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Summary. We analyze the elemental time scale of intracellular calcium dynamics.
It is determined by the time course of Ca2+ puffs, which represent the fundamental
quantum of Ca2+ release from intracellular storage compartments. Since Ca2+ puffs
are truly random, we propose a novel master equation and corresponding Fokker-
Planck equations. Our results demonstrate that puff initiation can be mapped to
an escape process. The stochastic fraction of puff periods is identified with mean
first passage times. We find that the discrete character of release sites represents a
necessary condition for puff initiation. A continuous modeling of the number of open
channels does not allow Ca2+ puffs in the relevant part of the parameter space.

1 Introduction

The unraveling of molecular interactions has been providing intriguing insights
into cellular organization during the last decades. On the one hand, qualita-
tive results showed connections between formerly unassociated reactions. For
instance, one of the molecular mechanisms that underlies cancer was identi-
fied to play a central role in Alzheimer’s disease [22, 2]. On the other hand,
the ongoing improvement in experimental techniques allowed quantitative in-
vestigations. They revealed that cells use a plethora of different amounts of
molecules for a variety of tasks. Some pathways involve macroscopically large
numbers of chemical agents, whereas others are controlled by only some tens
of molecules. This discrepancy in the number of reactants attributes a twin
role to fluctuations. They can be neglected in the former reactions, but play a
pivotal role in the latter. Experiments on gene expression demonstrated that
fluctuations can decide upon the phenotype leading to population heterogene-
ity [23, 19]. For a general review on intracellular noise, see [26].

Modeling intracellular phenomena therefore demands an a priori choice of
methods. As long as fluctuations are negligible, deterministic equations cor-
rectly capture the dynamics [10, 17]. However, these approaches break down
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in the presence of noise. Comparisons between stochastic models and their
deterministic counterparts have revealed that noise can induce a dynamical
behavior that is not present in the absence of fluctuations. For instance, the
MinCDE system only oscillates if the experimentally observed small number
of interacting molecules is respected [16]. The deterministic equations decay
to a fixed point.

The above examples all have in common that the total number of interact-
ing molecules in the entire cell is small. However, fluctuations can also arise
due to cellular heterogeneity. Steep concentration gradients may create very
heterogeneous conditions within a single cell such that the conditions for a re-
action to occur are given in a small part of the cell only. Since these gradients
are typically transient we call this phenomenon dynamic compartmentaliza-
tion. The number of interacting molecules in such a dynamic compartment
may only be a tiny fraction of the molecules present in the whole cell. Then,
fluctuations remain large and cannot be neglected, although the total number
of molecules in the whole cell would allow for mean field behavior. That is the
case with intracellular Ca2+ dynamics. The dynamic compartment is a single
Ca2+ releasing channel cluster as is explained below.

The dynamics of the Ca2+ concentration in the cytosol of a cell is deter-
mined to a large degree by release and uptake of Ca2+ by intracellular storage
compartments, in particular the endoplasmic reticulum (ER). Release is con-
trolled by inositol-1,4,5-trisphosphate (IP3) receptor channels (IP3R). They
are arranged in clusters with a diameter of less than 100nm that comprise be-
tween 1 and 40 channels and that are randomly distributed on the membrane
of the ER with distances between 1-7 µm [30, 21]. IP3Rs have the important
property that their open probability depends on the Ca2+ concentration in
the cytosol. The details of this dependency will be discussed in section 2. A
moderate increase in the cytosolic concentration - i.e. on the outside of the
storage compartment - increases the opening probability.

The notion of an open probability goes along with the generally stochastic
character of ion channels, i.e. a single IP3R channel opens and closes randomly
[14, 35]. Since the number of Ca2+ release channels per cluster is small, fluc-
tuations still prevail in a cluster [7]. They lead to random release events called
Ca2+ puffs. A puff is the spontaneous opening of channels of a single cluster
and represents the elemental event of Ca2+ liberation. Puffs last from a few
tens of milliseconds to a few hundred milliseconds and they cause a huge but
strongly localized concentration rise. Many puffs can cooperate to build global
phenomena covering the whole cell like waves of release or oscillations [21, 6],
i.e. puffs constitute the fundamental building block of Ca2+ signals. We il-
lustrate this concept with the initiation and the spreading of a Ca2+ wave.
Assume that all channels are closed and the cell is in its resting state. Fluc-
tuations due to the random association and dissociation of Ca2+ and IP3 to
the IP3Rs eventually lead to a Ca2+ puff. Ca2+ is liberated from the ER and
diffuses to the surrounding clusters. There, it causes an increase of the open
probability and may therefore induce channels of these clusters to open. That
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gives rise to another Ca2+ puff and release has propagated by one cluster dis-
tance. In that way a Ca2+ wave travels through the cell. However, there is no
guarantee that IP3R channels at neighboring clusters open, because channel
opening is a truly random event.

Indeed, fluctuations turned out to be necessary to observe any temporal
or spatial structures in intracellular Ca2+ dynamics. That role of fluctuations
has been established by two complementary approaches. On the one hand,
oscillations that agree with experimental findings in stochastic simulations
disappear in the deterministic limit of the simulated system [6]. On the other
hand, a bifurcation analysis of a deterministic model for a single IP3R cluster
has proofed that the local dynamics is non-oscillatory when realistic Ca2+

fluxes and gradients are incorporated [32, 33, 31]. The loss of oscillations
results from the high Ca2+ concentrations at an open cluster. They lead to
a saturation of all Ca2+ regulating processes and hence do not permit Ca2+

oscillations in deterministic models. Fluctuations drive the channel dynamics
out of the saturated state and eventually reinstall oscillations. The strong
localization of the Ca2+ liberation and the entailing large gradients around
an open cluster create the dynamic compartmentalization mentioned above.
Since the volume of the elevated Ca2+ concentration as well as the number
of IP3Rs that experience this highly increased Ca2+ concentration is small,
fluctuations remain important.

Given the vital part of Ca2+ puffs in intracellular Ca2+ dynamics and the
importance of fluctuations, a stochastic description of a single cluster is the
focus of the present report. We will apply it to the initiation of Ca2+ puffs,
which represents the first step for any Ca2+ pattern. Our findings suggest
that puff initiation can be mapped to an escape process from the resting state
towards the first open channel. The mean first passage time corresponds to
the stochastic part of the puff frequency. The mathematical description has
to account for the integer number of open channels per cluster. A continuous
Ca2+ model (using non-integer fractions of open channels) that incorporates
realistic fluxes does not permit Ca2+ puffs for parameter values that agree
with experimental data. The mean first passage times can be represented as
an infinite series of exponentials. However, already the first terms in the ex-
pansion yield excellent convergence. That hints at a Poissonian character of
puff initiation. Although noise is intrinsically multiplicative for intracellular
Ca2+ dynamics, we provide evidence that additive noise may serve as a rea-
sonable approximation.

