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Exotic dynamics in a firing rate model of neural tissue
with threshold accommodation
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Abstract. Many of the equations describing the dynamics of neural systems

are written in terms of firing rate functions, which themselves are often taken

to be threshold functions of synaptic activity. Dating back to work by Hill
in 1936 it has been recognized that more realistic models of neural tissue

can be obtained with the introduction of state-dependent dynamic thresh-

olds. In this paper we treat a specific phenomenological model of threshold
accommodation that mimics many of the properties originally described by

Hill. Importantly we explore the consequences of this dynamic threshold at

the tissue level, by modifying a standard neural field model of Wilson-Cowan
type. As in the case without threshold accommodation classical Mexican-Hat

connectivity is shown to allow for the existence of spatially localized states
(bumps) in both one and two dimensions. Importantly an analysis of bump

stability in one dimension, using recent Evans function techniques, shows that

bumps may undergo instabilities leading to the emergence of both breathers
and traveling waves. Moreover, a similar analysis for traveling pulses leads

to the conditions necessary to observe a stable traveling breather. In the

regime where a bump solution does not exist direct numerical simulations
show the possibility of self-replicating bumps via a form of bump splitting.

Simulations in two space dimensions show analogous localized and travel-

ing solutions to those seen in one dimension. Indeed dynamical behavior in
this neural model appears reminiscent of that seen in other dissipative sys-

tems that support localized structures, and in particular those of coupled

cubic complex Ginzburg-Landau equations. Further numerical explorations
illustrate that the traveling pulses in this model exhibit particle like proper-

ties, similar to those of dispersive solitons observed in some three component
reaction-diffusion systems.

A preliminary account of this work first appeared in S Coombes and M R

Owen, Bumps, breathers, and waves in a neural network with spike frequency
adaptation, Physical Review Letters 94 (2005), 148102(1-4).

1. Introduction

The mathematical modeling of neural tissue can trace its roots back to work
by Beurle [4] in the 1950s and later by Griffith [20, 21] in the 1960s. To overcome
the difficulties of modeling the large numbers of neurons and synapses in even
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a small piece of cortex these authors advocated continuum descriptions in which
space is continuous and macroscopic state variables are mean firing rates. These
early models were later improved and refined in the work of Wilson and Cowan
[48], Nunez [38] and Amari [2], and are still in use today as models of large scale
brain activity. We shall refer to such models and their variants as neural field
theories. To date neural field theories have found applications in understanding
brain slice preparations [26], EEG rhythms [31, 34], visual hallucinations [15, 7],
short term memory [32], motion perception [19], representations in the head-
direction system [50] and feature selectivity in the visual cortex [3]. For recent
reviews of the dynamics of neural fields we refer the reader to [9, 10]. Typically
they take the form of integral or integro-differential equations. Although they
do not capture the details of the fast ionic currents underlying spiking neural
behavior, neural field theories can incorporate realistic non-local axo-dendritic
synaptic interactions provided that spike-trains can be replaced by firing rates.
In practice this assumption seems to be useful when dealing with slow synaptic
interactions. The firing rate in such models is often taken to be a threshold function
of the synaptic activity. Typically, as a constant current is increased, most cortical
neurons switch from a resting constant potential to an active mode. In the active
mode, either trains of spikes are generated or bursts of spikes. Since the majority
of cells in cortical networks fire repetitively [47], we shall focus our attention on
this case. A common choice to fit the firing rate function is a sigmoid function of
pre-synaptic activity u in the form f = f(u− h), where

(1) f(u) =
1

1 + exp(−βu)
.

Here the parameter h is identified as a threshold whilst β measures the steepness
of the sigmoid. Interestingly the notion of a threshold goes back a long way in
the history of neuroscience. Even in the absence of any detailed model of neural
tissue Hill [25] in 1936 described the fruitfulness of thinking of neural tissue as
possessing a threshold for excitability. Indeed, at the single neuron level the notion
of a threshold model can be traced back as far as 1907 to Lapicque [33].

In more detail we will discuss a generic neural field model with synaptic ac-
tivity u = u(x, t), x ∈ R, t ∈ R+, governed by the integral equation

(2) u = η ∗ w ⊗ f(u− h).

Here, the symbol ∗ represents a temporal convolution in the sense that

(3) (η ∗ f)(x, t) =
∫ t

0

η(s)f(x, t− s)ds,

and ⊗ represents a spatial convolution such that

(4) (w ⊗ f)(x, t) =
∫ ∞

−∞
w(y)f(x− y, t)dy.

