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Abstract

We implement conditional moment closure (CMC) for simulation of chemical
reactions in laminar chaotic flows. The CMC approach predicts the expected
concentration of reactive species, conditional upon the concentration of a cor-
responding nonreactive scalar. Closure is obtained by neglecting the difference
between the local concentration of the reactive scalar and its conditional average.
We first use a Monte Carlo method to calculate the evolution of the moments
of a conserved scalar; we then reconstruct the corresponding probability density
function and dissipation rate. Finally, the concentrations of the reactive scalars
are determined. The results are compared (and show excellent agreement) with
full numerical simulations of the reaction processes in a chaotic laminar flow.

Introduction

Numerical simulation of mixing-sensitive chemical reactions in flows with high Péclet
number is a nontrivial task. For decades, most research has concentrated on turbulent
reactive flows, especially turbulent combustion. It is therefore no surprise that, at
present, turbulent combustion models represent a powerful predictive tool. However,
recent progress in microfluidic applications, for example, turns our attention away from
turbulent processes and towards laminar reacting flows. Many microreactors are oper-
ated at low Reynolds numbers, but at high Péclet numbers1, and this combination of
parameters poses particular difficulties for efficient chemical reaction from a segregated
initial state, because the low Reynolds numbers make turbulence impossible, and the
high Péclet numbers limit the efficiency of molecular diffusion. Fortunately, it is now
well established that effective mixing can be achieved in the necessarily laminar flows
that are realized at low Reynolds numbers, provided the Lagrangian particle paths are
made chaotic2,3,4.
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Such chaotic flows rapidly generate, from an initially segregated distribution of
reactants, an intertwined pattern of highly complicated morphology. In three dimen-
sions, sheet-like “lamellar” structures are formed in some regions; reduced models for
reaction in the flow are then commonly based on “straightening out” the lamellae into
a one-dimensional array, leading to so-called lamellar models5,6,7. Although admit-
tedly limited in scope, a recent evaluation of some simple lamellar models by one of
us8 has revealed shortcomings in the quantitative predictive power of such models. It
is therefore appropriate to seek more accurate reduced models.

The obvious similarity between turbulent flows and laminar chaotic advection
(which is also sometimes called “Lagrangian turbulence”) suggests that one might
reasonably borrow (with some modifications) ideas from turbulent combustion to sim-
ulate laminar chaotic reacting flows. In this spirit, we apply in this paper one of
the most promising methods for modelling turbulent nonpremixed flames — namely,
conditional moment closure (CMC)9 — for laminar chaotic flows.

One might legitimately ask why such modelling is necessary for chemical reaction
in a simple laminar flow, such as contemplated here. The reason is that, although the
Eulerian velocity field is readily computed to high accuracy by traditional means such
as finite elements or finite volumes (indeed, here we shall specify the flow field ab initio),
the corresponding Lagrangian flow structures decrease in thickness exponentially in
time. Hence, when the Péclet number is large, the Lagrangian flow structures lead to
particular numerical difficulties.

Our focus is on the evolution of a multicomponent reaction in a laminar flow field
u(t, x) in some region Σ. The combined effects of advection, diffusion and reaction
are described by equations of the form

∂Ci

∂t
+ u · ∇Ci − D∇2Ci =

∑

j

νijΥj, (1)

where Ci is the molar concentration of the ith component, D is the coefficient of
diffusion (assumed equal for all species), νij is a stoichiometric coefficient (with an
appropriate sign) for the ith component in the jth reaction and Υj is the reaction rate
(in mol/cm3s) of the jth reaction. We assume that the flow field u is unaffected by
any changes in the local chemical composition or by the reaction process itself. Using
(respectively) L, U , C and Y as characteristic scales for length, velocity, concentration,
and reaction rate, we nondimensionalize the variables as follows: u′ = u/U , x′ =
x/L, t′ = tU/L, C ′ = C/C, Υ′

j = Υj/Y , where C = (C1, C2, . . .) is the vector of
concentrations. Then Eq. (1) becomes

∂C ′

i

∂t′
+ u′ · ∇′C ′

i −
1

Pe
∇′2C ′

i =
Da

Pe

∑

j

νijΥ
′

j ≡ Ωi(C
′). (2)

Here the dimensionless parameters are the Damköhler and Péclet numbers, Da =
Y L2/DC and Pe = LU/D; Ωi is dimensionless production/consumption rate of the
ith species. From this point, the problem is treated exclusively in its dimensionless
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form, and we remove the primes from all dimensionless variables, for the sake of
simplicity.