We will introduce a Ca2+ model for an IP3 receptor channel cluster in
the next section. It serves as input for a master equation in section 3, from
which we will derive two Fokker-Planck equations in section 4. Finally, we will
employ these equations to characterize the initiation of Ca2+ puffs.
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2 Ca2+ model

The IP3 receptor channel is a tetramer the subunits of which have binding sites
for Ca2+ and IP3. We implement a model for a single subunit that is based on
ideas of De Young’s and Keizer’s [5]. They assume a subunit to possess three
binding sites: an activating Ca2+ binding site, an inhibiting Ca2+ binding site
and an activating IP3 binding site. The occupation of the binding sites controls
the state of the subunit. When IP3 and Ca2+ are bound to their activating
binding sites, a subunit is in the activated state. As soon as Ca2+ binds to the
inhibiting binding site, a subunit is inhibited, independent of the state of the
other binding sites. It can only be activated again upon dissociation of Ca2+

from the inhibiting binding site. Experiments have indicated that an IP3R
channel is conducting when at least 3 subunits are activated [4, 35]. Random
binding and unbinding of Ca2+ and IP3 and therefore random state changes
of the receptor are the source of stochasticity of intracellular Ca2+ dynamics.

The number of open IP3R channels determines the Ca2+ flux from the
ER to the cytosol. Since the release channels are tightly packed within a
cluster, a relation between the number of channels in the cluster and cluster
size exists. Consequently, we can map the number of open channels to the
size of a conducting area (or volume) equal to the area occupied by all open
channels. A change in the number of releasing IP3R channels corresponds to
a modulation of the conducting area of a cluster. This region is usually not
connected. However, Swillens et al. showed that the spatial arrangement of
IP3R channels does not influence the Ca2+ dynamics at an open cluster [30].
Therefore, we map the area of all conducting release channels to an area of
the same size concentric to the cluster area. Let a denote the radius of this
region, N the total number of channels per cluster and no the number of open
channels, then a = a0

3

√

no/N . That reflects the above notion that the volume
of the conducting sphere corresponds to the volume that is occupied by the
fraction no/N of open channels. If no = 0 then a = 0, and a takes the maximal
value a0 if all N channels are open.

The deterministic dynamics of this cluster model has been investigated in
[32, 33]. In addition to IP3 mediated Ca2+ liberation, we considered sarco-
endoplasmic reticulum calcium ATPase (SERCA) pumps, which transport
Ca2+ from the cytosol to the ER, and a leak flux. The stationary Ca2+ con-
centration profile that results from these three fluxes is

c(r)=

[

A(a)
sinh( k1r)

r
+ e1

]

Θ(a− r)+
[

B(a)
exp(−k2r)

r
+ e2

]

Θ(r−a) , (1)

where

A(a) =
l(k2a+ 1)

cosh(k1a)k1 + sinh(k1a)k2
, (2a)

B(a) =
l(sinh(k1a) − cosh(k1a)k1a)

exp(−k2a)(cosh(k1a)k1 + sinh(k1a)k2)
, (2b)
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with

l =
−kckpE

(kl + kp + kc)(kl + kp)
, k1 =

√

kl + kp + kc

D
, k2 =

√

kl + kp

D
, (3)

and e1 := (kl + kc)E/(kl + kp + kc), e2 := klE/(kl + kp). The constants kl,
kp and kc denote the leak flux coefficient, the strength of the SERCA pumps
and the channel flux coefficient, respectively. The diffusion coefficient is given
by D. E denotes the concentration of free Ca2+ in the ER.

Simulations have demonstrated that the Ca2+ concentration rapidly equi-
librates upon a change in the number of open channels [31]. Hence, we will
approximate the Ca2+ dynamics by its stationary value in the remainder of
this work. The number of open channels no uniquely determines the Ca2+

concentration according to equation (1) and a = a0
3

√

no/N . The focus of the
two subsequent sections is the calculation of no.

3 Master equation

The number of open channels no depends on the state of the subunits of the
IP3Rs. A state of a subunit is determined by the occupation of its binding sites.
The De Young Keizer (DK) model has three binding sites per subunit and
hence eight subunit states. We reduce these eight states in two steps to three
states. Firstly, we eliminate the IP3 dynamics adiabatically since IP3 binding
and unbinding are much faster than the Ca2+ dynamics in the framework of
this model. The resulting four states are labeled by a binary pair ij, where
the first index represents the Ca2+ activating binding site and the second the
Ca2+ inhibiting binding site [6]. An index equals 1 when the binding site is
occupied and 0 otherwise, e.g. 10 corresponds to the activatable state of a
subunit. The second approximation uses the fact that we are interested in
activation starting from a stationary state. Transitions among the inhibited
states 11 and 01 have little impact on that activation process. Moreover, these
states are rarely populated during puff initiation. Consequently we lump the
two inhibited state into one state h̄. Figure 1 depicts the transition scheme
for this 3 state model. The transition rates follow from [5] and [6].

Modeling the dynamics of an IP3R on the basis of its subunits leads to
various consequences for a cluster of N IP3Rs . As long as every IP3R is
treated individually and subunits are assigned to individual channels - as has
been done in stochastic simulations [6] - the state of the cluster is uniquely
determined by the states of its subunits. However, an approach based on a
population of subunits not grouped into individual channels is more suitable
for the derivation of master equations and Fokker-Planck equations which we
would like to use. That requires to determine the number of open channels
from the total number of activatable subunits in the subunit population. We
assume that the activatable subunits are randomly scattered across the chan-
nels. The distribution of the n10 activatable subunits on the 4N subunits of
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Fig. 1. Transition scheme for the three state model of the IP3 receptor. d5 = b5/a5

is the dissociation constant for Ca2+ activation, b6 the dissociation rate of Ca2+ from
the inhibiting site averaged over both IP3 binding states. We denote the number of
subunits in one of the three states by n10, n00 and nh̄

a cluster decides upon the value of no and hence the Ca2+ concentration. We
show in the appendix that this distribution is sharply peaked around its mean
value. Therefore, we set no = 〈no〉 = na. na is defined in equation (52).

The stochastic nature of Ca2+ release through IP3Rs entails that the exact
number of subunits in either of the three states 10, 00 or h̄ at a given time t,
i.e. the triplet (n10(t), nh̄(t), n00(t)), cannot be specified exactly any more. On
the contrary, only the probability P (n10, nh̄, n00; t) to find a certain realization
of (n10, nh̄, n00) at time t is accessible. Since the total number of subunits is
fixed, the values of n10 and nh̄ suffice to specify the triplet (n10, nh̄, n00; t), so
that P (n10, nh̄, n00; t) = P (n10, nh̄; t).

The probability P (n10, nh̄; t) changes in the time interval [t, t+ dt] due to
two opposing processes: Being in (n10, nh̄) at time t, binding or unbinding of
Ca2+ alters n10 or nh̄ during dt and hence reduces P (n10, nh̄; t). On the other
hand, transition from states as (n10 + 1, nh̄) or (n10 − 1, nh̄) into (n10, nh̄)
increases P (n10, nh̄; t). Taking all possible reactions according to the figure
1 into account, the time evolution of P (n10, nh̄; t) is captured by the master
equation [34]

Ṗ (n10, nh̄; t) =

− [n10[b5+a6c(n10)] + nh̄b6]P (n10, nh̄; t)+[n10+1]b5P (n10+1, nh̄; t)

− nh̄b6P (n10, nh̄; t) + [hN−nh̄−n10+1]a6c(n10)P (n10, nh̄−1; t)

− [hN−n10−nh̄] [a6c(n10)+a5c(n10)]P (n10, nh̄; t)

+
b6c(n10−1)[nh̄+1]

c(n10−1) + d5
P (n10−1, nh̄+1; t) +

b6d5[nh̄+1]

c(n10) + d5
P (n10, nh̄+1; t)

+ [hN−nh̄−n10+1]a5c(n10−1)P (n10−1, nh̄; t)

+ [n10+1]a6c(n10+1)P (n10+1, nh̄−1; t) .