The function η(t) (with η(t) = 0 for t < 0) represents a synaptic filter, whilst w(x)
is a synaptic footprint describing the anatomy of network connections. Typically,
however, neural field theories such as the one above do not incorporate any of the
slow intrinsic processes known to modulate tissue response. In particular we are
drawn to the observation of Hill that thresholds are dependent upon the state of
the tissue. We quote directly from his 1936 paper1 [25]:
. . . . The critical value of V required for excitation, i.e., the threshold U, might have

1We are indebted to John Rinzel for bringing the work of A V Hill to our attention.
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been constant and independent of the previous history of the nerve. If the current
lasts only for a very short time this is true. If, however, the current lasts longer, the
threshold rises, as is shown by the well-known fact that a slowly increasing current
has a higher threshold than a quickly increasing one. The change of threshold
is gradual, it takes place as a consequence of, and at a speed determined by, the
change of “local potential” produced in the nerve by the passage of current. There
is, therefore, a second time-factor in electric excitation, viz., that defining the rate
of change of threshold U.
We shall use the term “accommodation” to describe the fact that the threshold U
rises when the “local potential” V is maintained. It is known that “accommodation”
disappears of itself, i.e., U reverts gradually to its original value U0 when the nerve
is allowed to return to its original resting state . . .

If we identify the “local potential” described by Hill with synaptic activity u
then a simple phenomenological model of threshold accommodation can be written
as

(5) ht = −(h− h0) + κg(u− θ).

Here h and h0 are identified with the U and U0 described by Hill, whilst the
nonlinear function g(u) describes the effects of the accommodation process on the
threshold evolution. We also assume that accommodation is itself a threshold
process and interpret θ as a threshold for accommodation, whilst the parameter
κ > 0 measures the strength of accommodation. For later convenience we write
the dynamics for h in the integrated form

(6) h = h0 + κηh ∗ g(u− θ),

where ηh(t) = e−t for t > 0 and is zero otherwise. In the absence of threshold
accommodation (i.e. with κ = 0) it is known that models with short-range excita-
tion and long range inhibition, or so-called Mexican-hat connectivity, can support
spatially localized solutions. Indeed such solutions are known to exist for suffi-
ciently steep sigmoids [29] and has motivated much analysis in the limit that the
firing rate function f approaches a Heaviside step function, i.e. as β →∞ in (1).
To illustrate how the form of nonlinear threshold accommodation (5) can lead to
exotic dynamics at the network level, we will focus on the case of Mexican-hat
connectivity with Heaviside firing rate function. Moreover, so that we may study
instabilities of spatially localized states in a tractable mathematical fashion we
will also restrict our attention to the case that g(u) is also a Heaviside. Hence,
throughout the rest of this paper we work with the choice g(u) = f(u) = H(u),
where H is a Heaviside function such that H(x) = 1 for x ≥ 0 and is zero oth-
erwise. Moreover, we shall take η(t) = αe−αtH(t) and w(x) = (1 − |x|)e−|x|,
representing an exponential synaptic response in a network with short-range ex-
citation and long-range inhibition. The extension to other synaptic filters and
footprints is straightforward [11]. A preliminary account of the work in this paper
first appeared in [13].
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Figure 1. Analytical bump solution (q, p) (as solid and dashed
lines respectively) with h0 = 0.04 θ = 0.1, κ = 0.16. Here x1 =
1.48, x2 = 1.60 and x3 = 1.67. The inset shows a blowup of the
solution around the window containing the points x1, x2 and x3.
For these values of h0 and θ this type of solution exits for κ < 0.32
(see Fig. 2).

2. Spatially localized solutions

First we construct time-independent solutions (u, h) = (q(x), p(x)) that satisfy

(7) q = w ⊗H(q − p), p =

{
h0 q < θ

h0 + κ q ≥ θ
.

A localized bump solution is one that satisfies q(x) > h0 + κ for x ∈ [0, x1],
θ < q(x) < h0 + κ for x ∈ (x1, x2), h0 < q(x) ≤ θ for x ∈ [x2, x3) and q(x) < h0

otherwise. We restrict attention to symmetric solutions for which q(x) = q(−x)
with x3 > x2 > x1 > 0. An explicit solution may be constructed as

(8) q(x) =
(∫ −x2

−x3

+
∫ x1

−x1

+
∫ x3

x2

)
w(x− y)dy.

The unknowns x1, x2, and x3 are found by the simultaneous solution of

(9) q(x1) = h0 + κ, q(x2) = θ, q(x3) = h0.

The integrals in (8) may be evaluated to give

q(x) = g(x+ x1)− g(x+ x2) + g(x+ x3)

+ g(x1 − x)H(x1 − x)− g(x− x1)H(x− x1)

+ [g(x3 − x)− g(x2 − x)]H(x2 − x) + [g(x− x2)− g(x− x3)]H(x− x3)

+ [g(x− x2) + g(x3 − x)]H(x− x2)H(x3 − x),(10)

where g(x) = xe−x. A plot of an analytical bump solution constructed in this
fashion is shown in Fig. 1. It appears that for κ less than some critical value there
is only ever one solution of this type (see Fig. 2).
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Figure 2. Existence regions for a 1-bump solution. The main
figure shows a plot of x1 vs κ for θ = 0.1 and h0 = 0.04. For these
parameters the 1-bump solution exists for κ < κc ≈ 0.32. The
inset show the region in (κ, h0) parameter space where 1-bump
solutions exist (obtained by numerical continuation of the right
most point of the main figure).

