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ABSTRACT

We compared the effects of a single acute dose, or chronic fetal exposure, to 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) on the male reproductive system of the Wistar(Han) rat. 

Tissue samples were taken from dams on GD16 and GD21, and from offspring on PND70 and 

120. Steady state concentration of TCDD was demonstrated in the chronic study: body burdens 

were comparable in both studies. Fetal TCDD concentrations were comparable after acute and 

chronic exposure, and demonstrate more potent toxicity after chronic versus acute dosing. In 

maternal liver, cytochrome P450 (CYP)1A1 and CYP1A2 RNA were induced. In fetus, there 

was induction of both CYP1A1 and CYP1A2 RNA at medium and high doses, but inadequate 

evidence for induction at low dose in either study. The low level induction of CYP1A1 RNA at 

low dose in fetus argues against AhR activation in fetus as a mechanism of toxicity of TCDD 

in causing delay in balanopreputial separation, and the greater induction of CYP1A1 RNA in 

PND70 offspring liver suggests that lactational transfer of TCDD is crucial to this toxicity. 

These data characterise the maternal and fetal disposition of TCDD, induction of CYP1A1 

RNA as a measure of AhR activation, and suggest that lactational transfer of TCDD 

determines the difference in delay in balanopreputial separation between the two studies.

Keywords: Dioxin, Sperm, developmental, toxicity, balanopreputial separation, puberty.
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INTRODUCTION

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous toxin, and a prototypical 

representative of a series of chemicals which effect toxicity through a common mechanism, 

binding to the Ah Receptor (Poland and Knutson 1982). Much investigation has focussed on 

the toxicity of TCDD, on the basis that other chemical congeners will show the same toxicity 

as TCDD, but with altered potency determined by their relative agonism of the Ah Receptor, 

and pharmacokinetics (Haws et al. 2006; Van den Berg et al. 2006). We have investigated the 

effects of TCDD on the developing fetus after acute (Bell et al. 2007a) or chronic (Bell et al. 

2007b) exposure, and have shown that maternal exposure to TCDD causes a delay in BPS in 

male offspring, which is more pronounced after chronic (vs. acute) exposure to TCDD. 

However, understanding of such data on the basis of administered dose is limited, and 

elucidation of the tissue concentration and the biological effects caused by that concentration 

of TCDD is required for understanding and extrapolation from these data.

In many studies, TCDD is given as a single acute dose, whereas exposure of the human 

population to TCDD arises from chronic exposure through the diet and from lactational 

transfer (COT 2001)(Fries 1995). The pharmacokinetics of TCDD are complex with multiple 

uptake and elimination phases (Weber et al. 1993), and thus the disposition of TCDD at 24 

hours after a single dose on GD15 is likely to vary from steady state. There is induction of 

metabolism of TCDD during chronic exposure (Fries and Marrow 1975), and it takes ~13 

weeks to attain steady state levels of tissue TCDD in the rat (Rose et al. 1976). This is 

important to understanding reported effects of TCDD that have a narrow temporal window of 

susceptibility (Ohsako et al. 2002), between GD15 and GD18. Indeed, there are clear 

differences in disposition at GD16 between acute and chronic dosing regimes that give similar 

concentration in liver tissue (Hurst et al. 2000a; Hurst et al. 2000b). Thus it is possible that the 

dosing regimen (i.e. acute versus chronic dosing protocol) may be a determinant of sensitivity 

for the toxic effects of TCDD.

We have directly compared the developmental toxicity of TCDD after chronic 

administration(Bell et al. 2007b)with acute administration of a single dose on Gestational Day 

15 (GD15) (Bell et al. 2007a): surprisingly chronic administration yielded delay in 

balanopreputial separation (BPS) at all three dose groups, whereas only the highest dose group 
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yielded a delay in BPS in the acute dose study ; this finding was unexpected, since the chronic 

dosing study was designed to give similar body burdens of TCDD to those seen in the acute 

dose study. This experimental system is complicated by the post-parturition delivery of TCDD 

via milk (Korte et al. 1990; Moore et al. 1976; Nau et al. 1986). The majority of TCDD in 

offspring of dosed dams arises from lactational transfer of TCDD (Hurst et al. 2000a; Li et al. 