(4)

For instance being in (n10, nh̄), the term proportional to a6c in the first line
denotes a transition from 10 to h̄, so that the final state is (n10 − 1, nh̄ + 1).
The Ca2+ concentration is given by equation (1). The Ca2+ concentration
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in the master equation depends on n10, which is indicated by the notation
c(n10). The radius a in equation (1) follows from the number of activatable
subunits as a = a0

3

√

na/N according to the preceding discussions.
The adiabatic elimination of the IP3 dynamics leads to non-integer values

for the number of open channels. That demands a careful interpretation of
the size of the conducting membrane patch, which was assumed to take only
discrete values due to the discreteness of no. One approach is to truncate the
rational values of no as [no]+, where [no]+ denotes the largest integer that is
less or equal no. It entails c = cb as long as n0 < 1, where cb denotes the base
level of the Ca2+ concentration. This approach favors the closed configuration
during puff initiation. In another approach we will keep the non-integer value
of no and consider a as a quasi continuous function. We will discuss the effects
of both approaches with respect to puff initiation.

Equation (4) is an accurate description of the stochastic dynamics repre-
sented by the scheme in Figure 1. We will derive approximations like Fokker-
Planck equations to calculate escape time characteristics from this master
equation.

4 Fokker-Planck equations

The discrete nature of master equations often impedes an analytic treatment.
That holds in particular for master equations with nonlinearities or artificial
boundary conditions. In these cases, several approximations have been put
forward [34, 25, 18, 11, 12]. Despite the plethora of methods, there is still no
consensus which approximation is best [9]. Each of them possesses advantages
and drawbacks, so that the problem at hand finally decides which procedure
to use. We will concentrate on van Kampen’s Ω expansion and a method that
is similar to a Kramers-Moyal expansion. The latter keeps the nonlinearities
of the master equation in the fluctuations, whereas the former approximates
them in a linear fashion. Moreover, van Kampens’s expansion is only valid
when the macroscopic equation displays a single stable fixed point.

The Ω expansion requires a small parameter 1/Ω in the master equation,
which for our purposes is the inverse number of subunits, i.e. Ω = 4N . The
systematic expansion of equation (4) in powers of Ω is based on the trans-
formations n10 = Ωφ(t) + Ω1/2ξ and nh̄ = Ωψ(t) + Ω1/2η. They decompose
the variables of the master equation into macroscopic parts (φ, ψ) and fluc-
tuations (ξ, η). Inserting this ansatz into equation (4), the first non vanishing
order of Ω yields the macroscopic equations

∂φ

∂t
= − φ(a5c+ a6c+ b5) + ψ

(

b6c

c+ d5
− a5c

)

+ a5c , (5a)

∂ψ

∂t
= − (a6c+ b6)ψ + a6c , (5b)



8 Rüdiger Thul and Martin Falcke

with c = c(a0
3
√
φa) and φa := r3φ3(4−3rφ). r denotes the fraction of subunits

in the state 10 that are activated: r := I/(I + d1). Equations (5) correspond
to the rate equations that are associated with the transition scheme in figure
1, when the conservation condition n10 + nh̄ + n00 = 4N is applied. Note
that φa is the continuous limit (N → ∞) of equation (52). Therefore, φa is
the probability that at least 3 of the 4 subunits of an IP3R are activated.
The solutions of equation (5) represent the deterministic part of the above
transformation of variables. They have the stationary values

φ̄ =
d6c

(c+ d5)(c+ d6)
, ψ̄ =

c

c+ d6
, (6)

which agree with results in [33]. d6 = d2(I + d1)/(I + d3) is an effective
dissociation constant. d2 denotes the dissociation constant for Ca2+ inhibition
when the IP3 binding site is ligated, d1 and d3 represent the dissociation
constants of IP3 binding [5].

The next order in Ω determines the fluctuations through the probability
P (n10, nh̄; t)
= P (Ωφ+Ω1/2ξ,Ωψ +Ω1/2η; t) =: Π(ξ, η; t) according to

∂Π

∂t
=−

[

g11
∂

∂ξ
+ g21

∂

∂η

]

(ξΠ) −
[

g12
∂

∂ξ
+ g22

∂

∂η

]

(ηΠ)

+
1

2

[

h11
∂2

∂ξ2
+ 2h12

∂2

∂η∂ξ
+ h22

∂2

∂η2

]

Π .

(7)

The matrices (gij) and (hij) with h12 = h21 are defined as

g11 := b6d5ψc
1/(c+ d5)

2−a6

(

c+ φc1
)

−b5−a5

(

c− (1 − φ− ψ)c1
)

, (8a)

g21 := a6c
1 − a6ψc

1 , (8b)

g12 := b6c/(c+ d5) − a5c , (8c)

g22 := − (a6c+ b6) , (8d)

and

h11 := a5(1 − ψ − φ)c+ b6ψc/(c+ d5) + a6φc+ b5φ , (9a)

h21 := −b6ψc/(c+ d5) − a6φc , (9b)

h22 := a6(1 − ψ)c+ b6ψ . (9c)

with

c1 :=
dc

da
(a0

3

√

φa)
a0

3
3

√

φ−2
a

[

18r4φ3 − 12r3φ3 − 12r3φ2
]

. (10)

Equation (10) arises from inserting equation (52) into a = ao
3

√

na/N and then
expanding c(a) in powers of Ω. The matrix (gij) coincides with the matrix of
the linearized macroscopic equations (5). The fluctuations enter through the
matrix (hij). The Hurwitz criterion [15] assures that this matrix is positive
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semi definite, which means that equation (7) is a linear multivariate Fokker-
Planck equation.

The linear treatment of the noise in equation (7) has cast some doubt on
the validity of the Ω expansion. Therefore, a different class of Fokker-Planck
equations have been proposed that keep the nonlinearities of the master equa-
tion. Kramers and Moyal have treated the shifts n10 ± 1, nh̄ ± 1 of n10 and
nh̄ in equation (4) by means of a Taylor expansion [18, 25]. Following this
procedure and defining the new variables φ := n10/Ω and ψ := nh̄/Ω, we
obtain a Fokker-Planck equation for the probability p = p(φ, ψ, t):

∂p

∂t
=
∂

∂φ

[

φa6c+ φb5 − (1 − ψ − φ)a5c−
b6c

c+ d5
ψ

]

p

+
∂2

2Ω∂φ2

[

φa6c+ φb5 + (1 − ψ − φ)a5c+
b6c

c+ d5
ψ

]

p

+
∂

∂ψ

[

b6 − (1 − ψ)a6c
]

p+
∂2

2Ω∂ψ2

[

b6 + (1 − ψ)a6c
]

p

− ∂

Ω∂ψ∂φ

[

φa6c+
b6c

c+ d5

]

p .