2.1. Evans function for a spatially localized solution. To assess the
linear stability of this solution we use a recent Evans function approach. This
was originally formulated by Evans [16] in the context of a stability theorem
about excitable nerve axon equations of Hodgkin-Huxley type. The zeros of this
complex analytic function determine the normal spectrum of the operator obtained
by linearizing a system about its traveling wave solution (and we may view a bump
solution as a stationary wave). The extension to neural field models is more recent
and, for the special case of a Heaviside firing rate function, several models have
now been studied [9, 12, 17, 41, 51]. Note that we are concerned with systems
where the real part of the continuous spectrum has a uniformly negative upper
bound, so that it is enough to determine the location of the isolated spectrum for
wave stability. Recent work by Sandstede has now established, for these models,
that linear stability implies nonlinear stability [44].

In more detail, we assess the linear stability of a bump solution by considering
perturbations of the form u(x, t) = q(x)+δu(x, t), and h(x, t) = p(x)+δh(x, t). An
expansion of (2) and (6) and working to first order generates the pair of equations

δu = η ∗ w ⊗H ′(q − p)[δu− δh],(11)

δh = ηh ∗ κH ′(q − θ)δu.(12)

Here H ′ is the derivative of H, i.e. H ′(x) = δ(x). For perturbations of the form
(δu(x, t), δh(x, t)) = (u(x), h(x))eλt we have that

(13)
u

L[η](λ)
= w ⊗H ′(q − p) [1− κL[ηh](λ)H ′(q − θ)]u,

where we have eliminated the equation for h using (12) and introduced the Laplace
transform L[η](λ) =

∫∞
0

dse−λsη(s). Making use of the fact that

(14) δ(q(x)− p(x)) =
∑

y=±x1,±x3

δ(x− y)
|q′(y)|

,
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and

(15) δ(q(x)− p(x))δ(q(x)− θ) =
1
κ

∑
y=±x2

δ(x− y)
|q′(y)|

,

means that the (13) takes the form

(16)
u(x)
L[η](λ)

=
6∑

j=1

Aj(x, λ)uj ,

where uj = u(xj) and (x4, x5, x6) = −(x1, x2, x3), A1(x, λ) = w(x−x1)/|q′(x1)| =
A4(−x, λ), A2(x, λ) = −L[ηh](λ)w(x − x2)/|q′(x2)| = A5(−x, λ), and A3(x, λ) =
w(x − x3)/|q′(x3)| = A6(−x, λ). The derivative of q is easily calculated from (8)
as q′(x) = W (x) −W (−x), where W (x) = w(x + x1) − w(x + x2) + w(x + x3).
Demanding that the perturbations at xj be non-trivial generates an eigenvalue
problem of the form E(λ) = 0, where E(λ) =

∣∣L[η](λ)−1I6 −A(λ)
∣∣, In is the n×n

identity matrix and A(λ) has components

(17) A(λ)ij = Aj(xi, λ), i, j = 1, . . . , 6.

We identify E(λ) as the Evans function for the bump, such that solutions are stable
if Re λ < 0. The Evans function is real-valued if λ is real. Furthermore, (i) the
complex number λ is an eigenvalue of (13) if and only if E(λ) = 0, and (ii) the
algebraic multiplicity of an eigenvalue is equal to the order of the zero of the Evans
function. For a further discussion of how to establish these results we refer the
reader to [12]. Using the fact that L[ηh](0) = 1 = L[η](0) a direct calculation
shows that E(0) = 0 (with corresponding eigenfunction q′(x)), as expected for a
system with translation invariance. By determining the zeros of the Evans function
we are now in a position to probe the manner in which a bump may go unstable.
One natural way to find the zeros of E(λ) is to write λ = ν + iω and plot the
zero contours of Re E(λ) and Im E(λ) in the (ν, ω) plane. The Evans function is
zero where the zero contours intersect. There are basically two different routes to
instability, which we shall refer to as drift and breathing instability.

For sufficiently small κ an eigenvalue crosses to the right hand complex plane
on the real axis, and one sees a bump go unstable in favor of a traveling pulse
with increasing α (where α controls the speed of the synapse). We illustrate this
scenario with the aid of Figs. 3 and 4. In Fig. 3 we show a sequence of plots for the
Evans function for a localized bump solution with increasing α. Figure 4 shows
the result of a direct numerical simulation of the full integral model just beyond
the instability point predicted from Fig. 3. We shall term the emergence of a
traveling pulse from a stationary bump a drift instability and note that it can be
succinctly defined by the condition that the Evans function have a repeated real
root at the origin, namely E(0) = 0 = E ′(0). The drift bifurcation point is then
naturally defined as the least value of α for which E ′(0) = 0 (and being careful
to also establish that there are no zeros of the Evans function in the right hand
complex plane). Using Jacobi’s formula for the differential of a determinant we
may write

(18) E ′(λ) = Tr
(

(adj E(λ))
dE
dλ

)
,

where E(λ) = L[η](λ)−1I6 − A(λ). Note that for λ = 0, detE(0) = E(0) = 0
and E(0) is not invertible. Hence, for practical calculations we consider the limit
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Figure 3. A plot of the Evans function for a localized bump
solution with parameters as in Fig. 1. Zeros of the Evans func-
tion occur at the intersection of the solid and dashed lines where
Re E(λ) = 0 = Im E(λ). As α increases through αc ∼ 1.55 an
eigenvalue crosses to the the right hand complex plane along the
real axis, signaling the onset of an instability.
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Figure 4. A space-time plot showing an example of a traveling
pulse for α = 1.6, seen just after the point of a drift instability at
αc ∼ 1.55, as determined from Fig. 3.

