). Furthermore, in each case
0,=2m(1/4-1) and 6,=2 for left and right paddles, respectively (cf. Fig.
12), so there is no symmetry of the plot in the y-axis. From left to right:
b;=0.28, 0.26, 0.25 (for j=1,2). We see here the dramatic effects of even
moderate eccentricity of the paddles; by contrast, circular stirring rods give
rise to entirely integrable flows, with no chaotic regions.

three cases shown in Fig. 14, there are significant regular
recirculation regions for relatively large |y|, in contrast to the
more eccentric paddles of Fig. 13(b).

B. Topological chaos with three stirring elements

With one or two stirring elements, effective stirring gen-
erally requires tuning of the parameters of the system, for
example, by varying the paths of the stirring elements, their
sizes, and aspect ratios, or their rates of rotation about their
respective axes. But a recent reinvigoration of the field has
followed from the observation by Boyland, Aref, and
Stremler' that for m >3 one can build in so-called “topologi-
cal chaos” by using appropriate paddle motions that corre-
spond to a nontrivial mathematical braid; this presents an
appealing prospect for mixer designs that are robust to
changes in operational parameters or fluid properties.

With m=3, we now describe two simple stirring proto-
cols, each of which is generated by successively interchang-
ing the positions of neighboring stirring rods. The only dif-
ference between the two protocols lies in whether all
interchanges are carried out clockwise, or whether they are
alternately clockwise and counterclockwise. It is useful to
denote these interchanges by the symbols L* and R*. In L~,
the rightmost paddle remains stationary, while the leftmost
and center paddle are interchanged. The semicircular paths
taken by the interchanging paddles are shown in Fig. 15. The
superscript “—” indicates that the paddle centers rotate coun-
terclockwise; a superscript “+” indicates clockwise motion.
The interchanges R* likewise correspond to the interchange
of the rightmost and center paddles, with the leftmost paddle
fixed. The protocol R™L* (reading from left to right, so that
first R~ then L* is carried out) is known to produce good
mixing, while R"L™ produces poor mixing.1 Here, we con-
sider only the good protocol, and examine the effects of
changes to the shape of the paddles and the rates at which
they rotate about their axes during the stirring. We scale time
so that the protocol R™L" takes one time unit, and again scale
lengths so that the vat has unit radius.

Figure 16 shows the evolution of a material line initially
lying between 2/7+i/2 under the flow generated by three
circular stirring rods moving under the protocol R™L*. The
circles have radius 1/7 and their centers lie initially at O and
+4/7. Note that during the protocol, as Fig. 15 suggests, the
relevant stirring rods rotate about their axes as they inter-
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FIG. 15. Semicircular paths taken by paddles during the interchange L™. All
paddles begin and end the interchange with their centers on the real axis and
with their major axes aligned along this axis. The rightmost paddle remains
stationary. The leftmost paddle and center paddle interchange positions; they
do so by rotating one half-revolution about the point midway between their
centers.

change with one another. We name this “Protocol A.” The
line initially has length 1; its length after successive periods
of the motion is given in Table I.

If the circular rods are replaced by paddles with a;
=1/7 and bj: 1/50, we find the results shown in Fig. 17; we
refer to this as “Protocol B.” The kinks in the line are slightly
more pronounced than in Protocol A, and consequently the
rate of growth of the line is a little in excess of that for
Protocol A.

If, during the interchanges, the paddles are made to ro-
tate about their axes at twice the rate indicated in Fig. 15,
one might expect some additional stretch of the line due the
enhanced impeller motion. But in this case the line evolves
as in Fig. 18 (Protocol C), and the additional rotation of the
paddles seems to reduce some of the kinks seen in Fig. 17.
Growth of the line is roughly as in Protocol A.

Finally, we consider the case in which the paddles do not
rotate about their axes at all during the interchanges (Proto-
col D; see Fig. 19). Thus here their major axes always lie
parallel to the x-axis. In terms of the line stretch after four
periods, this protocol improves on the double rotation of Pro-
tocol C, but is worse than the “proper” rotation of Protocol
B. The kinks observed in the line in Fig. 17 seem to be
greatly reduced in this protocol.

FIG. 16. Evolution of a line element, initially between 2/7+i/2, with cir-
cular paddles, executing the protocol R™L* (see text for further details). The
stretched line is shown after 1, 2, 3, and 4 periods.
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TABLE I. Length of line after 1-4 periods of the motion, for various pro-
tocols (see text for details). Initially the line lies between 2/7+i/2, and so
has unit length.