(11)

The nonlinearities are introduced through c = c(a0
3
√
φa) with φa defined as

after equation (5).
Equations (4), (7) and (11) constitute the starting point for a systematic

study of puff frequencies. Given a configuration (n0
10, n

0
h̄
) at time t = 0, they all

yield the probability for a configuration (nt
10, n

t
h̄
) at time t > 0. If we identify

(n0
10, n

0
h̄
) with the resting state of a cluster and (nt

10, n
t
h̄
) with the first channel

opening, such a transition in the configuration space gives the probability for
a Ca2+ puff. Consequently, we interpret a puff as an escape process from
the state (n0

10, n
0
h̄
) to the state (nt

10, n
t
h̄
). Although the above equations allow

the calculation of this escape probability, no general solutions are known for
two dimensional escape processes (see [13] for a recent result). However, the
time scale separation between Ca2+ activation and Ca2+ inhibition leads to
a reduction of the two dimensional equations to one dimension. Since the
inhibiting processes are much slower than binding and unbinding of Ca2+ to
the activating binding site, we assume that nh̄ remains unchanged during the
initiation of a puff. That is identical to setting nh̄ = const, and the master
equation simplifies to

Ṗ (n10) = − b6c(n10)

c(n10) + d5
nh̄P (n10) +

b6c(n10 − 1)

c(n10 − 1) + d5
nh̄P (n10 − 1)

− a6c(n10)n10P (n10) + a6(n10 + 1)c(n10 + 1)P (n10 + 1)

− (4N − n10 − nh̄)a5c(n10)P (n10) − b5n10P (n10)

+ (4N − n10 − nh̄ + 1)a5c(n10 − 1)P (n10 − 1)

+ b5(n10 + 1)P (n10 + 1) .

(12)

For a later analysis, it is convenient to rewrite equation (12) in the form
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Ṗ (n10) = − (gn10
+ rn10

)P (n10)+ gn10−1P (n10 − 1)+ rn10+1P (n10 +1) (13)

with

gn10
=

b6c(n10)

c(n10) + d5
[Ωψ̄] + (4N − [Ωψ̄] − n10)a5c , (14a)

rn10
= b5n10 + a6c(n10)n10 , (14b)

and ψ̄ defined as in equation (6). From equation (12), we could again derive
Fokker-Planck equations in the same manner as before. However, a more direct
approach for the one dimensional Ω expansion is setting η equal to zero in
equation (7) due to nh̄ = const. Keeping only the derivatives with respect
to φ in equation (11) gives the nonlinear Fokker-Planck equation. Note that
these one dimensional equations are only valid during the initiation phase of
a puff, whereas equations (4), (7) and (11) capture the full time evolution.
Nevertheless, we will concentrate on equation (12) and the entailing Fokker-
Planck equations in the remainder of this work, because they admit analytic
solutions and provide far reaching insights into puff frequencies. The existence
of analytic solutions is one of the most prominent features of van Kampen’s
expansion, so that we will treat the corresponding Fokker-Planck equation
most generally in the next section.

5 Escape times

The initiation of a Ca2+ puff corresponds to an escape from the stationary
state to the first channel opening. That requires the definition of the bound-
aries of the phase space area from which the escape occurs. Since we restrict
the discussion to one dimension in phase space, the boundary consists of two
points. We see from equation (12) that the lower boundary d is at n10 = 0
and that it is reflecting. That agrees with the interpretation of n10 as the
number of activatable subunits, which is always positive. The value of the
upper boundary b is chosen such that the number of open channels no = 1.
The upper boundary corresponds to the escape site, so that the boundary
condition is of absorbing type [8].

The time t to reach the absorbing boundary is a stochastic variable. It
is described by the probability density ρ(t) i.e. ρ(t)dt is the probability that
the stochastic process reaches b between t and t + dt. ρ is most conveniently
computed from G(x, t) = 1 −

∫ t

0
ρ(x, τ)dτ , which represents the probability

that d ≤ n10 < b at time t when it started at x = n0
10 at t = 0. The

time evolution of G is governed by L̃, which is the adjoint of the Fokker-
Planck operator L [8]. Up to now, no general solution has been obtained
for arbitrary L. Yet, an analytic expression exists for G in the case of a
linear Fokker-Planck operator, e.g. van Kampen’s Ω expansion. Since the
following derivation always holds and is not restricted to the current problem,
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we introduce new constants v and w. They are given by v = −g11 and w = h11

defined as in equations (8a) and (9a), respectively, in the present study. G
obeys the linear backward Fokker-Planck equation [8]:

∂G(x, t)

∂t
= −vx∂G(x, t)

∂x
+
w

2

∂2G(x, t)

∂x2
, v, w > 0 , (15)

with initial and boundary conditions

G(x, 0) =

{

1, d ≤ x ≤ b

0, else
,

∂G(d, t)

∂x
= 0 ∀t , G(b, t) = 0 ∀t . (16)

The initial condition states that d ≤ x < b at t = 0 with probability one.
The reflecting boundary condition at x = d in the adjoint Fokker-Planck
equation is expressed by a no-flux boundary condition. Setting G ≡ 0 at
the right boundary corresponds to an absorbing boundary. We solve equation
(15) with the ansatz G(x, t) = exp(−λt)u(x), λ ≥ 0 so that it reduces to the
ordinary differential equation

d2u

dx2
− 2vx

w

du

dx
+

2λ

w
u = 0 . (17)

Applying the transformation z := x2/4 we find for ū(z) := u(x)

z
d2ū

dz2
+

(

1

2
− 4vz

w

)

dū

dz
+

2λ

w
ū = 0 . (18)

It equals Kummer’s equation for ũ(z̃) := ū(z) with z̃ := 4vz/w

z̃
d2ũ

dz̃2
+

(

1

2
− z̃

)

dũ

dz̃
+

λ

2v
ũ = 0 . (19)

Two independent solutions of equation (17) are [1]

u1(x) := M

(

− λ

2v
,
1

2
,
vx2

w

)

, u2(x) := xM

(

1

2
− λ

2v
,
3

2
,
vx2

w

)

. (20)

M designates the confluent hypergeometric function

M(a, b, x) :=

∞
∑

k=0

(a)k

(b)k

xk

k!
, (21)

where (a)0 := 1 and (a)k := a(a+ 1) . . . (a+ k − 1). The boundary condition
at n10 = b entails that a solution of equation (17) is

v(x) := C1

[

u1(x) −
u1(b)

u2(b)
u2(x)

]

= u1(x) −
u1(b)

u2(b)
u2(x) . (22)
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Without loss of generality we set C1 = 1 because it merely serves as normal-
ization. The second boundary condition fixes the still unknown eigenvalues λ.
They constitute an infinite countable set {λn} due to the finiteness of d and
b. Therefore, the general solution of equation (15) can be expressed as

G(x, t) =
∞
∑

n=0

an exp(−λnt)vn(x) . (23)

The subscript of vn(x) indicates that equation (22) has to be evaluated at
λ = λn (see equation (20)). The coefficients an are determined by the initial
condition G(x, 0) which results in

an =

b
∫

d

r(x)vn(x)dx

/ b
∫

d

r(x)v2
n(x)dx , r(x) :=

2

w
exp

(

− v

w
x2
)

. (24)

Here we used the orthogonality relation of the eigenfunctions vn(x):

b
∫

d

vn(x)vm(x)r(x)dx = δm,n

b
∫

d

v2
n(x)r(x)dx . (25)

The probability ρ(x, t) that the absorbing state is reached between t and t+dt
is readily computed from G(x, t) as ρ = −∂tG(x, t). Note that ρ is already
normalized due to the initial condition G(x, 0). Hence, the mean first passage
time T (x) equals

T (x) := 〈t(x)〉 =

∞
∫

0

tρ(x, t)dt = −
∞
∫

0

t∂tG(x, t)dt =
∑

n

anvn(x)

λn
. (26)

Equation (26) includes an infinite number of eigenvalues. We found that the
first three terms of the sum over n were sufficient to achieve results indistin-
guishable from the exact results of equation (30).