λ → 0−. In this case E(λ) is invertible and we may use the result adj E(λ) =
E(λ)E−1(λ), to establish a necessary condition for a drift bifurcation as

(19) Tr
(
E−1(0−)

dE
dλ

∣∣∣∣
λ=0−

)
= 0.
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Figure 5. A plot of the Evans function for a localized bump
solution at κ = 0.3, and other parameters as in Fig. 1. As α
increases through αc ∼ 3.0 an eigenvalue crosses to the the right
hand complex plane through the imaginary axis, signaling the
onset of a dynamic instability.
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Figure 6. A space-time plot showing an example of a breathing
solution seen for α = 3.0, just after the point of a breathing
instability, as determined from Fig. 5.

For larger κ a pair of complex-conjugate eigenvalues cross through the imagi-
nary axis to the right hand complex plane and a bump goes unstable in favor of a
breathing solution, with increasing α. We illustrate this scenario with the aid of
Figs. 5 and 6. In Fig. 7 we present a diagram summarizing the two instabilities of
a stationary bump. The drift instability border is calculated according to equation
(19), whilst the breathing instability is calculated by a direct examination of plots
such as shown in Fig. 5.
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Figure 7. Instabilities of a stationary bump as a function of κ
(the strength of threshold accommodation) and α (the rate of
synaptic decay). To the right of the vertical dashed line 1-bump
solutions do not exist.

Till now we have focused our attention on so-called 1-bump solutions. How-
ever, it is possible that other forms of spatially localized N -bump solutions also
exist. To illustrate how one may construct and analyze such solutions we briefly
treat the case of a 2-bump.

2.2. Two-bump solutions. In a similar fashion to Section 2 we can write a
2-bump solution (symmetric about the origin) in the form q(x) = W+(x)+W−(x),
where

(20) W±(x) =
(∫ x2

x1

+
∫ x4

x3

+
∫ x6

x5

)
w(y ± x)dy,

and q(x) ≥ p(x) for x ∈ ±[x1, x2]
⋃

[x3, x4]
⋃

[x5, x6]. For our choice of synaptic
footprint a short calculation gives

W+(x) = g(x+ x2) + g(x+ x4) + g(x+ x6)(21)

− g(x+ x1)− g(x+ x3)− g(x+ x5),

W−(x) = W1,2(x) +W3,4(x) +W5,6(x),(22)

with

(23) Wa,b(x) =
∫ xb

xa

w(y − x)dy =


g(xb − x)− g(xa − x) x ≤ xa

g(x− xa) + g(xb − x) xa < x < xb

g(x− xa)− g(x− xb) x ≥ xb

.

The self-consistent 2-bump solution is then specified by the simultaneous solution
of the six equations:

(24) q(x1) = h0 = q(x6), q(x2) = θ = q(x5), q(x3) = h0 + κ = q(x4).

After enforcing these constraints it is a simple matter to prove that q(0) = 0 for
the 2-bump solution. A plot of a 2-bump is shown in Fig. 8.

Proceeding analogously as for the 1-bump solution we can write the Evans
function for a 2-bump in terms of the 12 × 12 matrix A(λ) with components
A(λ)ij = Aj(xi, λ), i, j = 1, . . . , 12. Here, (x7, . . . , x12) = −(x1, . . . , x6)
and A1(x, λ) = w(x − x1)/|q′(x1)| = A7(−x, λ), A2(x, λ) = −L[ηh](λ)w(x −
x2)/|q′(x2)| = A8(−x, λ), A3(x, λ) = w(x − x3)/|q′(x3)| = A8(−x, λ), A4(x, λ) =
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Figure 8. A 2-bump solution. Parameters as in Fig. 1 (and
the 2-bump exists for κ < 0.1755). Note that for all 2-bump
solutions it may be shown that q(0) = 0. A direct examination of
the associated Evans function shows that this 2-bump is always
unstable (with real eigenvalue). The green curve shows the shape
of the dominant unstable eigenfunction for α = 1.0.
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Figure 9. A plot of the Evans function for the 2-bump solution
of Fig. 8 when α = 1.0, showing that the dominant eigenvalue is
real and positive.

w(x−x4)/|q′(x4)| = A10(−x, λ), A5(x, λ) = w(x−x5)/|q′(x5)| = A11(−x, λ), and
A6(x, λ) = w(x−x6)/|q′(x6)| = A12(−x, λ). The derivative of q is easily calculated
as q′(x) = W (x)−W (−x), where W (x) = w(x+ x2)− w(x+ x1) + w(x+ x4)−
w(x+ x3) + w(x+ x6)− w(x+ x5).