1995), and there is evidence that chronic dosing protocols can result in higher TCDD delivery 

to the offspring (Korte et al. 1992). Indeed, it has been shown that lactational transfer of 

TCDD is responsible for the thyroid toxicity seen in Holtzmann rats (Nishimura et al. 2003; 

Nishimura et al. 2005; Nishimura et al. 2006). There are multiple explanations for the greater 

potency of TCDD for inducing delay in BPS by chronic (as opposed to acute) dosing, and 

these include (1) that there is a higher concentration of TCDD in the fetus after chronic versus 

acute dosing (2) that there is a window of sensitivity of the fetus to TCDD’s effect before 

GD15 and (3) that there is greater lactational transfer of TCDD to the pups after lactational 

dosing, and that the lactational transfer of TCDD results in the delay in BPS. It is therefore 

important to measure the concentration of TCDD in relevant organs, and to determine the 

biological effects of TCDD using a suitable marker gene, such as CYP1A1 (Vandenheuvel et 

al. 1994).

In a direct comparison of the effects of acute and chronic administration of TCDD (Bell et al. 

2007a, 2007b), we have shown that a single acute dose of TCDD to the pregnant 

CRL:WI(Han) rat on GD15 causes a delay in BPS in offspring after a dose of 1000 ng TCDD 

kg-1, whereas chronic administration of 2.4 ng TCDD kg-1 day-1 yielded a significant delay in 

puberty in offspring. In order to relate the administered dose of TCDD with the retained tissue 

levels of TCDD, and consequently the biological effects seen in these studies, we have 

undertaken analysis of rat tissues for concentration of TCDD. RT-PCR analysis was 

undertaken as a sensitive means of measuring biological effects of TCDD exposure, i.e. 

activation of the Ah Receptor, by looking at induction of sensitive marker genes. The CYP1A1 

gene has been shown to be highly responsive to TCDD (Vandenheuvel et al. 1994), and the 

CYP1A2 gene was examined because of its inducibility by TCDD and its role in hepatic 

sequestration of TCDD (Poland et al. 1989a; Poland et al. 1989b).
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MATERIALS AND METHODS

Materials. 

TCDD was obtained from Cambridge Isotope laboratories, Mass, USA, and purity (99%) was 

verified by High Resolution-Mass Spectrometry. All other chemicals were also of the highest 

quality available and were checked for contamination by dioxins and PCBs as appropriate.

Animal Study.

 The animal studies were performed at Covance (Harrogate, UK), and were GLP-compliant; 

the full dataset is published in (Bell et al. 2007a, 2007b). CRL:WI(Han) rats were provided 

food (SQC rat and mouse breeder diet No. 3, expanded; Special Diets Services Ltd., Witham) 

and water ad libitum, and were housed singly (the parental generation post-pairing), or in 

groups of five for the parental generation pre-pairing and the F1 generation. Briefly, the dosing 

schedules are shown schematically in Fig. 1, and were as follows. 

Acute. Animals of 16-18 weeks of age (204-294g) were time mated, with the day after mating 

designated as day 0 of gestation (GD0), delivered to Covance by GD 9, and assigned to 

treatment groups on GD 12 using a randomisation procedure based on body weight. 75 animals 

were treated with control vehicle (corn oil) by oral gavage, and 55 animals with 50, 200 and 

1000 ng TCDD kg-1 bodyweight on GD15; the concentration of TCDD in the dosing vehicle 

was verified by GC-MS (104.6-106.1% of target concentration). 25 vehicle-treated rats and 15 

TCDD-treated rats were killed on GD16 and GD21 for tissue sampling prior to TCDD analysis 

and mRNA analysis; the remaining females were allowed to litter and rear their offspring until 

weaning (PND21). For the control animals, tissues were pooled from five animals, and five 

samples of pooled tissue were analysed. In the TCDD-treated groups, blood samples were 

pooled from five animals, and three pools analysed; adipose and liver tissue from five 

individual animals were analysed, except for the high dose group fat on GD16, where six 

samples were analysed. Fetuses from five individual animals were pooled and analysed. Where 

possible, blood, fat, fetus and liver were analysed from the same animal; animals were selected 

randomly for sampling.
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Chronic. Animals of 5-6 weeks of age (100-146g) were assigned to treatment groups using a 

randomisation procedure based on body weight. Animals (75, 65, 65 and 65 respectively) were 

provided with diet containing 0, 28, 93 and 530 ng TCDD kg-1 diet (the TCDD was dissolved 

in acetone, mixed with the feed, and then acetone evaporated by air drying) ad libitum. After 

12 weeks of treatment of the parental females, one female was housed with one untreated male 

for up to 15 days, and mating confirmed by a vaginal plug. The concentration of TCDD in the 

diet was verified by GC-MS. 5 and 10 animals per group were killed in weeks 10 and12 after 

starting on the diet, and on gestation day 16 and 21, 15 animals from the control group and 10 

animals from the treated group were killed; tissue samples from these culls were used for 

TCDD and RNA analysis. TCDD treatment of the dams (and offspring) was discontinued after 

parturition. The remaining females were allowed to litter and rear their offspring until weaning 

(PND21) and killed on PND21. Litters were reduced to a maximum size of eight on PND4, and 

to five males (where possible) on PND21. For the control and treated animals, adipose, fetus 

and liver tissues were obtained from five individual animals, and individual tissues were 

analysed; the exceptions were analysis of six samples in medium dose group, GD21 adipose, 

and GD16 liver, and GD21 high dose group, for fetus and fat. Blood samples were pooled from 

five animals, and three pools analysed for all dose groups. Fetuses from five individual animals 

were pooled and analysed.