The main hypothesis of CMC is that variations in the concentrations of the reac-
tants in (2) are related to corresponding variations of one passive scalar 9. Specifically,
if the reactants are supplied to the system through two separate inlets, we define a
variable Z which is a normalized mixture fraction of a (nonreactive) tracer introduced
through one of the inlets. The evolution of Z is then governed by

∂Z

∂t
+ u · ∇Z −

1

Pe
∇2Z = 0. (3)

The expected value of the ith (reactive) scalar conditioned on the mixture fraction is

Qi(η) = 〈Ci|Z = η〉, (4)

where η is sample space variable for the mixture fraction. This conditional mean
evolves in η-space according to

∂Qi

∂t
= N2(η)

∂2Qi

∂η2
+ Ωi(Q), (5)

where
N2(η) = Pe−1〈(∇Z)2|Z = η〉 (6)

is the conditional scalar dissipation rate. The probability density function (PDF) P
for the mixture fraction satisfies

∂P (η)

∂t
= −

∂2N2(η)P (η)

∂η2
. (7)

The mixture fraction is constrained to lie within a certain interval, and at the ends of
this interval the PDF satisfies the boundary conditions

N2(η)P (η) = 0,
∂N2(η)P (η)

∂η
= 0. (8)

In the CMC derivation it is assumed that the conditional fluctuations ci = Ci −Qi(η)
are small and can be neglected. Note that in the limit case Pe = ∞, each molecule is
attached to its fluid element, and two particles which have identical chemical compo-
sition at the beginning of the process follow the same path in the composition space,
i.e., ci = 0. Therefore, although CMC was initially developed for turbulent flows, the
main assumption – which leads to Eqs. (5)–(8) – holds for any flows with high Pe.

The central problem in implementation of CMC is modelling the conditional scalar
dissipation rate N 2(η) and corresponding PDF P (η). The most popular approach used
in turbulent combustion is based on a presumed (usually two-parameter) PDF and a
consistent model for N 2(η)10,11,12. In the present work we use to our advantage the
fact that the transport equation (3) in a laminar flow is simpler than the corresponding
equation for a turbulent flow field. We use a Monte Carlo method to calculate the
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time evolution of moments of Z. Then we apply a special technique to reconstruct the
P (η) and N2(η)P (η). Once the mixing properties of the flow are known, Eq. (5) can
be solved for an arbitrary chemical reaction. In order to characterize the errors of the
method, we compare the approximate solution obtained using CMC with numerical
simulations of the full advection–diffusion–reaction equations.

Consistent modelling of PDF and scalar dissipation

We use the similarity between the advection–diffusion equation (3) and the Fokker–
Planck equation of a diffusive process13,14,15. Linear functionals of the solution of
Eq. (3) can then be estimated by a statistical simulation using a Monte Carlo method,
and the required computational resources do not depend on Pe. To develop the Monte
Carlo method, we consider Eq. (3) as the forward Kolmogorov or Fokker–Planck equa-
tion of a stochastic process, for which the corresponding backwards Kolmogorov equa-
tion reads

∂Z

∂τ
− u · ∇Z −

1

Pe
∇2Z = 0, (9)

where τ = −t is backwards-directed time (and we have made use of the incompress-
ibility of u in deriving (9)). In order to calculate the quality of the mixing at a point
x0 at a time t, we track a tracer particle backwards in time according to the stochastic
differential equation that corresponds to Eq. (9), i.e.,

dx(τ) = −u(τ, x) dτ +

√

2

Pe
dΞ, x(t) = x0, (10)

where dΞ is the increment of a Wiener process with unit dispersion. The concentration
at the point x0 can be estimated by the Monte Carlo method as Z(x0) = 〈ξ〉, where

{

ξ = 1, x(0) ∈ Σ1,

ξ = −1, x(0) ∈ Σ2,

and 〈· · · 〉 means mathematical expectation; Σ1 and Σ2 denote two subsets of the
domain Σ, in which different reactants are initially placed.