A numerical examination of the Evans function suggests that the 2-bump is
always unstable, as illustrated in Fig. 9. The dominant unstable mode corresponds
to a real eigenvalue, with eigenfunction shown in Fig. 8. Typically, this instability
of a 2-bump generates a pair of pulses traveling in opposite directions, as illustrated
in Fig. 10.
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Figure 10. A 2-bump solution is unstable (with real eigenvalue)
and splits into a pair of pulses traveling in opposite directions.
Parameters as in Fig. 1 with α = 1.0.

3. Traveling pulses

We have seen in Section 2.1 that a bump can destabilize in favor of a travel-
ing pulse. It is thus natural to pursue the construction and stability analysis of
traveling waves. Following the standard approach for constructing traveling wave
solutions to PDEs, such as reviewed by Sandstede [43], we introduce the coordi-
nate ξ = x − ct and seek functions ũ(ξ, t) = u(x − ct, t) and h̃(ξ, t) = h(x − ct, t)
that satisfy (2) and (6). In the (ξ, t) coordinates we have that

ũ(ξ, t) =
∫ ∞

−∞
dyw(y)

∫ ∞

0

dsη(s)(25)

×H(ũ(ξ − y + cs, t− s)− h̃(ξ − y + cs, t− s)),

h̃(ξ, t) = h0 + κ

∫ ∞

0

dsηh(s)H(ũ(ξ + cs, t− s)− θ).(26)

The traveling wave is a stationary solution (ũ(ξ, t), h̃(ξ, t)) = (q(ξ), p(ξ)) (indepen-
dent of t), that satisfies

q(ξ) =
∫ ∞

0

dsη(s)ψ(ξ + cs),(27)

ψ(ξ) =
∫ ∞

−∞
dyw(y)H(q(ξ − y)− p(ξ − y)),(28)

p(ξ) = h0 + κ

∫ ∞

0

dsηh(s)H(q(ξ + cs)− θ).(29)

We now consider traveling pulse solutions of the form q(ξ) ≥ θ for ξ ∈ [ξ1, ξ3] and
q(ξ) < θ otherwise, as illustrated in Fig. 11. In this case the solution for p(ξ) is
easily calculated from (29) as

(30) p(ξ) = h0 + κ


[1− e−(ξ3−ξ1)/c]e(ξ−ξ1)/c ξ < ξ1

1− e(ξ−ξ3)/c ξ1 ≤ ξ ≤ ξ3

0 ξ > ξ3

.

We further restrict our attention to traveling pulse solutions where q(ξ) > p(ξ) for
ξ ∈ (ξ2, ξ4), and q(ξ) < p(ξ) otherwise, with ξ1 < ξ2 < ξ3 < ξ4. In this case (28)
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Figure 11. Analytical traveling pulse solution (q, p) (as solid and
dashed lines respectively) with h0 = 0.04 θ = 0.1, κ = 0.16 and
α = 1.6.

takes the simple form

ψ(ξ) =
∫ ξ4−ξ

ξ2−ξ

dyw(y)(31)

=


g(ξ4 − ξ)− g(ξ2 − ξ) ξ < ξ2

g(ξ − ξ2) + g(ξ4 − ξ) ξ2 ≤ ξ ≤ ξ4

g(ξ − ξ2)− g(ξ − ξ4) ξ > ξ4

.(32)

Hence the solution for q(ξ) is parameterized by the five unknowns ξ1, ξ2, ξ3, ξ4, c.
By choosing an origin such that ξ1 = 0 the simultaneous solution of the four
threshold crossing conditions

(33) q(ξ1) = θ, q(ξ2) = p(ξ2), q(ξ3) = θ, q(ξ4) = p(ξ4),

may be used to determine the remaining four unknowns. For convenience we
produce the functions q(ξi) in the appendix. The numerical solution of (33) shows
that stable traveling pulses co-exist with stable bump solutions for a wide range
of parameter values.

3.1. Evans function for a traveling pulse. Linearising (25) and (26)
about the traveling wave solution and seeking solutions of the form (ũ(ξ, t), h̃(ξ, t)) =
(u(ξ), h(ξ))eλt gives

u(ξ) =
[u(ξ2)− h(ξ2)]

|F ′(ξ2)|
U(ξ2 − ξ, λ) +

[u(ξ4)− h(ξ4)]
|F ′(ξ4)|

U(ξ4 − ξ, λ),(34)

h(ξ) =
u(ξ1)
|q′(ξ1)|

H(ξ1 − ξ, λ) +
u(ξ3)
|q′(ξ3)|

H(ξ3 − ξ, λ),(35)

where F (s) = q(s)− p(s) and

cU(ξ, λ) =
∫ ∞

0

dyw(y − ξ)η(y/c)e−λy/c,(36)

cH(ξ, λ) = κηh(ξ/c)e−λξ/c = κe−(1+λ)ξ/cH(ξ).(37)
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For an exponential synaptic response the integral in (36) gives:

U(ξ, λ) =
α

c

α+ λ

c
e−(α+λ)ξ/c

{
1

[1 + (α+ λ)/c]2
− 1

[1− (α+ λ)/c]2

}
+
α

c

e−ξ

1− (α+ λ)/c

{
ξ − 1 +

1
1− (α+ λ)/c

}
(38)

for ξ ≥ 0 and

(39) U(ξ, λ) =
α

c

eξ

1 + (α+ λ)/c

{
1 + ξ − 1

1 + (α+ λ)/c

}
,

for ξ < 0. The derivatives q′ and F ′ are easily calculated to give

(40) q′(ξ1) = α(θ − ψ(ξ1))/c, q′(ξ3) = α(θ − ψ(ξ3))/c,

F ′(ξ2) = (α(p(ξ2)− ψ2)− p(ξ2) + h+ κ)/c,(41)

F ′(ξ4) = (α(p(ξ4)− ψ(ξ4))− p(ξ4) + h)/c.(42)

It is convenient to introduce the vector z = (z1, z2, z3, z4) = (u(ξ1), u(ξ2) −
h(ξ2), u(ξ3), u(ξ4)− h(ξ4)). In which case we may obtain a set of matching condi-
tions from (34) which we write as

(43) zi =
4∑

j=2

Aj(ξi, λ)zj , i = 2, 3, 4.

Here,

A2(ξ, λ) =
U(ξ2 − ξ, λ)
|F ′(ξ2)|

, A3(ξ, λ) = −H(ξ3 − ξ), λ)
|q′(ξ3)|

,(44)

A4(ξ, λ) =
U(ξ4 − ξ, λ)
|F ′(ξ4)|

.

Demanding that there be a nontrivial solution to (43) generates the eigenvalue
problem E(λ) = |I − A(λ)| = 0, where the 3 × 3 matrix A(λ) has components
[A(λ)]ij = Aj(ξi, λ).

Differentiation of the form for U(ξ, λ) and re-integrating between ξi and ξ gives
us the useful result

(45) U(ξ, λ) = e−(α+λ)(ξ−ξi)/c

[
U(ξi, λ) +

α

c

∫ ξ−ξi

0

w(s+ ξi)e(α+λ)s/cds

]
.

This allows us to re-write u(ξ) = A2(ξ, λ)z2 +A4(ξ, λ)z4 as

u(ξ) = e(α+λ)(ξ−ξi)/c

{
u(ξi)−

α

c

z2
|F ′(ξ2)|

∫ ξ−ξi

0

w(ξ2 − ξi − s)e−(α+λ)s/cds

−α
c

z4
|F ′(ξ4)|

∫ ξ−ξi

0

w(ξ4 − ξi − s)e−(α+λ)s/cds

}
.(46)

Similarly we may obtain an expression for h(ξ) as

h(ξ) = e(1+λ)(ξ−ξi)/c

{
h(ξi)−

z1
|q′(ξ1)|

H(ξ1 − ξi, λ)− z3
|q′(ξ3)|

H(ξ3 − ξi, λ)
}
.

(47)

Restricting attention to the regime where Re λ > max(−α,−1) (i.e. to the right
of the essential spectrum) we see from (46) and (47) that for (u(ξ), h(ξ)) to be
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Figure 12. A plot of the Evans function for a traveling pulse at
κ = 0.75, and other parameters as in Fig. 1. A pulse can undergo
a dynamic instability with increasing α and then restabilize via
the reverse mechanism.

bounded as ξ−ξi →∞ we require the expressions in curly brackets to vanish. This
generates a set of equations which is exactly equivalent to the matching conditions
defined by (43) (and the further equation z1 =

∑4
j=2Aj(ξ1, λ)zj). Thus, we

interpret E(λ) as the Evans function of the traveling wave (q(ξ), p(ξ)). A straight
forward calculation establishes that (u, h) = (q′, p′) is an eigenfunction with λ = 0
as expected.

Using the Evans function above to determine stability we find that a pulse can
undergo a dynamic instability with increasing α and then restabilize via the reverse
mechanism, see Fig. 12. Direct numerical simulations in such parameter windows
show the emergence of stable traveling breathers. We illustrate this phenomenon in
Fig. 13, and note that similar solutions have recently been observed in a reaction-
diffusion system with subcritical wave instability [49]. Although such behavior
may well be generic in inhomogeneous neural field models with external forcing,
as in the work of Bressloff et al. [8], the appearance of a stable traveling breather
in a homogeneous neural field model is a direct consequence of nonlinear threshold
accommodation and does not occur in its absence.