An alternative approach to the mean first passage time follows from the
differential equation [8]

−vxdT (x)

dx
+
w

2

d2T (x)

dx2
= −1 , (27)

with the solution

T (x) =
2

w

b
∫

x

dy

h(y)

y
∫

d

h(z)dz , h(x) := exp
{

− v

w
(x2 − d2)

}

. (28)

Performing the z integration we find
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T (x) =

√

π

vw

b
∫

x

dy exp
( v

w
y2
)

erf

(
√

v

w
y

)

+
π

2v
erf

(
√

v

w
d

){

erfi

(
√

v

w
x

)

− erfi

(
√

v

w
b

)}

.

(29)

The functions erf(x) and erfi(x) = erf(ix)/i denote the Gaussian error func-
tion and the imaginary Gaussian error function, respectively. The remaining
integral can be solved by series expansion so that the final expression for the
mean first passage time takes the form

T (x) =
b2

w
F2;2

(

1, 1;
3

2
, 2;

w

v
b2
)

− x2

w
F2;2

(

1, 1;
3

2
, 2;

w

v
x2

)

+
π

2v
erf

(
√

v

w
d

){

erfi

(
√

v

w
x

)

− erfi

(
√

v

w
b

)}

.

(30)

We employed the generalized hypergeometric function

Fp;q(a1, . . . , ap; b1, . . . , bq;x) =
∞
∑

l=0

(a1)l · · · (ap)l

(b1)l · · · (bq)l

xl

l!
, (31)

and used the identiy

j!

2j + 2

j
∑

l=0

(−1)l

(2l + 1)(j − l)!l!
=

1

2

(1)j(1)j
(

3
2

)

j
(2)j

. (32)

We defer the proof to the appendix. The reason for presenting two methods
for evaluating the mean first passage time is based on their different scopes
of applicability. If we were only interested in T , then equation (30) would be
preferable because it requires less computation. However, we are limited to
the first moment [8]. The advantage of the first approach is that we obtain any
moment by one integration. Moreover, we have access to the time evolution
of the escape process which allows for a more detailed analysis.

The above results could only be obtained analytically because the corre-
sponding Fokker-Planck equation was linear. In the case of a nonlinear Fokker-
Planck equation, all quantities have to be computed numerically. The mean
first passage time is evaluated best from a generalization of equation (28). For
L = −∂xA(x) + ∂2

xB(x)/2 we find [8]

T (x) = 2

b
∫

x

dy

h(y)

y
∫

d

h(z)

B(z)
dz , h(x) := exp

{

x
∫

d

2A(y)

B(y)
dy
}

. (33)

The study of Fokker-Planck equations instead of master equations is often
motivated by easier treatment. That holds in particular in higher dimensions,
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because a broader spectrum of tools is available for Fokker-Planck equations
than for master equations [27] and even analytical calculations may be possible
as in the case of equation (12). That constitutes one of the reasons for the
derivations in section 4. However, Fokker-Planck equations always represent
approximations. The only way to test their quality is a comparison with results
obtained from a master equation.

To this end, we consider a general one step process, to which class equation
(12) belongs. We assume that this jump process starts at a site m at t = 0.
Being at site n the particle hops to the right with a rate gn and to the left with
a rate rn, respectively. When it reaches the left boundary L, it is reflected.
Then, the mean first passage time to arrive at a site R > m reads [34]

TR,m =
R−1
∑

i=m

(

1

gi
+

i
∑

l=L+1

riri−1 · · · rl
gigi−1 · · · gl

1

gl−1

)

. (34)

That allows us to estimate the validity of the preceding approximations. The
transition rates ri and gi follow from equation (14) for the current investiga-
tion.

6 Results

6.1 Mean first passage time

The calculation of the mean first passage times according to equations (26),
(33) and (34) necessitates a further specification of the boundaries. Since we
consider a cluster with N channels, the upper boundary φb for the nonlinear
Fokker-Planck equation is given by the solution of (rφb)

3(4 − 3rφb) = 1/N .
The left hand side corresponds to the fraction of open channels as discussed
after equation (5). For the lower boundary, we have φ = 0. This value holds
for the master equation, too. The upper boundary for the master equation
is obtained by rounding off Ωφb to its nearest integer value [Ωφb]. Before
specifying the boundary conditions for van Kampen’s expansion we note that
it describes the strength of the fluctuations ξ around the fixed point φ̄. The
left boundary is imposed by n10 > 0, whereas the right boundary has to
satisfy φb = φ̄ + Ω−1/2ξ. Consequently, the boundaries of ξ are −Ω1/2φ̄ and
(φb − φ̄)Ω1/2, respectively, with φ̄ given by equation (6).

The mean first passage time depends strongly on the Ca2+ concentration
(see e.g. equations (14) and (34)). The results presented throughout the sec-
tions 6.1 - 6.3 are calculated with a constant base level concentration. The
number of open channels is an integer variable and there is no Ca2+ chan-
nel flux before the first channel opens. The Ca2+ concentration remains at a
steady value until a Ca2+ puff occurs. That leads to c1 ≡ 0 in equation (10)
and to coefficients linear in φ and ψ in equation (11).
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Fig. 2. Mean first passage time for cb = 50nM (left) and cb = 80nM (right) com-
puted from the master equation (solid), the Ω expansion (dashed) and the nonlinear
Fokker-Planck equation (dotted) for d1 = 0.13µM, d2 = 3µM, d3 = 0.9434µM, d4 =
0.4133µM, d5 = 0.24µM, a2 = a4 = 0.2 (µMs)−1 , a5 = 5 (µMs)−1 , N = 25. The dots
in the left panel represent the variance of the Ω expansion. The inset in the right
panel shows a blow up of the plot for large IP3 concentration.

Figure 2 depicts the mean first passage time as a function of the IP3

concentration for two different values of the basal Ca2+ concentration.
The master equation and the two Fokker-Planck equations exhibit an in-

crease of the mean first passage time with decreasing IP3 concentration. This
increment diverges for lower values of the IP3 concentration.

The nonlinear Fokker-Planck equation interpolates the master equation
very efficiently. The results agree well with experimental findings for puff peri-
ods, although the mean first passage time only constitutes its mean stochastic
fraction [21]. The discreteness of the master equation leads to discontinuities
in the mean first passage time. The plateaus correspond to ranges of φb that
are mapped to a single integer for the absorbing boundary of the master
equation. Whenever that integer increases by 1, a jump occurs in the mean
first passage time. Van Kampen’s expansion yields good results for higher IP3

concentrations, but overestimates the escape times otherwise (figure 2).
Figure 3 depicts the influence of the base level on the mean first passage

time. The higher the basal concentration in this regime, the faster the first
channel opens. Van Kampen’s expansion improves with increasing base level
as a comparison between the two panels in figure 2 and the right panel of
figure 3 shows. The zigzag behavior of the relative difference τ := (TvK −
TME)/TME results from the discontinuities of TME , see figure 2. Additionally,
this quantifies the finding that the difference of the mean first passage time
between the master equation and the Ω expansion diminishes with increasing
IP3 concentration.