Consider two statistically independent diffusion trajectories, each starting at the
point x0 at a given time. Since they are independent, the corresponding values of ξ
for the two trajectories satisfy

〈ξ1ξ2〉 = 〈ξ1〉〈ξ2〉 = Z2(x0). (11)

Thus, only two random trajectories suffice to obtain an unbiased Monte Carlo estimate
for the variation of the concentration at a point. In order to calculate the third moment
we need three trajectories, etc.

Therefore, the Monte Carlo algorithm for the calculation of the nth moment Mn =
〈Zn〉 reads as follows:

4



1. Generate a point x0 from a uniform distribution.

2. Track a random trajectory (10) with the initial condition x0.

3. Repeat step 2 n times and get an unbiased estimate for Zn(x0).

4. Repeat steps 1–3 N times (N � 1) and average the results obtained.

It is clear that we may use the same trajectories in the calculation of different moments.
Once the moments Mn(t) of the mixture fraction are known, we can use this infor-

mation to approximate the PDF and corresponding scalar dissipation rate. We rewrite
Eq. (7) in the form

∂P (η)

∂t
= −

∂2W (η)

∂η2
, (12)

where W (η) = N 2(η)P (η) is a fractional dissipation rate, i.e., W (η) ∆η is the amount
of dissipation that occurs in the interval [η, η+∆η]. From the numerical point of view,
Eq. (12) has two advantages over Eq. (7) itself: (i) we do not need to solve an equation
with negative coefficient of diffusion; (ii) the equation becomes linear with respect to
both functions involved, a fact which we shall use below. The boundary conditions for
Eq. (12) are, from (8),

W |η=±1 = 0,
∂W

∂η

∣

∣

∣

∣

η=±1

= 0. (13)

Multiplication of Eq. (12) by ηn and integration by parts, using the boundary condi-
tions (13), yield the following equation for nth moment:

θn ≡
dMn

dt
+ n(n − 1)

∫ 1

−1

W (η)ηn−2 dη = 0. (14)

Note from this equation that, as we expect for a passive scalar, mixing does not affect
the first moment, i.e., the mean. The obvious constraints which should be imposed on
W (η) and P (η) are that

P (η) > 0 and W (η) > 0. (15)

Then we require that at each instant the pair P (η), W (η) minimizes the functional

Θ =
∑

n

θ2
n + α1

∫ 1

−1

(

∂2W

∂η2

)2

dη + α2

∫ 1

−1

(

∂2P

∂η2

)2

dη (16)

subject to the constraints (12), (13) and (15); here αi are (small) regularization pa-
rameters, which are necessary to make the above functional positively defined and
smooth the solution.

Using time and mixture fraction increments ∆t and ∆η we discretize Eq. (12) in
time and space as follows:

P i+1
j − P i

j

∆t
= −

W
i+1/2

j+1 − 2W
i+1/2

j + W
i+1/2

j−1

2∆η
, (17)
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where the upper and lower indices correspond to time and mixture fraction, respec-
tively. Eqs. (14) and (16) are discretized in the same way. Since the constraints are
linear, the resulting discrete optimization problem can be easily solved by a standard
method for quadratic programming, and we do not discuss the solution method in
detail.

To check the proposed algorithm, we solved a test problem for which the PDF
consists of two Dirac δ-functions which converge linearly with time, i.e.,

P (t, η) =
1

2
δ

(

η −

(

−1 +
t

10

))

+
1

2
δ

(

η −

(

1 −
t

10

))

.