4. Exotic solutions and dissipative solitons

The emergence of stable traveling breathers is not the only type of exotic
behavior that can emerge in a network with nonlinear threshold accommodation.
Direct numerical simulations show a whole host of exotic solutions including asym-
metric breathers, multiple bumps, multiple pulses, periodic traveling waves, and
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Figure 13. Analytically determined width x3 of a traveling pulse
solution as a function of the synaptic rate constant α (solid line
is stable, dashed is unstable). As α increases through α ∼ 1.52
the Evans function shows that a pair of complex-conjugate eigen-
values crosses to the right hand complex plane. At α ∼ 1.64
they cross back to the left hand complex plane. Fig. 12 shows
the Evans function at both these bifurcations. This leads to a
branch of traveling breather solutions whose width oscillates be-
tween the indicated maximum and minimum values (circles). The
inset shows an example of such a traveling breather, at α = 1.58.

bump-splitting instabilities that appear to lead to spatio-temporal chaos. An ex-
ample of a such a splitting is shown in Fig. 14. Here we evolve bump-like initial
data in a parameter regime where 1-bumps are known not to exist (i.e. to the
right of the vertical dashed line in Fig. 7). It is interesting to note that similar
bifurcations have been seen in other dissipative systems that support localized
structures, in particular those of coupled cubic complex Ginzburg-Landau equa-
tions [42]. Self-replication of pulses has also been observed in excitable reaction-
diffusion systems, leading to the emergence of a self-similar Sierpinski gasket like
structures in space-time plots [22, 23, 24]. For the case of the Gray-Scott model
Nishiura and Ueyama have proposed that such self-replicating patterns can be
understood in terms of (ghosts of) limit points of folding bifurcation branches in
parameter regions where the branches have ceased to exist [30, 36]. It remains
an open problem to properly understand the bump-splitting seen here and to as-
certain whether there is a true transition to spatio-temporal chaos, as seen for the
Gray-Scott model [37]. However, it is likely that an exploration of the hierarchy
of limit points for the existence of N -bumps would provide a similar means for
understanding the dynamics of self replicating bumps and spatio-temporal chaos
in a neural network model with nonlinear threshold accommodation.

With the aid of direct numerical simulations we have also explored the scat-
tering properties of traveling pulses in one dimension and traveling spots in two
dimensions. This has led us to the fascinating observation that such structures can
behave as quasi-particles in the sense that they can scatter like dissipative solitons
[1, 28]. Indeed, once again we see similarities of behavior to not only that of the
Gray-Scott model, but to that of some three component reaction-diffusion systems
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Figure 14. An example of a self-replicating bump in a regime
where single bumps do not exist. Parameters are h0 = 0.02, θ =
0.1, κ = 0.34 and α = 0.5.

[5, 45]. An example of the scattering of two traveling pulses in one dimension is
shown in Fig. 15. It is also possible that colliding pulses may entrain and move as
a traveling two-pulse. Furthermore, for certain parameter values colliding pulses
can annihilate one another, as shown in Fig. 16.

0 10 20 30 40 50
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0.5
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0 10 20 30 40 50
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0

0.5
u

t = 84

0 10 20 30 40 50
−0.5

0

0.5
u

t = 142

x

Figure 15. A symmetric pair of traveling pulses is used to pre-
pare initial data on a large domain. As they travel toward each
other the waves slow down before colliding and then ultimately
reversing their direction. During the collision process the shape of
the two waves is not preserved, though after scattering the travel-
ing pulse shapes can once again be clearly identified. Parameters
are h0 = 0.04, θ = 0.1, κ = 0.16 and α = 1.58.

It has been suggested by Nishiura et al. [35] that the scattering of dissipative
solitons may be understood in terms of a so-called twin-horn separator. This is
a special type of unstable solution that links input to output at collision. It is
possible that such ideas may also be used to understand scattering in this neural
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Figure 16. A pair of traveling breathing pulses travel toward
each other, collide, and destroy one-another. In this case the
relative initial phase of breathing oscillation makes no difference
to the outcome. Parameters as for the inset in Fig. 13.

model, though it is not obvious which unstable steady-state solution could play
the role of the twin-horn separator2.

As expected all of the solutions we have described in one space dimension
have their analogs in a planar neural field model with nonlinear threshold ac-
commodation. In Fig. 17 we show an example of two traveling spots scattering
in a two dimensional domain. Initial data is a symmetric pair of spots travel-
ing obliquely toward one another, and we see a repulsive interaction where the
spots remain widely separated. For the same parameter set, but with the initial
traveling spots oriented such that they head directly toward one another, Fig. 18
shows an example of temporary binding before separation. If the collision is not
quite head-on, simulations indicate that a rotating bound state is possible, which
ultimately decays to zero, as in Fig. 19.
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Figure 17. The scattering of a pair of traveling spots in a two
dimensional domain (with toroidal geometry), showing a repulsive
interaction where the spots remain widely separated. Parameters
κ = 0.1, θ = 0.1, α = 2, h0 = 0.08.

