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Neural field models of firing rate activity typically take the form of integral equations with space-
dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how
one can derive an equivalent partial differential equation (PDE) model that properly treats the
axonal delay terms of the integral formulation. Our analysis avoids the so-called long-wavelength
approximation that has previously been used to formulate PDE models for neural activity in two
spatial dimensions. Direct numerical simulations of this PDE model show instabilities of the ho-
mogeneous steady state that are in full agreement with a Turing instability analysis of the original
integral model. We discuss the benefits of such a local model and its usefulness in modeling electro-
cortical activity. In particular we are able to treat “patchy” connections, whereby a homogeneous
and isotropic system is modulated in a spatially periodic fashion. In this case the emergence of
a “lattice-directed” traveling wave predicted by a linear instability analysis is confirmed by the
numerical simulation of an appropriate set of coupled PDEs.

PACS numbers: 87.10.+e

I. INTRODUCTION

In many regions of mammalian neocortex, synaptic
connectivity patterns follow a laminar arrangement, with
strong vertical coupling between layers. Consequently
cortical activity is considered as occurring on a two di-
mensional plane, with the coupling between layers en-
suring near instantaneous vertical propagation. Hence,
it is highly desirable to obtain solutions to fully planar
neural field models. The most popular Wilson-Cowan
[1] or Amari [2] style neural field models are typically
written in the language of integro-differential or purely
integral equations (see [3–5] for recent reviews). In re-
cent years there has been a growing interest in neural
field models where the communication between different
parts of the domain is delayed due to the finite conduc-
tion speed of action potentials [6–10]. The advent of this
work can be traced back to that of Nunez [11]. How-
ever, the set of mathematical techniques for the analysis
of non-local models with space-dependent delays is not
yet as thoroughly developed as it is for local partial dif-
ferential equation (PDE) models. As discussed in [12]
a local PDE model would offer a number of advantages
over its non-local counterpart, allowing the use of i) pow-
erful techniques from nonlinear PDE theory, ii) standard
numerical techniques for the solution of PDEs, and iii)
a more numerically straightforward analysis of the ef-
fects of spatial inhomogeneities. To date progress in this
area has been made by Jirsa and Haken [13] for neural
field models in one spatial dimension with axonal delays,
and by Laing and Troy [14] in two spatial dimensions

for models lacking axonal delays. In both cases integral
transform techniques are exploited and a PDE descrip-
tion is obtained only when the integral models under con-
sideration are defined by spatio-temporal kernels whose
Fourier transform has a rational polynomial structure.
It is the goal of this paper to address the physiologically
important case of a model in two spatial dimensions with
axonal delays and to obtain an equivalent PDE model.
Previous work on this problem by Liley et al. [12] has
shown that for synaptic connectivity functions that fall
off exponentially with distance, there is an equivalent lo-
cal model consisting of an infinite set of PDEs involving
fractional derivative terms. Although not particularly
useful in its own right this system can be approximated
by a single hyperbolic PDE. This PDE has been shown
to provide a so-called long-wavelength approximation to
the underlying integral model, and equations of this type
have been used in several EEG modeling studies (see for
example [15–17]).

In section II we introduce the class of neural field popu-
lation models that we study in this paper. Next in section
III we derive the equivalent PDE model, and compare
it to the model obtained using the long-wavelength ap-
proximation. In section IV we present a Turing instabil-
ity analysis of the original integral model. Importantly
we show that numerical simulations of the PDE model
are in precise agreement with the behavior predicted at
the onset of a Turing instability. The case of spatially
modulated synaptic connectivity is treated in section V.
Finally, in section VI we discuss natural extensions of the
work in this paper.
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II. INTEGRAL NEURAL FIELD MODEL

We consider planar neural field models that incorpo-
rate delayed synaptic interactions between distinct neu-
ronal populations where the activity of synapses in pop-
ulation a induced by activity in population b can be writ-
ten

uab = ηab ∗ ψab. (1)