It follows from Eq. (12) that

W (t, η) =
1

20
H

(

η −

(

−1 +
t

10

))

+
1

20
H

(

η −

(

1 −
t

10

))

,

where H is the Heaviside step function. Fig. 1 shows that the proposed numerical
algorithm performs well in reproducing these results. The numerical method does not
require any special treatment of a δ-function: due to the discrete nature of Eq. (17) it
is smeared over a small region of order ∆η.

Of course, in a real situation, the Monte Carlo method provides the moments of the
passive scalar only at a (small) number of discrete points, and so some interpolation
procedure is necessary to approximate the time evolution of Mn(t). We shall discuss
this issue in the next section.

Results and discussion

In the present study we consider chemical reactions in the (two-dimensional) “sine
flow”16. The (dimensionless) fluid domain is a periodic square box 0 6 x, y 6 1 (with
sides x = 0, 1 identified, and sides y = 0, 1 likewise). The flow is time-periodic, with
period T ; then16

u =

{

(sin 2πy, 0) mT 6 t < (m + 1

2
)T,

(0, sin 2πx) (m + 1

2
)T 6 t < (m + 1)T,

(18)

for m = 0, 1, 2, . . .. The flow is illustrated in Fig. 2. The case T = 1.6 gives a flow
that is “globally chaotic”, in the sense that any regular islands are barely discernible
to the eye in a Poincaré section; for other values of T , significant islands coexist with
chaotic regions of the flow. The segregated initial state for Eq. (3) is given by

Z(0, x, y) =

{

1 0 6 x < 1

2
,

−1 1

2
6 x < 1.

(19)

In Fig. 3 we show, from direct simulation of the governing equation (3), the evolution
of Z for the case T = 1.0, for which there are significant nonchaotic islands in the
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flow, associated with some period-2 periodic points. Results are shown for two Péclet
numbers: Pe = 105 and 103 (the numerical method is discussed later).

Monte Carlo calculations of the even moments of the passive scalar Z are shown
in Fig. 4 (odd moments vanish due to the symmetry of the initial conditions). Note
that the standard deviation of one Monte Carlo estimate (11) is unity, and in order
to calculate a moment whose value is 10−2 with an error of about 1% we need to
simulate about 106 random trajectories. A desktop PC can accomplish these calcula-
tions within an hour. However, if the moment is about 10−4 then we need four orders
of magnitude more CPU time. Fortunately, as the mixing proceeds, the distribution
of the passive scalar approaches a normal distribution. Thus we adopt the following
strategy. We calculate the second moment by the Monte Carlo method. Other mo-
ments are calculated until they drop below 10−2, then we assume that these moments
obey the same law as those of a normal distribution, namely, Mn = (n − 1)M2Mn−2.
We use cubic splines to interpolate the obtained data. Note that the flow-field is time
periodic and the mixing is due to the repeated reorientation and stretching of the
interface. Therefore the dissipation rate can be a non-monotonic function of time,
while the proposed interpolation procedure neglects the variations of the dissipation
rate during one period, which can lead to some error, especially at the beginning of
the process.

Once the moments Mn(t) are calculated, we apply our reconstruction procedure in
order to calculate the PDF P and the fractional dissipation rate W . The shapes of
the calculated functions depend on the number of moments used in the calculations.
The results are presented in Fig. 5. As mentioned above, for T = 1.6 the flow field
is “globally chaotic”, therefore the mixing is fast and the PDF quickly approaches
a unimodal shape. For T = 1.0, by contrast, the well-mixed chaotic region coexists
with less-well mixed regular islands (see Fig. 3). The local peaks at η = ±1, which
correspond to these poorly mixed regions, persist for a long time when Pe = 105, while
the central peak (due to the chaotic region) shrinks in width exponentially with time,
and grows correspondingly in height. (These peaks are significantly blurred at smaller
Péclet number, Pe = 103, although we do not show the corresponding results here.)
As one can see, the shape of the reconstructed PDF and dissipation rate depend on
the number of moments used in the calculations. Although the reconstructed P (η)
and W (η) deviate significantly from corresponding results for the direct numerical
simulations, the reconstruction from four even moments resembles the general features
of the approximated functions significantly better than the reconstruction from only
one (second) moment. The main drawback of the one-moment reconstruction is that
it smears out the side peaks and cannot adequately represent poorly mixed regions.
The effect of the reconstructed PDF and dissipation rate on the chemical reactions
will be discussed below.