6.2 Role of fluctuations

The most important difference between the nonlinear Fokker-Planck equation
(11) and van Kampen’s expansion (7) is in the diffusion term. It is constant in
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Fig. 3. Mean first passage time for the master equation (left) and the relative
difference τ := (TvK − TME)/TME of the mean first passage time between van
Kampen’s method TvK and the master equation TME (right) in dependence on the
base level cb for different values of the IP3 concentration: I = 0.4µM (solid), 0.5 µM
(dotted), 0.6 µM (dashed). Parameter values as in figure 2 and a5 = 1 (µMs)−1 .

van Kampen’s expansion - describing additive noise - and linear in φ and ψ in
the nonlinear Fokker-Planck equation thus describing multiplicative noise. As
expected intuitively, the results in figure 2 show a better agreement between
the nonlinear Fokker-Planck equation and the master equation than between
van Kampen’s expansion and the master equation. However, van Kampen’s
expansion approximates the master equation results rather well for high IP3

and high base level of Ca2+ . That is quantified in figure 3. Consequently,
additive noise is probably a good approximation in these parameter areas.

6.3 Distribution of first passage time

Van Kampen’s expansion allows a direct computation of the probability den-
sity of the first passage time ρ(0, t). ρ(0, t)dt is the probability that the ab-
sorbing boundary is reached between t and t + dt. The starting point of the
escape process in the Ω expansion is ξ = 0. The IP3R cluster is exactly in
the macroscopic state φ̄ at t = 0, so that the noise vanishes at t = 0. The
results for ρ are depicted in figure 4. A convergence of the probability den-
sity according to equation (23) requires less than 10 eigenvalues. The curves
show the well known rising phase of ρ and the exponential decay. We find a
maximal probability that shifts toward shorter times for higher IP3 concen-
trations. The two graphs in figure 4 illustrate again the influence of the base
level. Lowering cb from 60nM to 40nM leads to an extreme broadening of the
probability distribution and hence to an increase of the mean first passage
time (see figure 3).

The probability density ρ permits an efficient computation of all moments
of t for the escape process. Since the eigenvalues λn and the coefficients an are
known, we immediately arrive at 〈tm〉 =

∑

nm!anλ
−m
n in analogy to equation
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Fig. 4. Probability density ρ(0, t) for van Kampen’s expansion. Parameter values
as in figure 2 and I = 0.5µM. Left panel: cb = 0.06µM. Right panel: cb = 0.04µM.

(26) due to vn(0) = 1 for all n. The dots in figure 2 depict the results for the
variance. The first six eigenvalues suffice for an excellent convergence. That is
a direct consequence of the spectrum of the backward Fokker-Planck operator
in equation (15).

Figure 5 shows the ratio of the first two eigenvalues λ1/λ0. λ1 is only a few
times larger than λ0 for large IP3 and d5. However, the ratio increases with
decreasing IP3 concentrations and spans more than one order of magnitude for
IP3 concentrations smaller than 1µM. Hence, already the second term in the
expansion (23) is considerably damped in the parameter range in which we are
interested (IP3 < 1µM). Since the eigenvalues constitute a strictly increasing
series, i.e. λi < λj for i < j, the subsequent terms in the expansion decay even
more rapidly. The prominent role of the first term is additionally supported
by the expansion coefficients ai. The ratio a1/a0 is depicted in the right panel
of figure 5. It decreases upon lowering the IP3 concentration and tends to zero
for very little concentrations. a1 is much smaller than a0 in parameter ranges
where λ1/λ0 ≫ 1 holds, i.e. where the second term of the series in equation
(23) decays much faster than the first one. Consequently, higher terms only
contribute marginally in this parameter regime. A detailed analysis of the
spectrum and further implications will be provided in an upcoming report.

6.4 Continuous Ca2+ model

The results presented so far have been based on a discrete description of the
number of open channels. The most important consequence is that the Ca2+

concentration remains constant as long as no channel opens. In the past,
investigations on stochastic properties of IP3R clusters often employed a con-
tinuous model of the ratio of open channels [24, 29, 28]. In these models, the
Ca2+ concentration changes even for fractions of open channels correspond-
ing to less than one channel. Therefore, we have analyzed the impact of a
continuously modulated number of open channels on the mean first passage
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Fig. 5. Ratio of the first two eigenvalues (left panel) and ratio of the first two
expansion coefficients (right panel) of equation (23) in dependence on the IP3 con-
centration. Parameter values as in figure 3 and d5 = 0.08234µM (solid), 0.13234µM
(dotted), 0.183234µM (dashed) and 0.23234µM (chain-dotted). Insets show a blow-
up for small IP3 concentrations.

time. The nullclines of the deterministic dynamics for such an ansatz with
the same parameter values as before are displayed in the left panel of figure
6. There is only one stationary state, which is linearly stable for all IP3 con-
centrations. A prerequisite for a puff is that a sufficient number of subunits
can be activated during the escape process from this fixed point. The value of
ψ indicates that a large fraction of subunits is inhibited at already moderate
IP3 concentrations. It turns out that the remaining fraction of subunits is too
low to induce a Ca2+ puff. The high degree of inhibition results from the large
Ca2+ fluxes that occur at an open cluster [31]. These fluxes entail Ca2+ con-
centrations already in the µM range for sizes of the conducting area that are
much smaller than that of a single channel. Since these concentrations exceed
the dissociation constants for inhibition, most of the subunits are inhibited.
Lowering the IP3 concentration does not invoke puffs, either. Although the
fraction of inhibited subunits diminishes, the number of subunits that can be
activated decreases as well.

We compensate for the elevated Ca2+ concentrations with an increase in
the dissociation constant for Ca2+ activation, d5. The ensuing nullclines are
depicted in the right panel of figure 6. The left stationary state is linearly
stable and corresponds to a low degree of inhibition. The motion of φ in
phase space proceeds along an almost horizontal line through this fixed point
during puff initiation. These dynamics are bistable as the potential in figure
7 highlights. A Ca2+ puff parallels an escape process from the left well over
the barrier to the first channel opening.

The time for such an escape process depends on the position of the ab-
sorbing boundary with respect to the barrier of the potential. Figure 7 shows
the mean first passage time in dependence on the location φ of this boundary.
φ varies from the value of the potential maximum (see inset) to the value of
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the first channel opening φb (see section 6.1). The steep increase of T for small
φ reflects the influence of the left well. As long as the absorbing boundary is
close to the maximum of the potential, reentrance in the left well is possible.
That becomes less dominant with increasing φ, so that the mean first passage
time reaches the plateau. For the upper range of IP3 concentrations in figure
7, the value of the plateau equals the mean first passage time. Consequently,
the time scale of the puff is set by the properties of the left well. The strong
increase of the mean first passage time for smaller IP3 concentrations is due to
two reasons. On the one hand, the left well of the bistable potential becomes
broader and deeper with lower values of I. On the other hand, the absorbing
boundary increases in a disproportionally high manner and moves higher on
the right branch of the potential.