Thereafter, males were then maintained untreated, until killed (25 per group) at PND70, and all 

remaining animals at PND120. Although kill days are referred to as PND70 and 120, the 

number of animals involved required that the kills were conducted during post-natal weeks 10 

and 17. 

TCDD analysis. 

Tissue TCDD levels were determined on GD16 and 21, since there was a prior expectation that 

GD16 would reflect a period of sensitivity of the fetus to TCDD (Gray et al. 1995; Ohsako et 

al. 2002), and GD21 would reflect on accumulation of TCDD in the fetus through pregnancy. 

The maternal liver and adipose tissue were sampled, as TCDD is known to accumulate in these 

two organs, and fetal tissue was taken as the presumed site of action of the TCDD. Samples 

were stored frozen until analysed. Adipose tissue and liver samples were analysed individually 

and fetus samples from individual females were combined, but the volumes of blood samples 
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were too low for individual analysis, and were pooled. The tissue samples were homogenised 

(pulping for fetus or liver, chopping for adipose), and an aliquot taken for analysis. Sample 

aliquots were fortified with 13Carbon labeled dioxins, and exhaustively extracted using mixed 

solvents. The extracts were initially purified by acid hydrolysis, fractionated on activated 

carbon and further purified using adsorption chromatography, on alumina. The eluent was 

concentrated under nitrogen and sensitivity standardised for measurement using additional 

13Carbon labeled dioxins. TCDD was measured using high resolution gas chromatography 

with high resolution mass spectrometric detection at a resolution of ~10000 (defined at 10% of 

peak height). Instrument performance was monitored during the measurement interval by the 

use of a calibrant (perfluorokerosene) lock mass and ions corresponding to native and [13C]-

labelled dioxins were recorded. Data was processed using MasslynxTM and Microsoft Excel 

software to provide tissue concentration data. The analytical data met published acceptance 

criteria (Ambidge et al. 1990) for dioxins. The method used is accredited to the ISO17025 

standard and has been validated and published after peer review (Fernandes et al. 2004). Each 

batch of samples analysed incorporated a full reagent blank, and analytical results were 

validated by the analysis of an in-batch reference material (RM) (Maier et al. 1995), for which 

results were compared with certified or assigned data. The contribution from the batch blanks 

was found to be negligible and quality standards were always met or exceeded.

Essentially the same procedure was used for total polychlorinated dibenzo-p-dioxin and furan  

World Health Organisation TCDD toxic equivalent (WHO-TEQ) (Van den Berg et al. 1998) 

measurements where these were performed. The 13Carbon labelled mix described above 

provides internal standardisation for all 17 laterally-substituted PCDDs and PCDFs that 

contribute to the WHO-TEQ (Van den Berg et al. 1998) and ions corresponding to these 

compounds as well as native PCDDs and PCDFs were recorded and measured using the same 

instrument parameters as used for TCDD measurement. WHO-TEQ values were calculated by 

multiplying the measured concentration of each of the 17 compounds  by the appropriate WHO 

TEF (Van den Berg et al. 1998) and summed to give S WHO-TEQ .The methodology, 

including quality criteria  is described in (Fernandes et al. 2004).
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The tissue TCDD concentration from one sample (Acute study GD16 fat from animal 200, 

high dose group) had a TCDD concentration at ~1% of the value of other adipose tissues from 

the group, and was held to be anomalous. A further determination was performed on adipose 

tissue from animal 199, and this data was used instead. Four samples were re-checked; for liver 

and fetus, duplicate determinations were within 5% of the original value. For adipose tissue, 

where the sample is chopped, duplicates were 115 and 130% of the first determinations.