The reaction scheme that we use to test our approach is one for which it is well
known that the yield can be significantly affected by the details of the mixing process,
namely, the two-stage competitive–consecutive reaction17,8

A + B
k1−→ R, B + R

k2−→ S, (20)
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with initial conditions

(A(0, x, y), B(0, x, y)) =

{

(2, 0) 0 6 x < 1

2
,

(0, 2) 1

2
6 x < 1,

(21)

and R(0, x, y) = S(0, x, y) = 0 for all x and y.
In contrast to the Monte Carlo method, direct solution of the governing equations

(2) becomes increasingly computationally expensive as the Péclet number is increased,
with well-resolved simulations of (2) being feasible on a desktop PC only up to around
Pe = 105. Our method (pseudospectral in space18,19,20, with exponential time differ-
encing21, specifically the scheme denoted by Cox and Matthews21 as ETDRK2) has
been described in detail elsewhere8, and was chosen for its improved accuracy over
other methods19. We use either 512× 512 or 768× 768 Fourier modes and a time step
of 1.6 × 10−4, which both prove adequate for converged results. We have carried out
simulations for Pe = 103, 104, 105 and for rate constants k1 = 10, k2 = 1. In this case
the reaction is relatively fast in comparison to the mixing time and the outcome of the
reaction is sensitive to Pe.

Before comparing results from direct simulation and CMC, we present some scatter
plots to demonstrate the close correlation between reactive and passive species, thus
to some extent confirming the validity of the underlying assumptions of the CMC
model. Fig. 6 shows scatter plots of R against η, for Pe = 105 and T = 1.6, after 1,
2, 3 and 4 periods of the flow. If we draw a curve through this scattered points, the
deviations of the data points from this curve is smaller than the total variations of the
concentration.

Calculations using CMC are performed as follows. We combine Eq. (5) with
Eq. (12) to obtain the conservative form of the reaction–advection–diffusion equation
in η-space:

∂PQi

∂t
=

∂

∂η

(

−Qi
∂W

∂η
+ W

∂Qi

∂η

)

+ Ωi(Q)P, (22)

which is solved by a finite-difference method as follows. The first and third terms of
Eq. (22) are discretized by a Crank–Nicolson scheme similarly to Eq. (17). The second
term is approximated by the first-order upwind scheme

Q
∂W

∂η
≈

1

2
(Qj+1

i + Qj
i ) max(0, v

j+1/2

i ) +
1

2
(Qj+1

i+1 + Qj
i+1) min(0, v

j+1/2

i ), (23)

where

v
j+1/2

i =
W

j+1/2

i+1 − W
j+1/2

i

∆η
(24)

and the upper and lower indices correspond to time and mixture fraction, respectively.
The reaction term is modeled by the second-order Adams–Bashforth method. The
resulting equations are solved by a tri-diagonal solver. Note that at the beginning of
the process W is close to a δ-function and the discretization error in Eqs. (23)–(24)
can be relatively high.

The results of our simulations are presented in Fig. 7. To compare the results using
CMC methods with the full two-dimensional simulations, we plot spatially averaged
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concentrations of the products, 〈R〉 and 〈S〉; then the reactant concentrations 〈A〉 and
〈B〉 follow automatically from the material balance. For T = 1.6 (globally chaotic
case), the obtained results have very low sensitivity to the shape of the PDF. Results
obtained with only one moment (the second) fit the DNS data as well as results
obtained using the first four even moments and so we do not show the former on the
figure, for this value of T . If the chaotic region coexists with significant regular islands
(T = 1.0), the shape of the PDF becomes more important. For high Pe, when the
chaos becomes the dominant mixing mechanism, the one-moment reconstruction leads
to qualitatively wrong results.