Here uab = uab(r, t), r = (r, θ) (r ∈ R+, θ ∈ [0, 2π), t ∈
R+), and a and b label functionally homogeneous neu-
ronal populations. The activity variable uab(r, t) can be
interpreted as a spatially averaged synaptic activity cen-
tered about r. The symbol ∗ represents a temporal con-
volution in the sense that

(η ∗ ψ)(r, t) =
∫ t

0

dsη(s)ψ(r, t− s). (2)

The variable ψab(r, t) describes the presynaptic input to
population a arriving from population b, which we write
as

ψab(r, t) =
∫

R2
dr′wab(r, r′)fb◦hb(r′, t−|r−r′|/vab). (3)

The function ηab(t) (with ηab(t) = 0 for t < 0) rep-
resents a normalised synaptic filter, whilst wab(r, r′)
is a synaptic footprint describing the anatomy of net-
work connections. One common choice for the synap-
tic filter is the so-called delayed difference of exponen-
tials: ηab(t) = η(t − τab;αab, βab), where η(t;α, β) =
(1/α−1/β)−1[e−αt− e−βt]Θ(t) and τab is a mean synap-
tic processing delay between populations a and b. Here,
Θ(t) is the Heaviside step function. In the absence of
detailed anatomical data it is common practice to con-
sider cortico-cortical connectivity functions to be homo-
geneous and isotropic so that wab(r, r′) = wab(|r − r′|).
The function fa represents the firing rate of population a,
and vab is the mean synaptic axonal velocity along a fibre
connecting population b to population a. For conduction
velocities in the range 1.5–7 m/s (typical of white matter
axons) axonal delays are significant over scales ranging
from a single cortical area (of spatial scale 10mm) up to
the scale of inter-hemispherical collosal connections.

In a Wilson-Cowan or Amari style neural field model
the variables ha are taken to be of the form ha =

∑
b uab+

h0
a, with h0

a a constant drive term. In more sophisticated
models of EEG activity, such as in the work of Liley et
al. [12], ha is interpreted as the average soma membrane
potential of a population and chosen to obey a nonlinear
equation of the form

(1 + τa∂t)ha =
∑
b

Γab(ha)uab + h0
a. (4)

Here the activity dependent functions Γab weight the con-
tributions from the various contributing neuronal pop-
ulations, and take into account the shunting nature of
synaptic interactions (see [12] for details).

III. EQUIVALENT PDE MODEL

The numerical solution of the neural field model de-
fined in section II is challenging for two reasons in partic-
ular. The first being that the non-local presynaptic input
term (3) is defined by an integral over a two-dimensional
spatial domain, and the second that it involves an ar-
gument that is delayed in time. In fact since this delay
term is space-dependent it requires keeping a memory of
all previous synaptic activity. One of the key motiva-
tions of our work is to circumvent the huge numerical
overheads in simulating such a delayed non-local system.

Introducing Gab(r, t) = Gab(r, t) (where r = |r|) with

Gab(r, t) = wab(r)δ(t− r/vab), (5)

allows us to re-write (3) as

ψab(r, t) =
∫ ∞
−∞

ds
∫

R2
dr′Gab(|r−r′|, t−s)ρb(r′, s), (6)

where ρa = fa◦ha. Importantly the right hand side of (6)
has a convolution structure. Introducing the 3D Fourier
transform according to

ψ(r, t) =
1

(2π)3

∫
R3

dkdωψ(k, ω)ei(k·r+ωt), (7)

then we find that Gab(k, ω) = Gab(k, ω), (k = |k|) where

Gab(k, ω) = 2π
∫ ∞

0

wab(r)J0(kr)re−iωr/vabdr. (8)

Here J0(z) = (2π)−1
∫ 2π

0
dθeiz cos θ is the Bessel function

of the first kind of order zero. We recognize (8) as the
Hankel transform of wab(r)e−iωr/vab .