We exclude van Kampen’s expansion in the above analysis, because its va-
lidity requires a single stationary state throughout the stochastic motion [34].
In contrast to a constant Ca2+ concentration, the nonlinear Fokker-Planck
equation underestimates the results of the master equation. Nevertheless, the
results in figure 7, which correspond to the stochastic fraction of the puff
frequency, are in the same range as experimentally determined puff periods
[21].

7 Discussion

We have derived a master equation and two Fokker-Planck equations for
channel cluster behavior in IP3 mediated Ca2+ dynamics. Among the differ-
ent approaches to approximate a master equation by a Fokker-Planck equa-
tion we have chosen van Kampen’s Ω expansion and an ansatz based on
the Kramers-Moyal expansion. Master equations and corresponding Fokker-
Planck equations for intracellular Ca2+ dynamics have been investigated in
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Fig. 7. Left: Potential U(φ) for I = 0.0483µM. The inset depicts an enlarged view for
φ ≈ 0. Note the difference in scale for the axis. Right (Color): Mean first passage time
computed from the master equation (solid lines) and the nonlinear Fokker-Planck
equation (dotted lines) for I = 0.0553µM (black), 0.0513µM (red), 0.0473µM (green)
and 0.0433µM (blue) in dependence on the position of the absorbing boundary φ.
Parameter values as in figure 6, right panel.

the past [28, 29, 24], but the study at hand is founded on different ideas.
Most of the previous contributions employ the Li-Rinzel model [20] for the
dynamics of a single subunit of an IP3 receptor. It describes the time evolu-
tion of the fraction of subunits that are not inhibited yet, taking advantage of
the time scale separation between IP3 activation, Ca2+ activation and Ca2+

inhibition. We have used a state scheme for one subunit that only eliminates
the IP3 dynamics adiabatically. It focuses on Ca2+ activation, which is the
driving force behind puff initiation. Therefore, we consider Ca2+ activation
as the fluctuating variable, whereas Ca2+ inhibition is the random variable in
the Li-Rinzel model.

The Ca2+ concentration plays a pivotal role in the initiation of Ca2+ puffs.
On the one hand, it fixes the resting state of a cluster, i.e. the starting point of
the escape process. On the other hand, it determines the transition rates. The
present work has demonstrated that the Ca2+ concentration needs to stay at
base level until the first channel opens. Theory provides Ca2+ puffs that are
in agreement with experimental results [21] at physiological parameter values
only if the Ca2+ concentration remains constant during the entire escape
process. These findings underline the discrete character of IP3R channels in a
cluster [32, 33].

We use a realistic value for the channel flux constant kc in difference to
earlier studies [28, 29, 24]. That value is based on detailed simulations [31] and
leads to Ca2+ concentrations 2-3 orders of magnitude larger than base level
at an open channel. That causes models with a continuous number of open
channels to fail. The non-vanishing Ca2+ flux at fractions of open channels
smaller than 1 resulted in highly elevated Ca2+ concentrations at a cluster due
to the large flux density [31]. In turn, that induced a high degree of inhibi-
tion. Decreasing the IP3 concentration reduced the level of inhibition, but the
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number of subunits that could be activated decreased, too. The lack of Ca2+

puffs was resolved by increasing the dissociation constant for Ca2+ activation
d5. The ensuing mean first passage times again complied with experimental
results, but at unphysiological values of d5. These results demonstrate that pa-
rameter values may decide upon the underlying mechanisms. The large Ca2+

fluxes demand a discrete modeling of the Ca2+ release channels. This discrete
modelling is one of the aspects of this study setting it apart from previous
investigations of stochastic cluster dynamics [24, 28].

At a constant Ca2+ concentration, the main difference between van Kam-
pen’s expansion and the nonlinear Fokker-Planck equation is in the character
of fluctuations. They correspond to additive noise for the Ω expansion and to
multiplicative noise in the latter approach. Although the noise is intrinsically
multiplicative, van Kampen’s expansion provides a reasonable approximation,
which improves with increasing base level and growing IP3 concentration. It
opens up the opportunity for further studies since the Ω expansion is the
only method that yields analytic expressions for the probability density and
all higher moments. That distinguishes it from the master equation and the
nonlinear Fokker-Planck equation, for which only the first moment is directly
accessible.

The dependencies of the mean first passage time on the Ca2+ concentration
as well as on the IP3 concentration comply with physiological findings. An
increase of the basal Ca2+ concentration enhances the open probability of the
IP3R channel [4]. Consequently, the mean first passage time is to decrease with
growing Ca2+ concentration. Our results fully agree with this activating role
of Ca2+ (see figure 3). The same tendency was observed when we increased
the IP3 concentration, which agrees with the activating role of IP3.

The present study has provided a framework for a quantitative determi-
nation of Ca2+ puff frequencies. The mean first passage times correspond to
the stochastic fraction of the inter-puff interval, which is governed by the ac-
tivation of the IP3Rs. The second contribution to the inter-puff interval is a
deterministic part controlled by puff duration, inhibition and recovery from it.
Taking into account that Ca2+ puffs represent the fundamental building blocks
of global Ca2+ patterns, our calculations may serve as a starting point to
compute periods of Ca2+ waves. Experiments and theoretical studies suggest
that the initiation of Ca2+ waves occurs by a nucleation process. Therefore,
knowledge of the frequency of Ca2+ puffs is the first step in the calculation
of wave frequencies and leads to a deeper understanding of intracellular Ca2+

dynamics.

8 Appendix A: Combinatorics for subunits

Measurements on the IP3 receptor have revealed that a minimum number of
subunits hm needs to be activated for the channel to open [4]. A single IP3R
possesses a non zero open probability only if at least hm subunits are in the
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state 10. Activation in the cell occurs of course for a subunit already associated
with a certain receptor. With our model, the number of open channels depends
on the arrangement of n10 activatable subunits on the receptors. Here, we de-
rive the distribution of open channels resulting from such a random scattering
of activatable subunits and its properties, whereas the mean was used earlier.
To this aim we consider N receptors with h subunits each. Let ni, i = 1, . . . , h
denote the number of receptors with i activatable subunits, then the number
of possible configurations for a given set {ni} := {n1, . . . , nh} that satisfies

n0 + . . .+ nh = N , n1 + 2n2 + . . .+ hnh = n10 (35)

is

M ({ni}) :=
N !

n0! · · ·nh!

(

h

0

)n0
(

h

1

)n1

. . .

(

h

h

)nh

. (36)

The fraction represents the number of permutations for the set {ni}, whereas
the binomial coefficients take into account the number of ways how to dis-
tribute i activatable subunits on a single receptor. The total number of con-
figurations is given by

Γ :=
∑⋆

{ni}

M({ni}) (37)

The asterisk indicates the summation with the restrictions of equation (35).
To evaluate equation (37), we introduce a generating function

f1(z) :=
∑′

{ni}

M({ni})zl , l = n1 + . . .+ hnh . (38)

The prime refers to the restriction n0 + . . . + nh = N . Therefore, the total
number of configurations follows from the generating function as

Γ =
1

n10!

dn10

dzn10

f1(z)
∣

∣

∣

z=0
. (39)

Due to the identity

f1(z) =

N
∑′

ni=0

N !

n0! · · ·nh!

(

h

0

)n0
[(

h

1

)

z1

]n1

. . .