To compare our method with the presumed-PDF method, we performed calcula-
tions with the β-PDF method12. Due to the symmetry of the initial conditions, the
equation for the β-PDF reads

P (η) =
[(1 + η)(1 − η)]ν−1

∫ 1

−1
[(1 + s)(1 − s)]ν−1 ds

, (25)

where ν = (1−M2)/2M2. Inspection of Fig. 7 shows that although the presumed-PDF
method works reasonably well (but worse than the reconstructed PDF based on only
one moment) for the globally chaotic case, the error becomes unacceptably high when
T = 1.0.

In the present work, we model our system as an incompletely stirred reactor (ISR) 9,
i.e., we assume that all conditioned means are the same over the entire flow region. This
assumption can be justified in a globally chaotic (or in some classes of turbulent) flow
field. Due to the rapid mixing, the PDF approaches a unimodal shape with relatively
small standard deviation. In this case the details of the PDF appear to become
unimportant — at least, the success of both our calculations and the presumed-PDF
method for different combustion models demonstrates low sensitivity of the chemical
reactions to the precise shape of PDF. Note that although P (η) and W (η) can be
approximated by a wide range of functions, the dissipation rate has to be consistent

with the distribution of η, i.e., P (η) and W (η) must satisfy Eq. (12). If the chaotic
region coexists with poorly mixed islands, the assumptions which lead to the ISR
model are no longer valid, and the approximate modelling of the PDF gives incorrect
predictions of the outcome of the reaction. Thus it is interesting to note that a more
detailed representation of the PDF captures the neglected spatial variations of the
concentrations. One of the obstacles for numerical implementation of the CMC method
is the additional dimensionality associated with the conditioning variable. It has been
noted9 that the CMC method can use a much coarser spatial grid than that in a CFD
solver. Our results show that the spatial resolution and the resolution in the mixture
fraction space mutually complement one another, and that significant inhomogeneity
in physical space can be successfully captured by corresponding variations along the
η axis.
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Conclusions

A new approach to the simulation of chemical reactions in laminar chaotic flow has
been proposed, in which a Monte Carlo method provides the statistical moments of an
associated passive scalar and the CMC method is used to model the chemical reaction.
Comparison with direct numerical simulation shows that the approach provides an
accurate description of the chemical reactions when the underlying flow field has no
significant nonchaotic regions.

The salient component of the proposed methodology linking the Monte Carlo and
CMC methods is the reconstruction procedure, which produces the PDF and dissipa-
tion rate of the passive scalar with given statistical properties. Although in the present
study we use the results of statistical simulations as input to the reconstruction pro-
cedure, Monte Carlo is not the only available method which can provide the necessary
statistical information. Any other data obtained by experimental and/or numerical
methods can be incorporated into the proposed scheme, which then can be applied to
turbulent as well as to laminar flows.

In the present study, we have treated the flow region as a single-chamber reactor.
Note that the incompletely stirred reactor model9 has been proposed for a region of
the flow bounded by walls across which fluxes are known. However, if we consider
a series of reactors where the outlet of ith reactor serves as inlet of jth reactor the
proposed method can readily be extended to a compartment model. We denote the
conditional flux from ith to jth compartment by Uij(η), where Uij > 0; then the total
mass flux between these two compartments is

∫

(Uij(η) − Uji(η)) dη. (26)

Further, we denote by Vi, Pi(η) and N2
i (η) the volume of the ith compartment, the

PDF of the passive scalar in the ith compartment and its conditional dissipation rate,
respectively. The multi-compartment analog of Eq. (7) then reads

Vi
∂Pi(η)

∂t
+

∑

j

Pi(η)Uij(η) −
∑

j

Uji(η)Pj(η) = −Vi
∂2N2

i (η)Pi(η)

∂η2
. (27)