If Gab(k, ω) can be represented in the form
Rab(k2, iω)/Pab(k2, iω) then we have that
Pab(k2, iω)ψab(k, ω) = Rab(k2, iω)ρb(k, ω). By identi-
fying k2 ↔ −∇2 and iω ↔ ∂t, then a formal inverse
Fourier transform will yield a local model in terms of
the operators ∇2 and ∂t. However, unless the functions
Pab and Rab are polynomial in their arguments then the
interpretation of functions of these operators is unclear.
To illustrate this we revisit the common choice:

wab(r) = w0
abe
−r/σab/(2π), (9)

for which

Gab(k, ω) = w0
ab

Aab(ω)
(A2

ab(ω) + k2)3/2
, (10)

where Aab(ω) = σab
−1+iω/vab. Introducing the operator

Aab:

Aab =
(

1
σab

+
1
vab

∂t

)2

, (11)

then the problem arises as how to interpret [Aab−∇2]3/2.
In the long-wavelength approximation one merely ex-
pands Gab(k, ω) around k = 0 for small k, yielding a
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“nice” rational polynomial structure which is then ma-
nipulated as described above to give the PDE:(

Aab −
3
2
∇2

)
ψab = w0

abρb. (12)

We refer to (12) as the long-wavelength model. Higher
order approximations can be obtained by expanding to
higher powers in k [18], although all resulting higher or-
der PDE models will still be long-wavelength approxima-
tions.

To obtain a PDE model that side-steps the need to
make the long-wavelength approximation we use the ob-
servation that e−r can be fitted with a two-parameter
function of the form [19]

E(r) = (ε21 − ε22)−1 [K0(r/ε1)−K0(r/ε2)] , (13)

where K0 is the modified Bessel function of the second
kind of order zero. The prefactor (ε21 − ε22)−1 ensures a
common normalisation for e−r and E(r).

The form of equation (13) motivates the approxi-
mation e−r/σe−iωr/v ≈ (ε21 − ε22)−1[K0(Aab;ε1(ω)r) −
K0(Aab;ε2(ω)r)], where Aab;ε(ω) is obtained under the
replacement of σ by εσ in Aab(ω). This form is particu-
larly useful since K0(ar) has a simple Hankel transform
given by 1/(a2 + k2). For this choice Gab(k, ω) takes the
form

w0
ab

ε21 − ε22

[
1

(A2
ab;ε1

(ω) + k2)
− 1

(A2
ab;ε2

(ω) + k2)

]
. (14)

In this case we obtain the PDE model:

(Aab;ε1 −∇2)(Aab;ε2 −∇2)ψab = w0
abBabρb, (15)

where

Bab =
1

ε21ε
2
2σ

2
ab

[
1 +

2ε1ε2σab
vab(ε1 + ε2)

∂t

]
. (16)

For want of a better name we shall refer to (15) as
the rational model. Note that the long-wavelength
model can also be obtained using the approximation
e−r ≈ L(r) = 2K0(

√
2/3r)/3. However, this approxi-

mation is poor for both small and large values of r since
limr→0,∞ L(r)/e−r =∞. Note that limr→0E(r) = (ε21 −
ε22)−1 ln(ε1/ε2), and so is well behaved at the origin. A
plot of E(r) (rational model) and L(r) (long-wavelength
model) is shown in Fig. 1. The long-wavelength model
is recovered from the rational model with the choice
(ε1, ε2) = (

√
3/2, 0).

We note that the formulation of the rational model
(and indeed the long-wavelength model) provides only
an approximation to the original relationship Gab(r, t) =
wab(r)δ(t − r/vab). As a result synaptic activity does
not just arrive at t = r/vab. This is best seen by
deriving Gab(r, t) for the choice (14). Writing the in-
verse transform of 1/(A2

ab(ω) + k2) as Hab(r, t) (calcu-
lated in Appendix A) we have that Gab(r, t) = (ε21 −

0 1 2 3 4 5
0

0.5

1

r

E(r)

L(r) long-wavelength model

rational model

FIG. 1: (Color online). A plot of E(r) (rational model) with

(ε1, ε2) = (
p

3/2, ε), and L(r) (long-wavelength model) is
shown together with a plot of e−r. In this illustrative plot
we have chosen ε as the root of ε21 − ε2 − ln(ε1/ε), so as to fix
E(0) = 1.