Note that in the case of breathing solutions the phase may also play a role
in how quasi-particles interact [46]. It would be of obvious interest to develop
a theory of quasi-particle interactions by deriving equations of motion for the
interface (where u crosses threshold), along the lines for reaction-diffusion models

2It is possible that the unstable 2-bump solution described in Section 2.2 could play this
role. However, in simulations pulses can scatter even when that solution does not exist.
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Figure 18. The collision of a pair of traveling spots in a two
dimensional domain (with toroidal geometry), showing temporary
binding before separation. Parameters as in Fig. 17.
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Figure 19. The collision of a pair of traveling spots in a two
dimensional domain (with toroidal geometry). After collision one
sees a rotating bound state which ultimately decays to zero. Pa-
rameters as in Fig. 17.

described in [27, 39]. Alternatively one may consider deriving equations of motion
for quasi-particle centroids along the lines described by Elphick et al. [14] as
recently done by Bode et al. [5] for a three-component reaction diffusion system
and Bressloff [6] for neural field models. In this latter approach one must assume
weak interaction between quasi-particles (so that their shape is preserved during
collision), as in the example of Fig. 17. However, shapes may not be preserved, as
exemplified by Figs. 18 and 19.

The mathematical machinery for describing radially symmetric bumps can
be built up in a similar way to that developed for the one dimensional model
[18]. Interestingly, even in the absence of threshold accommodation (κ = 0),
a 1-bump can undergo an instability with decreasing h0 at the point where the
center of the bump develops a point of inflection (or dimple). In this case an
Evans function approach shows that the bump can split into two pieces [9]. For
the interested reader a fuller exposition of bumps, rings and their instabilities in
planar neural field models can be found in [40]. However, with the inclusion of
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threshold accommodation such an instability can lead to patterning of the neural
medium post bifurcation. An example of this is shown in Fig. 20.
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Figure 20. After a (dimple) bump goes unstable in a planar neu-
ral field model with threshold accommodation one typically sees
the emergence of a pattern state as illustrated here. Parameters
h0 = 0.06, θ = 0.1, κ = 0.05, α = 1.0.
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5. Discussion

In this paper we have developed a tractable formulation of threshold accom-
modation for neural-field theories, motivated by the ideas of A V Hill in 1936
[25]. Hill observed that the threshold for neural excitation should be dependent
upon the state of the tissue, and in particular should rise when the local poten-
tial is maintained at a high level, and otherwise revert to its resting level. Our
phenomenological model therefore includes a dynamically varying threshold whose
basal level h0 is driven toward h0 +κ when the synaptic activity u (identified here
with the “local potential” described by Hill) is elevated above a threshold θ.

We have focused on connectivity with short-range excitation and long range
inhibition (the so-called Mexican-hat), which can support spatially localized so-
lutions without accommodation. We chose to work with the Heaviside firing rate
function in order to facilitate analytical progress. We used Evans function tech-
niques to study instabilities of spatially localized states in one space dimension, and
showed that breathing bumps and pulses can emerge as instabilities of the basic
single bump solution. Furthermore, we demonstrated, again using the Evans func-
tion, that pulse solutions themselves can undergo a dynamic instability in favor of
breathing pulse solutions. These novel breathing instabilities represent interesting
new dynamics solely due to the inclusion of nonlinear threshold accommodation.
Interestingly, numerical simulations show that nonlinear threshold accommodation
leads to a variety of more exotic solutions, including bump splitting, scattering and
annihilation in both one and two space dimensions. To understand these complex
behaviors is an open challenge.
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Appendix

It is straight forward (though laborious) to calculate q(ξ) of Section 3 in closed
form using (27) and (32). However, we only need to evaluate q(ξ) at four specific
points. Performing these calculations for the choice of an exponential synapse
gives

q(ξ1) =
α

c
eαξ1/c[φ(ξ1, ξ2) + φ(ξ2, ξ4) + φ(ξ4,∞)],(48)

q(ξ2) =
α

c
eαξ2/c[φ(ξ2, ξ4) + φ(ξ4,∞)],(49)

q(ξ3) =
α

c
eαξ3/c[φ(ξ3, ξ4) + φ(ξ4,∞)],(50)

q(ξ4) =
α

c
eαξ4/cφ(ξ4,∞),(51)

where

(52) φ(a, b) =
∫ b

a

dsψ(s)e−αs/c.

The explicit forms of φ(ξ1, ξ2) etc. are most easily calculated using the result that

(53) g(x) = − d
dβ

e−βx

∣∣∣∣
β=1

.

The expressions in (48) to (51) may then be compactly represented as φ(ξ1, ξ2) =
−Φ′

12(1) etc. where

Φ12(β) =
e−(α/c−β)ξ1 − e−(α/c−β)ξ2

α/c− β
[e−βξ4 − e−βξ2 ],(54)

Φ24(β) =
e−(α/c+β)ξ2 − e−(α/c+β)ξ4

α/c+ β
eβξ2 +

e−(α/c−β)ξ2 − e−(α/c−β)ξ4

α/c− β
e−βξ4 ,(55)

Φ34(β) =
e−(α/c+β)ξ3 − e−(α/c+β)ξ4

α/c+ β
eβξ2 +

e−(α/c−β)ξ3 − e−(α/c−β)ξ4

α/c− β
e−βξ4 ,(56)

Φ4∞(β) =
e−(α/c+β)ξ4

α/c+ β
[eβξ2 − eβξ4 ].

(57)
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