Therefore, as in the one-compartment case, we have to find a set of nonnegative
functions Pi(η), Uij(η) = Pi(η)Uij(η) and Wi(η) = N2

i (η)Pi(η) which minimizes an
appropriately defined residual. Since Eq. (27) is linear with respect to Pi(η), Uij(η) and
Wi(η), the problem can be solved by a standard method for quadratic programming.
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List of figure captions

Fig 1. Solution of a test problem: reconstruction, based on second and fourth moments,
of (a) the fractional dissipation rate W and (b) the PDF P . The finite-difference
method smears the δ-function over several neighboring cells.
Fig 2. Sine flow (18): flow field during first (left) and second (right) half-period.
Fig 3. Grayscale plots of Z, evolving in the sine flow (18) with T = 1.0. Results are
obtained from direct simulation of (3), from the initial condition (19). Black and white
correspond, respectively, to Z = +1 and Z = −1. The upper sequence corresponds
to Pe = 105 and the lower sequence to Pe = 103. Plots show Z at times nT/2 for
n = 1, . . . , 12.
Fig 4. From top to bottom: second, fourth, sixth and eighth moments of the passive
scalar Z. Symbols correspond to the Monte Carlo results, while lines are from the
interpolation procedure. T = 1.6, Pe = 105.
Fig 5. PDF (left column) and dissipation rate (right column) after 2, 4, 6, 8 and 10 pe-
riods (from top to bottom). Shown are results from direct numerical simulation (solid
lines), reconstruction with first four even moments (dashed lines) and reconstruction
with only one (second) moment (dotted lines). Pe = 105, T = 1.0.
Fig 6. Scatter plots of R against η for Pe = 105 and T = 1.6 after (a) 1, (b) 2, (c) 3,
(d) 4 periods of the flow.
Fig 7. Results for k1 = 10, k2 = 1: direct numerical simulation (solid line); CMC
with PDF reconstructed with four even moments (diamonds); CMC with PDF recon-
structed with only the second moment (hexagons); presumed β-PDF (circles). Con-
centrations of R (upper lines) and S (lower lines) for Pe = 103, 104, 105 (from top to
bottom). T = 1.6 (left column) and T = 1.0 (right column).
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Figure 1: Solution of a test problem: reconstruction, based on second and fourth
moments, of (a) the fractional dissipation rate W and (b) the PDF P .
The finite-difference method smears the δ-function over several neighboring
cells.
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Figure 2: Sine flow (18): flow field during first (left) and second (right) half-period.
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Figure 3: Grayscale plots of Z, evolving in the sine flow (18) with T = 1.0. Results
are obtained from direct simulation of (3), from the initial condition (19).
Black and white correspond, respectively, to Z = +1 and Z = −1. The
upper sequence corresponds to Pe = 105 and the lower sequence to Pe =
103. Plots show Z at times nT/2 for n = 1, . . . , 12.
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Figure 4: From top to bottom: second, fourth, sixth and eighth moments of the
passive scalar Z. Symbols correspond to the Monte Carlo results, while
lines are from the interpolation procedure. T = 1.6, Pe = 105.
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Figure 5: PDF (left column) and dissipation rate (right column) after 2, 4, 6, 8 and
10 periods (from top to bottom). Shown are results from direct numer-
ical simulation (solid lines), reconstruction with first four even moments
(dashed lines) and reconstruction with only one (second) moment (dotted
lines). Pe = 105, T = 1.0.
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Figure 6: Scatter plots of R against η for Pe = 105 and T = 1.6 after (a) 1, (b) 2,
(c) 3, (d) 4 periods of the flow.
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Figure 7: Results for k1 = 10, k2 = 1: direct numerical simulation (solid line); CMC
with PDF reconstructed with four even moments (diamonds); CMC with
PDF reconstructed with only the second moment (hexagons); presumed
β-PDF (circles). Concentrations of R (upper lines) and S (lower lines)
for Pe = 103, 104, 105 (from top to bottom). T = 1.6 (left column) and
T = 1.0 (right column).
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