Protocol 1 2 3 4

A 4.25 13.1 36.5 95.3
B 4.27 14.2 42.1 123
C 4.00 12.9 34.8 95.3
D 3.84 11.9 37.5 108

Since the initial location of the line is rather arbitrary, we
might view its initial evolution as accidental, and measure
the stretch rate of its interface only after its evolution appears
to have settled down. To this end, if we use only the data
after three and four periods to compute the factor by which
the length of the line grows in the last period, we obtain for
the four protocols A, B, C, and D, respectively, 2.61, 2.92,
2.73, and 2.88. These results confirm the ordering suggested
by the values in the final column of Table I (but suggest that
Protocol C is better than Protocol A).

In evaluating these protocols, we might ask how much
energy is required for each. To specify the energy, we sup-
pose for definiteness that the speed of the relevant paddle
centers is the same during each interchange and use the
result’ that (in the dimensional problem) the energy input per
period, per unit length in the third coordinate direction, is

T m
f Amp, {3(;1(U;+iV) = (q;1 + R(p;,1d))Q}de,
0 j=1
where T is the (dimensional) period of the protocol. We find
that this quantity takes the form ua’&/T, where a is the
dimensional radius of the vat and for Protocols A, B, C, and
D (respectively) £=141.3, 121.3, 170.2, and 91.4. These re-
sults seem to recommend Protocol D.

V. CONCLUSIONS

The method described here permits accurate numerical
solution of the biharmonic equation in a multiply connected
domain, relevant to two-dimensional slow viscous flow gen-
erated by multiple stirring rods. We emphasize that the fluid
motion satisfies boundary conditions appropriate to the no-
slip condition on physical rods, and that, while expressions
such as Eq. (12) involve singularities, none of these lie in the
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FIG. 18. Evolution of a line element, initially between 2/7+i/2, with
paddles having a;=1/7, b;=1/50 (for j=1,2,3), executing the protocol
R™L*, as in Fig. 17 except that the paddles undergoing an interchange rotate
about their axes at twice the rate there.

flow domain itself. The flow field is thus free of singularities,
unlike models where the stirring rods are replaced by
rotlets,'® for example. This represents a significant advantage
of the present case over singularity-driven flow, where the
possible locations of the singularities are generally tightly
constrained (and hence they must remain stationary, and
“blink” on and off to generate a time-dependent flow).

The desire to simulate the trajectories of fluid particles in
chaotic Stokes flows necessitates a particularly accurate so-
lution for the velocity field. The methods described here pro-
vide at modest computational expense velocity fields which
are in practice limited only by machine precision. Although
it could be argued that expression (12) for the stream func-
tion ¢ is mathematically inelegant, embodying as it does
considerable redundancy in its large number of coefficients
of multiple power series, it does provide a practical means of
computing ¢ with extreme accuracy. Furthermore, the
conformal-mapping trick (suggested to us by L. N.
Trefethen, personal communication) proves to be essential to
recover rapid convergence of the various series in Eq. (12)
and thereby to render the method useful for noncircular rod
cross sections. We reiterate that the conformal mappings re-
quired are simply a device to improve the convergence of
various series: their role is to map each rod cross section to a
circle (leading to rapidly convergent Fourier series), and no
global mapping is required from the complicated, time-
dependent, multiply connected region to something simpler
(cf. Ref. 17 for inviscid potential flow).

The ability to simulate the flow due to elliptical paddles
(or, indeed, stirring elements with a wide variety of cross
sections) allows the investigation of significantly better
mixer designs than rods of circular cross section. This is
because with circular stirring rods, the flow domain geom-
etry is fixed if the centers of the rods are fixed in space and
they drive the motion through (time-dependent) rotations

FIG. 17. Evolution of a line element, initially between 2/7+i/2, with
paddles having a;=1/7, b;=1/50 (for j=1,2,3), executing the protocol
RL* (see text for further detalls) The stretched line is shown after 1, 2, 3,
and 4 periods.

FIG. 19. Evolution of a line element, initially between 2/7+i/2, with
paddles having a;=1/7, b;=1/50 (for j=1,2,3), executing the protocol
R°L*, as in Fig. 17 except that the paddles undergoing an interchange do
not rotate about their axes.
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about their respective axes, as has been a common setup in
many prior Stokes flow studies. In the case of paddles, how-
ever, the geometry of the flow domain (and hence the flow
itself) is necessarily time dependent. Our results indicate that
even slight eccentricity of the paddles can lead to significant
chaotic regions in the flow.

