
Speculative Document Evaluation

Alexander J. Macdonald
Document Engineering Lab
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

ajm@cs.nott.ac.uk

David F. Brailsford
Document Engineering Lab
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

dfb@cs.nott.ac.uk

Steven R. Bagley
Document Engineering Lab
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

srb@cs.nott.ac.uk

John Lumley
HP Labs

Filton Road, Stoke Gifford
Bristol, BS34 8QZ, UK

john.lumley@hp.com

Abstract
Optimisation of real world Variable Data printing (VDP) docu-
ments is a difficult problem because the interdependencies be-
tween layout functions may drastically reduce the number of
invariant blocks that can be factored out for pre-rasterisation.

This paper examines how speculative evaluation at an early
stage in a document-preparation pipeline, provides a generic
and effective method of optimising VDP documents that con-
tain such interdependencies.

Speculative evaluation will be at its most effective in speeding
up print runs if sets of layout invariances can either be discov-
ered automatically, or designed into the document at an early
stage. In either case the expertise of the layout designer needs
to be supplemented by expertise in exploiting potential invari-
ances and also in predicting the effects of speculative evaluation
on the caches used at various stages in the print production
pipeline.

Categories and Subject Descriptors
E.1 [Data]: Data Structures Trees; I.7.2 [Document and Text
Processing]: Document Preparation Markup Languages; I.7.4
[Document and Text Processing]: Electronic Publishing.

General Terms
Algorithms, Documentation

Keywords
XML, XSLT, SVG, Speculative Evaluation, Document Layout,
Optimisation

1. INTRODUCTION
The layout of pages in a VDP[1] print run is commonly de-

scribed using the PPML[2] language. PPML is an XML-based
markup which enables document objects on a page to be identi-
fied just prior to rasterisation. Raster Image Processing (RIP)
software that takes account of a PPML script is an example of
a ‘PPML consumer’. PPML requires its chunks of rasterisable

FINAL DRAFT of short paper submitted to:
DocEng’07, August 29–31, 2007, Winnipeg, Canada.
Copyright 2007 Macdonald, Brailsford, Bagley and Lumley.

content to be placed inside demarcated sections and this raster-
isable content can be anything that the PPML consumer can
cope with: examples might include PostScript, TIFF bitmap,
PDF or SVG. In the remainder of this paper we assume, with-
out loss of generality, that the final pre-raster form will be
SVG. We envisage a sequence of single-page, variable data,
advertising flyers prepared by extracting information from a
database and flowing that information into a previously pre-
pared layout template. The output of this document prepa-
ration stage (which we wish to optimise) will be a sequence
of PPML-encoded pages passed down a pipeline to the PPML
consumer.

In PPML, those page objects that are invariant (except, per-
haps, for translations within the page) can be flagged as
Reusable Objects and kept in a raster cache for re-use but it
can reasonably be asked, at the outset, whether such caching
is strictly necessary. Given the speed of modern computers it
might seem feasible to render every new page in its entirety
and not to waste effort and ingenuity on reusing invariant pre-
rasterised material. Indeed, the simplest examples of variable
data printing, such as customised black-and-white letters cre-
ated by mail merge, will very probably be output on a laser
printer which renders each page afresh and which does not use
PPML. However, when we turn to multi-colour high-end VDP
presses, such as the HP Indigo, we have a constant printing
time of one 4-colour A4 page every half second. With only half
a second to pull information from a database, evaluate all con-
straints and flows, paginate the document and then rasterise,
even a powerful computer [3] will struggle to keep up as the
document complexity increases. The message is that ‘fast’ is
seldom fast enough and that all optimisation is to be welcomed.

Software for VDP needs to concentrate on identifying in-
variant objects at an early point in the document preparation
workflow so that they can be marked as being reusable. This
information is then used later in the pipeline by the PPML
consumer. Equally important is the need to identify opportuni-
ties for workflow optimisations by using speculative evaluation
and caching during the earlier process of actually preparing the
PPML pages i.e. well before rasterisation takes place.

The work described here follows on from a previous paper[4]
which showed how a template document built from nested lay-
out functions could be statically optimised so that evaluation
occurred more quickly. This was done by identifying, and iso-
lating, invariant sections in individual layout functions to en-
sure they were evaluated just once.

This approach was shown to work well for simple linear flow
functions, where bounding box dimensions of objects were demon-
strably unaffected by objects rasterised later on the page. How-
ever, real-world documents tend to be built from much more



complex layout constraints (perhaps involving interdependent
x and y flows) where a change in a given item’s bounds may
cause a profound change in the bounds of objects elsewhere on
the page.