[(

h

h

)

zh

]nh

=

[(

h

0

)

+ . . .+

(

h

h

)

zh

]N

= (1 + z)
hN

=

hN
∑

j=0

(

hN

j

)

zj ,

(40)

we finally arrive at Γ =
(

hN
n10

)

, which complies with the combinatorics of choos-
ing n10 subunits from a total of hN subunits. Consequently, the probability
distribution of nj for a fixed value of j ∈ {0, . . . , h} is given by
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p(nj) =
1

Γ

∑⋆

{ni}
i6=j

N !

n0! · · ·nh!

(

h

0

)n0
(

h

1

)n1

. . .

(

h

h

)nh

=
1

Γ

(

N

nj

)(

h

j

)nj
∑⋆

{ni}
i6=j

(N − nj)!

h
∏

l=0
l 6=j

1

nl!

(

h

l

)nl

.

(41)

Equation (41) is most conveniently computed as

p(nj) =
1

Γ

(

N

nj

)(

h

j

)nj 1

n10!

dn10

dzn10

f2(z)
∣

∣

∣

z=0
, (42)

where we used the generating function

f2(z) :=
∑′

{ni}
i6=j

Ñ !

h
∏

l=0
l 6=j

1

nl!

[(

h

l

)

zl

]nl

=

Ñ
∑

i=0

hi
∑

l=0

(

Ñ

i

)(

hi

l

)[

−
(

h

j

)]Ñ−i

zl+j(Ñ−i) .

(43)

Here, the prime denotes the restriction

n0 + . . .+ nj−1 + nj+1 + · · · + nh = N − nj =: Ñ . (44)

In the case j = 0 the derivatives in equation (42) can be performed explicitly,
so that

p(n0) =
1

Γ

(

N

n0

) Ñ
∑

j=0

(

Ñ

j

)(

jh

n10

)

(−1)Ñ−j . (45)

The above analysis remains valid, when we interchange the number of acti-
vatable subunits n10 and the number of the remaining Nh − n10 subunits.
Such a transition corresponds to the exchange of balls and voids in classical
combinatorics. In that picture, equation (45) would represent the probability
distribution of fully occupied receptors, i.e.

p(nh) =
1

Γ

(

N

nh

) Ñ
∑

j=0

(

Ñ

j

)(

jh

Nh− n10

)

(−1)Ñ−j . (46)

Equation (46) arises from equation (45) by substituting n10 by Nh−n10 and
n0 by nh.

To gain further insight into the probability distributions we calculate the
first two moments. For the average we start with

〈nj〉 =
1

Γ

∑⋆

{ni}

njM ({ni}) , (47)
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because a closed expression for the probability distribution is only available for
the two cases presented above. Defining the corresponding generating function

f3(z) :=
1

Γ

∑′

{ni}

njM ({ni}) zl , l = n1 + . . .+ hnh , (48)

we find

〈nj〉 =
1

n10!

dn10

dzn10

f3(z)
∣

∣

∣

z=0
=
N

Γ

(

h

j

)(

h(N − 1)

n10 − j

)

. (49)

In the limit N → ∞, n10 → ∞ we recover the result from [3]. Analogously
evaluation of the second moments results in

〈nlnk〉 =
N(N − 1)

Γ

(

h

l

)(

h

k

)(

h(N − 2)

n10 − l − k

)

+ δk,l
N

Γ

(

h

l

)(

h(N − 1)

n10 − l

)

. (50)

Applying these general expressions to IP3Rs requires values for h, hm and
N . The tetrameric structure of the receptor ensues h = 4. However, previous
results by different groups are based on h = 3. We therefore compute the
statistics for both cases. Experiments on a single channel have shown four
conductance levels, each a multiple of 20pS, with a predominance of opening
to the third level [4, 35]. Thus, we set hm = 3. The number of receptors in
a cluster has not been measured yet. We employ N = 25 following recent
estimates by Swillens and Dupont [30].
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n
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0.4

0.6

0.8

p(
n o)

Fig. 8. (Color) Probability distribution p(no) for no = n3, h = 3 (solid) and no =
n3 + n4, h = 4 (dotted) for N = 25 and different n10. Values of n10 are 25 (black),
50 (red), 60 (green) and 70 (blue).

The probability distributions p(n3 + n4) with h = 4 and p(n3) with h = 3
are depicted in figure 8. They both agree very well. This is also supported by
their mean and variance as shown in figure 9. In the left panel we also include
the position of the maxima of the distributions indicated by dots. They closely
follow the average. Due to the narrowness of the distributions demonstrated
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by the small variance as well as the accordance between the mean and the
maximum we calculate the number of open channels nc from the average for
a given value of n10:

n(3)
a =Nr3

n10

3N

n10 − 1

3N − 1

n10 − 2

3N − 2
, (51)

n(3,4)
a =Nr3

n10

4N

n10 − 1

4N − 1

n10 − 2

4N − 2

[

n10 − 3

4N − 3
(4 − 3r) + 4

(

1 − n10

4N

)

]

(52)

Here r := I/(I + d1) denotes the fraction of subunits in the activatable state
10 that are activated. The subscripts (3) and (3, 4) indicate that we used
p(n3), h = 3 and p(n3 + n4), h = 4 for averaging, respectively. Note that in
the limit N → ∞, n10 → ∞ equations (51), (52) reduce to the well known
expressions of the deterministic description. All results in section 6 are based
on equation (52), which can be further simplified by approximating all de-
nominators by 4N due to 4N ≫ 1.
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Fig. 9. Mean (left) and variance (right) of no for no = n3, h = 3 (solid) and
no = n3 +n4, h = 4 (dotted). The left panel shows the position of max p(no) as dots
and scares, respectively.

9 Appendix B: Proof of equation (32)

This section deals with the proof of equation (32). It is based on the identity

j
∑

k=0

(

j

k

)

(−1)k

2k + 1
=

22j (j!)
2

(2j + 1)!
, (53)

which we now proof. We transform the left hand side of equation (53) accord-
ing to
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j
∑

k=0

(

j

k

)

(−1)k

1
∫

0

t2kdt =

1
∫

0

j
∑

k=0

(

j

k

)

(−t2)kdt =

1
∫

0

(

1 − t2
)j
dt . (54)

It can be simplified with Euler’s Beta function B(z, w). From its definition

B(z, w) :=

1
∫

0

tz−1(1 − t)w−1dt (55)

follows
b
∫

a

(t− a)z−1(b− t)w−1dt = (b− a)z+w−1B(z, w) . (56)

Hence we express the integral in equation (54) through

1
∫

0

(

1 − t2
)j
dt =

1

2

1
∫

−1

(t+ 1)j(1 − t)jdt = 22jB(j + 1, j + 1) . (57)

According to [1] the Beta function is related to the Gamma function Γ (z) via
B(z, w) = Γ (z)Γ (w)/Γ (z + w), so that we find

j
∑

l=0

(

j

l

)

(−1)l

2l + 1
= 22j Γ (j + 1)2

Γ (2j + 2)
=

22j (j!)
2

(2j + 1)!
(58)

due to n! = Γ (n+ 1), which proofs equation (53). Expanding the right hand
side yields

22j (j!)
2

(2j + 1)!
=

2 · 1
2

· 2

3
· 2 · 2

4
· 2

5
· 2 · 3

6
· · · 2 · j

2j
· 2

2j + 1
j! =

j!
(

3
2

)

j

. (59)

This proofs equation (32) when we use j! = (1)j .
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