ε22)−1w0
ab[Hab;ε1(r, t)−Hab;ε2(r, t)], which gives

Gab(r, t) = w0
ab

vabΘ(vabt− r)
2π
√
v2
abt

2 − r2
×

(ε21 − ε22)−1
[
e−vabt/(ε1σab) − e−vabt/(ε2σab)

]
.

(17)

Although the shape of G(r, t) is consistent with our phys-
ical expectations, namely a positive decaying pulse be-
yond t = r/vab, we have as yet not fixed the parameters
(ε1, ε2) of the rational model. To do this we could try and
approximate the complex function (10) of the full model
using (14). However, a simpler approach is to consider
fitting a projection of (10) that describes the linear stabil-
ity of the homogeneous steady state. We do this in the
next section. Here we show that the dynamic pattern
forming instability borders for the rational model are in
closer quantitative agreement to those of the full model
than the long-wavelength model. In this sense we argue
that the rational model is an improvement over the long-
wavelength model (which it recovers as a special case).

We can also interpret the above in terms of a dis-
tance dependent distribution of velocities qab(v, r) for the
spreading of synaptic activity by writing

Gab(r, t) = wab(r)
∫ ∞

0

dv qab(v, r)δ(t− r/v)

= wab(r)
v2

r
qab(v, r)

∣∣∣∣
v=r/t

, (18)

with the normalization
∫∞
0

dv qab(v, r) = 1. The original
definition (8) is recovered for a single conduction velocity
qab(v, r) = δ(v−vab). Rearranging (18) gives the velocity
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distribution as

qab(v, r) =
r

v2

Gab(r, r/v)
wab(r)

. (19)

Using (17) we find that, for both the rational and long-
wavelength model, the distribution qab(v, r) has a peak
at v = vab as expected, as well as one for small r and
v. This second peak however is strongly localized and
hence merely introduces an insignificant overall delay to
a traveling pulse.

IV. TURING INSTABILITY ANALYSIS

Here we explore the stability of the homogeneous
steady state for the choice ha =

∑
b uab + h0

a. The
extension of this analysis to include the Liley model
given by (4) is straightforward. Let ha(r, t) = hss

a de-
note the homogeneous steady state, defined by hss

a =∑
bWabfb(hss

b ) + h0
a, where Wab =

∫
R2 dr′wab(r′). Lin-

earizing around this solution and considering perturba-
tions of the form ha(r, t) = haeλteik·r, gives the system
of equations

ha =
∑
b

η̃ab(λ)Gab(k,−iλ)γbhb. (20)

Here η̃ab(λ) =
∫∞
0

dse−λsηab(s) is the Laplace transform
of ηab(t) and γa = f ′a(hss

a ). Demanding non-trivial so-
lutions yields an equation for the continuous spectrum
λ = λ(k) in the form E(k, λ) = 0, where E(k, λ) =
det(D(k, λ)− I), and

[D(k, λ)]ab = η̃ab(λ)Gab(k,−iλ)γb. (21)

Note that for a delayed difference of exponentials function
we have simply that

η̃ab(λ) =
e−λτab

(1 + λ/αab)(1 + λ/βab)
. (22)

An instability occurs when for the first time there are
values of k at which the real part of λ is nonnegative. A
Turing bifurcation point is defined as the smallest value
of some order parameter for which there exists some non-
zero kc satisfying Re (λ(kc)) = 0. It is said to be static
if Im (λ(kc)) = 0 and dynamic if Im (λ(kc)) ≡ ωc 6= 0.
The dynamic instability is often referred to as a Turing-
Hopf bifurcation and generates a global pattern with
wavenumber kc, which moves coherently with a speed
c = ωc/kc, i.e. as a periodic traveling wave train. Gener-
ically one expects to see the emergence of doubly peri-
odic solutions that tessellate the plane, namely traveling
waves with hexagonal, square or rhombic structure. If
the maximum of the dispersion curve is at k = 0 then
the mode that is first excited is another spatially uni-
form state. If ωc 6= 0, we expect the emergence of a
homogeneous limit cycle with temporal frequency ωc.