2. INTERDEPENDENCIES
To illustrate the problems faced with VDP documents we

examine a hypothetical, university marketing flyer that will be
sent to all students once they have been given a place on a
specific course at the University of Nottingham. The flyer is
to be personalised for each student, using material about the
degree course, and the student, drawn from a database.

The flyer consists of three main blocks of content: a header,
with the text “Welcome to the University of Nottingham”, the
main central block of text with a standard, text-invariant, wel-
coming message containing general details about the chosen
degree course and, finally, an ”info block” giving information
specific to each student. A simplified version of the flyer is
shown in figure 1.

Figure 1: University marketing flyer.

The only element of the document with variable content is
the info block which in figure 1 is a fixed-width, variable-height,
box anchored at the top right of the layout. This box may
contain information about the hall of residence to which the
student has been allocated, the name of the student’s personal
tutor, and so on.

It is important to realise that although the content of both
the header and the main body of text are invariant, the variable
height info box, alongside the main body, may well cause the
appearance of the body text to be variable (due to reflow) and
therefore not cacheable, across the print run.

In the next section we investigate whether, despite the reflow
of the body text, it might still be possible to identify raster-
invariant sections of the text.

3. LAYOUT FUNCTION OPTIMISATION
If the info box has a known minimum height then all of the

text in the main body that flows down to this height will be
laid out identically across all the print runs. Figures 2a and
2b show two different instances of the flyer with the invariant
area of the body text (as guaranteed by the minimum height
info box constraint) shaded.

Figure 2: Two instances of the flyer.

With a text flow function that contains this optimisation
a partial evaluation of the template document, as in figure 2a,
causes the first part of the body text to be evaluated and turned
into a static block of SVG. The remainder of the body text will
now reflow underneath the info box starting at a new vertical
offset equal to the info box’s minimum height constraint.

The amount of text that has been factored out, and made
raster-invariant, in this example is small but still worthwhile.
If the info box remains fixed in width but increases in height
then figure 2b indicates that further blocks of main body text
become subject to the text width constraint imposed by the
info box’s presence. So, if the info box has a discrete set of just
a few possible heights then a bigger range of invariant textual
sub-blocks can be identified and pre-computed.

However, let us now assume that the designer of the flyer
wants a completely new layout to be triggered under certain
conditions (e.g the info box exceeds a given height, or the body
text is for a degree course that deserves a more exotic layout).
If these conditions are satisfied the designer makes what might
seem a relatively small stylistic change, namely, centering the
info box in the middle of the page and allowing it to expand
outward in all directions. Unfortunately this change has the
effect of causing such a complete reflow of the main body text
that the previously discussed optimisations become impossible
(see figure 3).

Figure 3: Flyer with centred floating box.

4. SPECULATIVE EVALUATION
We have just seen that the figure 3 variant for our flyer of-

fers no scope for optimisation apart from the header block.
The key issue here is how frequently in the print run does this
variant layout occur as opposed to the more optimisable one
with a right-anchored, fixed-width, variable-height, info boxes
as shown in figure 2.

If it is possible to predicate the sizes of certain items (e.g.
the info box in our example) within a VDP document then a
speculative evaluation can be performed by binding in dummy
items of the predicted sizes and evaluating the document as
normal. A new conditional document is then created that con-
tains two branches, one with the original document (e.g. no
predictions whatever made about info box height) and another
with an optimised version (e.g. minimum-height info box will
be sufficient). The branch test will then establish if the real
data fits into the speculated optimal layout and will then use
that branch if the test succeeds.

5. OPTIMISING THE PRODUCTION OF THE
UNIVERSITY FLYER

In the example of the marketing flyer a speculative evalua-
tion may be able to provide considerable scope for optimisation.
The marketing department will know from previous years what



percentages of the students are staying in each hall of residence,
how many of them are local or overseas students. This infor-
mation needs to be flowed into the info box and we assume
that variabilities in the student’s details, or those of the hall,
mean that line-break decisions for this flow cannot be predicted
ahead of time. However it may well turn out that that the per-
sonalised information in the fixed-width info box can be made
to fit, elegantly, into one of just a few allowed box heights.
For the sake of illustration let us assume there are three such
allowed heights.

By doing a speculative evaluation of this document with the
three possible dummy values of heights for the info box it will
be possible to rasterise, and therefore cache, the three resulting
versions of the main body text. Again, we assume that the main
body text, although fixed for any given undergraduate degree
course, is the most expensive part of this document to rasterise
because of the quantity of text and its reflow variability

Under these conditions the assembly of a PPML page simply
involves the addition of the rasterised text for the info box
into one of three templates having the correct info box height.
Previously prepared invariant text blocks can be used for the
main body text and even the portion of it flowing under the
allowed heights of info box becomes a known quantity and can
therefore be pre-rasterised.