Calculation of tissue TCDD burden. The average tissue weights (for liver, fetus) from the 

appropriate kill point were determined by weighing, and adipose tissue was estimated from the 

data of (Bailey et al. 1980). The average weights were used to determine the mean tissue 

burden, and the standard deviation is shown as the corresponding standard deviation from the 

TCDD determination. The whole body burden is calculated from summation of the adipose, 

liver and fetus TCDD burden, and an indicative estimate of variation, which is the mean 

multiplied by the the coefficient of variation of the TCDD analyses in the acute (36%) and 

chronic (27%) studies, respectively, is shown. The apparent half-life of TCDD in the chronic 

study was calculated on the basis that animals were at steady-state body burden of TCDD; 

under this assumption, TCDD excretion equals the rate of TCDD consumption, which is 

known. Apparent half-life is then deduced by solving Ct=C0e-kt. The proportion of TCDD dose 

disposing to tissues was calculated as follows. The average TCDD concentration in a given 

tissue at high dose was set as 100%, and the average concentration at low and medium doses 

was expressed as a percentage of the high dose concentration. The medium and low doses were 

expressed as a percentage of the maximum dose (i.e. 5 and 20% for the acute study, 5.2 and 

17.3% for the chronic study). The tissue concentration (as a percentage of maximum 

concentration) was divided by the dose (as a percentage of maximum dose) to give a ratio, 

which represents the relative proportion of TCDD dose disposing to a given tissue with dose.

RNA and RT-PCR analysis. Total RNA was extracted from liver or fetus using the Absolutely 

RNA Miniprep Kit (Stratagene). 20-25mg of frozen tissue was transferred to 0.4ml of lysis 

buffer and homogenized at room temperature using a mini-homogenizer (Kontes Pellet Pestle). 

The resulting homogenates were stored at -80°C, prior to isolation and treatment with DNase I 

according to manufacturer's instruction. The purified RNA was stored at -80°C. The quality of 

the RNA was assessed by electrophoresis on 1% denaturing agarose gel based on the integrity 
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of the 28S and 18S bands after ethidium bromide staining. Total RNA was determined by 

measurement of a fluorescent RNA-binding probe, RiboGreen (Molecular Probes) according 

to the manufacturer's instructions. The RiboGreen assay was carried out using a ribosomal 

RNA (rRNA from E. coli) standard curve. Fluorescence was measured using excitation at 485 

nm and emission at 510 nm. First-strand cDNA was synthesised using StrataScript QPCR 

cDNA Synthesis Kit (Stratagene) according to the manufacturer's instruction. 2 μg of total 

RNA was reverse-transcribed using oligo (dT) and random primersand the resulting products 

were stored at -20°C. For each batch of cDNA preparation, a no-RT control reaction was set up 

by omitting reverse transcriptase from the reaction. The concentration of the synthesised 

cDNA was determined by the PicoGreen dsDNA Quantitation Kit (Molecular Probes, Inc.) 

according to manufacturer's protocol, using a plate reader (Victor) with excitation at 485 nm 

and emission at 510 nm. The cDNA sequences of the rat CYP1A1, CYP1A2, AhR, ß-ACTIN 

and GAPDH were obtained from GeneBank, and the corresponding primers are listed in 

Table 1. To avoid amplification of contaminating genomic DNA, one of the primers or the 

probe was placed at the junction between two exons. For example, CYP1A1 forward crosses 

the junction of exons 4 and 5; and the probe crosses exon 5 and 6, whereas reverse primer is 

from exon 6. TaqMan probes were dual labelled with fluorescent tag at the 5'end and 

fluorescence quencher Black-Hole at the 3' end. The specificity of CYP1A1 primers was 

confirmed by sequencing its RT-PCR amplicon. Real-time PCR (qPCR) was performed using 

Mx3005P instrument (Stratagene). Initial characterisation showed little or no primer-dimer or 

genomic amplification were detected and all amplicons were at the size expected. Multiplex 

real-time PCR was performed using Brilliant Multiplex QPCR Master Mix (Stratagene) 

according to manufacturer's protocol with slight modification. Briefly, multiplex PCRs were 

set up in a total volume of 12.5 μl of buffer solution containing the following: 6.25 μl of 2x 

master mix; 100-300nM of starter probes; 100-300nM of each 5' and 3' of starter primer pairs 

for CYP1A1, AhR and ß-actin (combination 1) or for CYP1A2 and ß-actin (combination 2); 

and 5ng of cDNA. The conditions for the multiplex real-time PCR reactions were: one cycle at 

95°C for 10 min, followed by 40 cycles at 95°C for 20 seconds and 58°C for 90 seconds. All 

PCR reactions were performed in duplicate. Negative controls were processed in the same 

manner, except that the no-RT product was used or the template was omitted. In order to 

determine the real-time PCR efficiencies of both targets and reference genes, a standard curve 
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was generated using 5-fold serial dilution of the cDNA produced from a TCDD treated rat 

liver. The PCR efficiencies varied from 90%-115% (data not shown). In each experiment, an 

independent control sample was run side by side with the samples, and the Ct was used as a 

calibrator to determine the relative quantification of a gene in each sample assayed, and 

samples were normalised to input cDNA quantity. Amplification efficiency was used to 

determine copy number (Pfaffl 2001):

Change of copy number=EΔCt (control-sample)

Where E is the pre-determined PCR efficiency for each transcript; ΔCt (control-sample) is the 

Ct of the external control transcript minus sample. All data were presented as percent of the 

control group. 