For computational purposes it is convenient to split
the dispersion relation into real and imaginary parts and
write λ = ν + iω to obtain

ER(ν, ω) = 0, EI(ν, ω) = 0, (23)

where ER(ν, ω) = Re E(k, ν + iω) and EI(ν, ω) =
Im E(k, ν + iω). Solving the system of equations (23)
gives us a curve in the plane (ν, ω) parameterized by k.
A static bifurcation may thus be identified with the tan-
gential intersection of ω = ω(ν) along the line ν = 0 at
the point ω = 0. Similarly a dynamic bifurcation is iden-
tified with a tangential intersection at ω 6= 0. This is
equivalent to tracking points where ν′(ω) = 0, given by
the equation ∂kER∂ωEI − ∂kEI∂ωER = 0.

For example, consider two populations, one excitatory
and one inhibitory, and use the labels a ∈ {E, I}, with
w0
EE,IE > 0 and w0

II,EI < 0. In this case

E(k, λ) = [1− η̃IIGIIγI ][1− η̃EEGEEγE ]
− η̃EI η̃IEGEIGIEγIγE , (24)

where Gab = Gab(k,−iλ) and η̃ab = η̃ab(λ). For sim-
plicity we shall set αaI = βaI = 1 and αaE = βaE = α
and ignore synaptic delays by taking τab = 0. In neocor-
tex the extent of excitatory connections WaE is broader
than that of inhibitory connections WaI , and so we take
σaE > σaI . Again for simplicity we set σaI = σI = 1 and
σaE = σE . For a common choice of firing rate function
fa = f we may also set γa = γ. Finally we focus on
only a single axonal conduction velocity and set vab = v.
In Fig. 2 we show a plot of the critical curves in the
(v, γ) plane above which the homogeneous steady state
is unstable to dynamic instabilities with kc = 0 (bulk os-
cillations) and kc 6= 0 (traveling waves). The upper panel
in Fig. 2 shows results for the full model (defined by (9)),
the middle panel that for the long-wavelength model, and
the lower is that for the rational model. We note that
there are no qualitative differences between the models
in the sense that, at the linear level, all models support
Hopf and Turing-Hopf instabilities, with a switch from
one to the other with increasing v. One obvious differ-
ence is that with an appropriate choice of (ε1, ε2) the ra-
tional model is in far better quantitative agreement with
the full model. To test the predictions of our linear sta-
bility analysis and to compare the nonlinear behaviour
of the two models we resort to direct numerical simula-
tions. Necessarily this requires the choice of a firing rate
function.

In all direct numerical simulations of the PDE models
we take the sigmoidal form

f(h) =
1

1 + e−βh
. (25)

Here β is a gain parameter. Without loss of generality
we set the steady state value of hE,I to be zero, giving
γ = f ′(0) = β/4. The predictions of the linear stability
analysis are found to be in excellent agreement with the



5

0

5

10

15

20

0 2 4 6 8 10 12v

Hopf

Turing-Hopf

γ

0

5

10

15

20

0 2 4 6 8 10 12

Turing-Hopf

Hopf

v

γ

0

5

10

15

20

0 2 4 6 8 10 12

Turing-Hopf

Hopf

v

γ

FIG. 2: Critical curves showing the instability thresholds for
dynamic instabilities in the (v, γ) plane. Top: Full model.
Middle: Long-wavelength model. Bottom: Rational model
with (ε1, ε2) = (0.6, 0.6). Parameters α = 1, w0