The conditional tests introduced by choosing among the three
speculatively evaluated page templates, once info box height is
known, are unlikely to add any significant time to overall docu-
ment evaluation. Nevertheless the different branches and their
differing rasterised blocks may well require more disk space or
RAM. Considerations of this sort will influence how many dif-
fering layouts it is worthwhile to partially evaluate.

Let us now imagine a situation where the layout shown in
figure 3 is triggered if (i) the degree course in question is com-
puter science or (ii) for any other degree course in cases where
the info box height exceeds the maximum of the three allowed
discrete heights. In case (i) we can presume that the boolean
test on the database input tells us very quickly indeed that the
main body text relates to computer science. If this is so there
is no point in trying to flow info box text into the possibilities
of figures 2a and 2b; one has to be resigned at the outset to
the non-optimisable layout of figure 3. In case (ii) the simplest
strategy is to wait and see if the rendered info box text over-
flows the largest allowed height for that box and, if it does, to
then start up the layout processing of figure 3. On the other
hand if multi-threading does not slow down the overall process-
ing it is possible to contemplate starting a separate thread for
figure 3 layout, in parallel with those trying the figure 2 layout.

6. ANALYSIS
The benefit of a truly programmatic variable document comes

from the freedom it offers the document authors; it does not
force them to constrain the variable parts of the document to
fit into restricted ‘copy holes’. This, in turn, leaves the authors
free to make documents that show the data in the best possible
no-compromise layout.

VDP packages such as DDF[5] offer just such complete docu-
ment variability but with potentially no cacheability and with
slow document evaluation. Copy-hole techniques are at the
other end of the spectrum of VDP possibilities. They offer
higher rasterisation speed and cacheability but with reduced
scope for variability.

Our flyer case study shows that speculative evaluation can
be used to automatically create fast paths in a truly variable

document whenever the most frequently occurring combina-
tions can resolve into a choice of copy-hole documents. Pro-
vided the document still retains an option for a fully variable
path the method we have outlined takes advantage of copy-hole
speeds while retaining the flexibility of a truly programmatic
approach.

7. CONCLUSION AND FUTURE WORK
Speculation is a generic optimisation technique that is em-

ployed to great effect in other aspects of computer science and
can also benefit VDP print runs. The kinds of document that
will benefit the most are those that have predictable data, fol-
lowing patterns which allow accurate speculations to be made
on the bounds of the various items in the document.

A key question is the nature of the process for discovering
and exploiting possible optimisations, such as the three copy
hole possibilities in our flyer. It seems certain that this burden
cannot be put solely on the graphic artist (GA) who designs the
flyer layout in terms of also requiring him or her to be an expert
programmer[1]. To what extent the optimisation possibilities
need early programmatic help and to what extent they can be
‘discovered’ remains a topic for investigation.

Our work plan involves examining to what extent multiple
branches affects the speed of evaluation, and whether the in-
creased space required to create the document in this way out-
weighs the performance gains. Part of the on-going work will
involve collecting case studies and data sets for real-world print
runs to help us understand which optimisations actually benefit
the kind of documents encountered in VDP jobs.

8. ACKNOWLEDGEMENTS
Thanks are due to Hewlett Packard (UK) and EPSRC for

supporting Alexander Macdonald’s PhD studentship.

9. REFERENCES
[1] Fabio Giannetti and Royston Sellman. Anvil: VDP

Segmented Workflow Toolset. In HP Labs Technical
Report HPL-2007-18, February 2007.

[2] D. DeBronkart and P. Davis. PPML (Personalized Print
Markup Language): a new XML-based industry standard
print language. In XML Europe 2000, pages 1–14, June
2000.

[3] Felipe Rech Meneguzzi, Leonardo Luceiro Meirelles,
Fernando Tarlá Martins Mano, João Batista S. de Oliveira,
and Ana Cristina Benso da Silva. Strategies for document
optimization in digital publishing. In ACM Symposium on
Document Engineering, pages 163–170, 2004.

[4] Alexander J. Macdonald, David F. Brailsford, and John
Lumley. Evaluating Invariances in Document Layout
Functions. In Proceedings of the 2006 ACM symposium on
Document engineering, pages 25–27. ACM Press, October
2006.

[5] John Lumley, Roger Gimson, and Owen Rees. Extensible
Layout in Functional Documents. In SPIE/EI 2006
Digital Publishing Conference, January 2006.


	Introduction
	Interdependencies
	Layout Function Optimisation
	Speculative Evaluation
	Optimising the Production of the University Flyer
	Analysis
	Conclusion and Future Work
	Acknowledgements
	References