Finally, we note that series-solution techniques similar to
those adopted here for Stokes flow may be used in solving

APPENDIX: mATLAB CODE

Phys. Fluids 19, 113102 (2007)

Laplace’s equation efficiently and accurately for inviscid po-
tential flow in complicated, multiply connected geometries.
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The calculations described in this paper are readily implemented in MATLAB, as illustrated below.

%SOL solve for coefficients in series solution.

% [P,Q]=SOL(N) returns P and Q that minimize the boundary error.

function [p,g]=sol(n)

global d a t o u;
% set collocation points and target velocities
m=length(d); N=5%n; s=exp(2#*pi*i=*linspace(0,1,N)).”;
c=real(s)+ le—3=*i*imag(s); z=s; Phi=zeros(size(s));
for j=1:m
z=[z;d(j) +a(j)*cxexp(i*1(j))];
Phi=[Phi;u(j)+i*o(j)*a(j)*cxexp(i*1(j))];
end
Phi=c2r(Phi);

% Build least squares matrix
r=zeros(4*(m+1),n);

M =zeros(length(Phi),length(r(:)));
for k=1:length(r(:))

r(k)=1; V=c2r(vel(z,r2c(r(1:2%(m+1),:)),r2c(r(2%(m+1)+1:end, :))));

M(:,k)=V().; r(k)=0;
end

% solve by singular value decomposition method
r(:)=pinv(M) *Phi(:);

p=r2c(r(1:2%(m+1),:));
q=r2c¢(r2*(m+1)+1:end,:));

% helpers to convert between real and complex matrices
function val=r2c(r)
[m,n]=size(r); h=m/2; val=r(1:h,:)+ixr(h+1:m,:);

function val=c2r(c)
val=[real(c) ;imag(c)];

%VEL compute velocity field.

% VEL(Z, P, Q) computes the velocity field at Z using coefficients P and Q

function u=vel(z,p,q)

[m,n]=size(p); u=zeros(size(z)); p(m,1)=0; g(m,1)=0;
zb=conj(z); pb=conj(p); gb=conj(q);

for j=1:m
u=u—i*p(j,1)*log(abs(w(z,j))) ...
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—i/2%(p(j,1)*zb+q(j, 1) +pb(j,1)*z+gb(j,1)). *conj(w(z,j, d’)./w(z,)));

for k=2:n
u=u—i*p(j,k)*w(z,j). (1-k) ...
=i (pb(j,k)*z+gb(j,k))* (1=k). *conj(w(z,j, d")./w(z,)).k);
end
end

%W compute conformal mappings.
% W(Z,J,D) computes the conformal mapping of Z onto each W domain. If a
% flag is given the function returns the derivative of the map instead.

function g=w(z,j,der)

global d a t;
unity=1.0001; m=Ilength(d);

if (nargin<<3) % calculate mapping
switch j
case m+1
q=1./z;
otherwise
z=exp(=i*1(j))/a(j)* (z—=d()));
sgn=2 (real(z) >=0)-1;
g=z+sgn. *sqrt(z. 2 —unity);
end
else % calculate derivative
switch j
case m+1
q=-1.12.2;
otherwise
z=exp(=i*1(j))/a(j)* (z—d()));
sgn=2%* (real(z) >=0)-1;
g=(1+sgn.*z./sqrt(z. 2—unity)). xexp(—i*1(j))/a(j);
end
end

%PSI compute stream function.
% PSI((Z,P,Q)) computes the stream function at Z using coefficients P and Q.

function u=psi(z,p.q)

[m,n]=size(p); u=zeros(size(z)); p(m,1)=0; g(m,1)=0;
zb=conj(z); pb=conj(p); gb=conj(q);

for j=1:m
u=u+real((p(j,1)*zb+q(j,1)). *log(abs(w(z,/))));
for k=2:n
u=u+real((p(j, k) *zb+q(j,k)).zbw(z,j). (1-k));
end
end

% demonstration that computes the streamlines on the right in Fig. 9.
global d a t o u;

d=[-0.4 0.4]; a=[0.2 0.2]; t=[pi/2 0]; o=[-1 1]; u=[0 0];
[x,y]=meshgrid(linspace(—1,1,100)); z=x+i%*y;

[p.q]=s01(12); s=psi(z,p.q);
contour(x,y,s,linspace(—0.0583,0.0024, 16));
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