EE = w0
IE = 1,

w0
II = w0

EI = −4, h0
E = h0

I = 0 and σE = 2.

behavior of the PDE models. Figure 3 shows a pattern
seen in the long-wavelength model, beyond the Turing-
Hopf bifurcation, while Figure 4 shows a pattern seen in
the rational model, also beyond the Turing-Hopf bifur-
cation. For both models parallel moving stripes are very
commonly seen beyond the Turing-Hopf bifurcation, par-
ticularly for small domains, but a variety of other pat-
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FIG. 3: (Color online). Left to right, top to bottom: snap-
shots of a periodic pattern for the long-wavelength model,
each 1/4 of a period later than the previous one. uEE is
shown. Domain is 30× 30. v = 12, γ = 20. Other parameters
are as in Fig. 2.
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FIG. 4: (Color online). Left to right, top to bottom: snap-
shots of a periodic pattern for the rational model, each 1/4 of
a period later than the previous one. uEE is shown. Domain
is 30× 30. v = 12, γ = 15. Other parameters are as in Fig. 2.

terns such as those shown here are also possible, i.e. both
systems have multiple attractors. Therefore, based upon
numerics alone it is not possible to make the statement
that there is a qualitative difference between the types
of possible patterns in the two models. A short discus-
sion of the numerical techniques used in this paper can
be found in Appendix B.
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V. SPATIAL MODULATION

It is now known that the neocortex has a crystalline
micro-structure at the millimeter length scale, so that
the assumption of isotropic connectivity has to be re-
vised (for a recent discussion see [20]). For example, in
visual cortex it has been shown that long range horizontal
connections (extending several millimeters) tend to link
neurons having common functional properties (as defined
by their feature maps). Since the feature maps (for ori-
entation preference, spatial frequency preference and oc-
ular dominance) are approximately periodic this leads to
patchy connections that break continuous rotation sym-
metry (but not necessarily continuous translation sym-
metry). With this in mind we introduce a periodically
modulated spatial kernel of the form

wP
ab(r, r

′) = wab(|r− r′|)Jab(r− r′), (26)

where Jab(r) varies periodically with respect to a regu-
lar planar lattice L. Note that the patchy kernel wPab is
homogeneous, but not isotropic. Following recent work
of Robinson [21] on patchy propagators we show how to
obtain an equivalent PDE model for an integral neural
field equation with a spatial kernel given by (26).

First we exploit the periodicity of Jab(r) and represent
it with a Fourier series:

Jab(r) =
∑
q

Jq
abe

iq·r. (27)

The vectors q are the reciprocal lattice vectors of the
underlying lattice L, and Jq

ab are Fourier coefficients
given by (2π)−2

∫
R2 dre−iq·rJab(r), with J−q

ab = (Jq
ab)
†

(where † denotes complex-conjugation). In this case
ψab(k, ω) = GP

ab(k, ω)ρb(k, ω), where

GP
ab(k, ω) =

∑
q

Jq
abGab(|k− q|, ω), (28)

and Gab(k, ω) is given by (8). We may then write
ψab(r, t) =

∑
q J

q
abψ

q
ab(r, t), where ψq

ab(k, ω) = Gab(|k −
q|, ω)ρb(k, ω). Choosing Gab(k, ω) according to (14) we
see that ψq

ab(r, t) satisfies

(Aab;ε1 −∇2
q)(Aab;ε2 −∇2

q)ψq
ab = w0

abBabρb, (29)

where ∇q = (∇ − iq). Hence, we have an infinite set
of PDEs for the complex amplitudes ψq

ab indexed by the
reciprocal lattice vectors q. Since ψ−q

ab = (ψq
ab)
† then

ψab(r, t) =
∑

q J
q
abψ

q
ab(r, t) ∈ R as required. Assuming

that there is a natural cut-off in q, then we need only
evolve a finite subset of these PDEs to see the effects
of patchy connections on solution behavior. Note also
that the Turing instability analysis for the patchy model
is identical to that of the isotropic model under the re-
placement of Gab by (28) in (21), so that now λ depends
on the direction as well as the magnitude of k. For the
mode selected by the Turing mechanism all other modes
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generated by discrete rotations of the reciprocal lattice
will also be selected. Thus periodic patchy connections
favour the generation of periodic patterns.

For example, consider a square lattice with length-
scale d. The generators of the reciprocal lattice are
k1 = 2π/d(1, 0) and k2 = 2π/d(0, 1). Now choose
Jab(r) = [cos(k1 · r) + cos(k2 · r)]/2. In this case
Jq
ab = [δ(q− k1) + δ(q + k1) + δ(q− k2) + δ(q + k2)]/4,

and we need only consider two coupled complex PDEs
(indexed by k1,2).

In Fig. 5 we plot the dispersion surfaces Re λ(k),
k = (kx, ky), for parameters selected just beyond the
instability of the homogeneous steady state. In the limit
d → ∞ we recover the unmodulated model. For finite d
we find that each lattice wavevector ±k1,2 introduces a
shifted copy of the peak of the dispersion surface from
the unmodulated case (Fig. 5a). When these peaks are
widely separated (for lattice spacing d . 3) the interac-
tion between them is weak and the bifurcation param-
eter portrait is expected to be analogous to that of the
unmodulated model (Fig. 2) (at least up to a factor of
4 coming from the particular choice of Jq

ab above). In
Fig. 6 we plot the bifurcations for the modulated model.
Compared to the unmodulated case the Hopf bifurcation
is transformed to a Turing-Hopf bifurcation with critical
wavevectors coinciding with those of the lattice and inde-
pendent of the axonal velocity v. This is associated with
the central peaks at±k1,2 in Fig. 5c crossing through zero
from below. With increasing v the dominant bifurcation
is also of Turing-Hopf type. However, in this case it is a
ring of wavevectors surrounding ±k1,2 that go unstable
first, as in Fig. 5d. In both cases this suggests the emer-
gence of traveling waves aligned to the lattice size and
direction, which are indeed observed in direct numerical
simulations. We shall refer to these as “lattice-directed”
traveling waves. In the regime 3 . d . 6 four wavevec-
tors become unstable with |kx| = |ky|, as in Fig. 5b , and
for d & 6 the system is effectively that of the unmodu-
lated case described by Fig. 5a.

In Fig. 7 we plot the speed of a traveling wave at the
Turing-Hopf bifurcation at v = 1. The speed of the wave
is seen to increase almost linearly with the spacing of the
square lattice, d. This reflects the fact that for small
d, the emergent frequency ωc is independent of d and
kc coincides with |k1,2|. The linear analysis predicting
emergent wave speed is found to be in excellent agree-
ment with direct numerical simulations. Figure 8 shows
a lattice-directed traveling wave created in the Turing-
Hopf bifurcation shown in Fig. 6, for v = 1.

In Fig. 9 we show a pattern generated in the Turing-
Hopf bifurcation for the system with a periodically-
modulated kernel for v = 10. It emerged from the
spatially uniform state at the value of γ predicted from
Fig. 6. The pattern is compatible with the wavenumber
k for which the spatially uniform state is unstable.
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Turing-Hopf

(central peak)

Turing-Hopf

(surrounding ring)
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γ

FIG. 6: Critical curves showing the Turing-Hopf instabilities
in the (v, γ) plane for the rational model (15), with a peri-
odically modulated kernel. In this example the underlying
lattice is square, with spacing d. Parameters are as in Fig. 2
with d = 1.
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FIG. 7: Speed (c = ωc/kc) of a lattice-directed traveling wave
at the Turing-Hopf bifurcation shown in Fig. 6 for v = 1 as a
function of square lattice spacing d. The speed of the wave is
seen to increase almost linearly with d. Here v = 1 and other
parameters are as in Fig. 2. The circles denote the results
from direct numerical simulations.

VI. CONCLUSIONS

Neural field models of firing rate activity have had
a major impact in helping to develop an understand-
ing of the dynamics of EEG [12, 22, 23]. In this pa-
per we have shown how to write down an equivalent
PDE model for a neural field model in two spatial di-
mensions with a particular form of decaying connectivity
and a space-dependent axonal delay. Importantly this
has avoided the so-called long-wavelength approximation
that has been used in many EEG models to date. Di-
rect numerical simulations of the equivalent PDE model
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FIG. 8: Turing-Hopf pattern for patchy propagation. uEE is
shown at one instant in time. v = 1, γ = 10, d = 1. The
speed is ∼ 0.182 in the x direction. Other parameters are as
in Fig. 2.
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FIG. 9: (Color online). Left to right, top to bottom: snap-
shots of a periodic pattern for the rational model with patchy
connections, each 1/4 of a period later than the previous one.
uEE is shown. The domain is 7 × 7, v = 10, γ = 50, d = 1
and other parameters as in Fig. 2.

have been shown to be consistent with a linear instability
analysis of the original integral neural field model. More-
over, we have extended our approach to allow for patchy
connections and used simulations of an appropriate set of
coupled PDEs to confirm the existence of lattice-directed
traveling waves.

A number of natural extensions of the work presented
here are possible. The first concerns pattern selection;
linear stability analysis alone cannot distinguish which
of the doubly periodic solutions (hexagon, square, rhom-
bus) will be excited first. To do this requires a further

weakly nonlinear analysis. Techniques to do this for inte-
gral models in one spatial dimension with axonal delays
have recently been developed in [24], and are naturally
generalized to two spatial dimensions. To further cope
with patchy connections one may well be able to bor-
row from techniques developed for the study of ampli-
tude equations in anisotropic PDE models [25]. Another
extension would be to use the ideas presented here to
discover if axonal delays have any significant effect on
the existence and stability of other patterns seen in two-
dimensional neural fields such as spiral waves [26] and
spatially-localised bumps [14, 27]. The treatment of dis-
tributed transmission speeds [28–30] is another impor-
tant area, as is the extension to heterogeneous connec-
tion topologies (more realistic of real cortical structures)
[20, 31] and addressing parameter heterogeneity (describ-
ing more realistic physiological scenarios) [17]. All of
these are topics of ongoing activity and will be reported
upon elsewhere.
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Appendix A

We calculate Hab(r, t) as an inverse Fourier transform
[32], namely

Hab(r, t) =
1

(2π)3

∫
R3

dkdω
ei(k·r+ωt)

(1/σab + iω/vab)2 + k2

=
vabe−vabt/σab

2π

∫ ∞
0

dk sin(kvabt)J0(kr)

=
vabe−vabt/σab

2π
1√

v2
abt

2 − r2
Θ(vabt− r). (30)

Appendix B

Here we provide some details on the simulation strat-
egy for equations of the form (15). By defining some
auxilliary variables and applying the chain rule this can
be written as four first-order (in time) PDEs. For our
choice of η, equation (1) can be written[

1
αabβab

∂2

∂t2
+
(
αab + βab
αabβab

)
∂

∂t
+ 1
]
uab = ψab(t− τab).

(31)
Note that for simplicity we set τab = 0 in our simulations.
To solve an equation like (29) we let ψq

ab = eiq·rψ̂q
ab,
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which converts (29) to

(Aab;ε1 −∇2)(Aab;ε2 −∇2)ψ̂q
ab = e−iq·rw0

abBabρb, (32)

and then proceed as above. The square domains were
discretised with a regular grid and the spatial deriva-

tives were approximated using finite differences. Peri-
odic boundary conditions were used. The resulting ODEs
were integrated using ode45 in Matlab with default tol-
erances. Figure 3 had a discretisation of 60 × 60, Fig. 4
was 51× 51, Fig. 8 was 20× 20 and Fig. 9 used 50× 50.
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