Statistical analysis. 

 TCDD concentrations in tissues were summarised as mean ± standard deviation. Differences 

in TCDD concentrations between dose groups were analysed by ANOVA on the log scale. The 

RNA levels were compared by ANOVA of the logs of the values, followed by t-test to 

compare means with a common control; P<0.05 was considered significant.  Because of the 

small numbers of samples, no allowance was made for litter differences.
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RESULTS

All dioxin analysis was performed with negative control (reagent blanks) and positive control 

(certified reference materials) samples; all of which were within acceptable limits. Limits of 

detection varied between analyses and analytes, but were approximately 0.03 ng TCDD kg-1 of 

analyte, depending on available sample weight and the levels of TCDD observed in reagent 

blanks. Measurement uncertainty was determined at an analyte concentration of 1 ng kg-1 to be 

approximately 20%. The experimental schedule for the acute and chronic dosing protocols is 

outlined in Fig. 1.

Acute study

TCDD was adminstered as a single dose on GD15, and the concentration of TCDD at GD16 

and 21 in maternal and fetal tissues is shown in Table 3. The coefficient of variation in these 

samples was 36 % of mean values (Table 3); the variation seen in these biological samples was 

consistently higher than that seen with reference samples (data not shown). However, upon 

repeated assay of liver or fetus samples, the reproducibility was within 10% (AF, SW, MR, 

unpublished data), suggesting that the observed variability is due to inter-animal differences in 

pharmacokinetics of TCDD. The TCDD analytical method was sufficiently sensitive to 

accurately quantify TCDD levels in control tissues (Table 3). The concentration of TCDD in 

control tissues was above the limit of quantitation, and was at least forty times below the levels 

in the corresponding tissue from the lowest dose group, 50 ng TCDD kg-1. ANOVA 

demonstrated that there was a statistically significant difference between dose groups in the 

level of TCDD for all tissues (data not shown).

GD16

Adipose tissue and liver showed higher concentrations of TCDD than fetus or blood, and 

although the ratio of TCDD concentrations in liver: adipose tissue was approximately equal in 

control animals, the relative concentration of TCDD in liver increased with increasing dose 

(Table 3). Estimation of the total body burden of TCDD as the sum of adipose, liver and fetus 

(Table 5), shows that ~38.3, 43.8 and 42.6% of the administered TCDD has been taken up into 

these organs at low, medium and high dose, respectively.
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GD21

At GD21, total body burden of TCDD was 39.5, 33.2 and 37.5% of the administered dose, 

respectively (Table 5). Compared with GD16 data, liver concentrations had reduced, and 

adipose tissue concentrations had doubled (Table 3). Although fetal concentrations of TCDD 

had remained at ~90% of the levels on GD16, the increase in fetal mass resulted in fetal TCDD 

burden increasing by ~eight-fold between GD16 and 21.

Chronic study

The coefficient of variation for TCDD determinations on tissue samples in this study was 27%. 

TCDD concentrations in control animal tissues were comparable with those seen in the acute 

study (Table 4), and were substantially less than those in the lowest dose group; however some 

blood and fetus samples showed marginally higher levels or limits of detection due to the 

prevailing measurement conditions such as the weight of available sample and the concurrent 

solvent blanks. In order to be certain that control tissue levels of dioxin and dioxin-like 

compounds were below the level of the TCDD-treated groups, the levels of TCDD toxic 

equivalents (TEQ) (Van den Berg et al. 1998) were determined (Table 2). These data 

demonstrate that the level of TEQ in the control rat liver and adipose tissue is orders of 

magnitude below the levels of TCDD seen in the lowest dose group. The chronic study dose 

levels were designed to give approximately the same hepatic level of TCDD as seen in the 

acute study; the hepatic levels of TCDD in the chronic study were bracketed by the levels of 

hepatic TCDD at GD16 and 21 in the acute study (Table 3). The chronic dosing study was 

designed to achieve steady-state burdens of TCDD with a 12 week feeding period, before 

mating of the animals. Comparison of tissue concentrations of TCDD in animals in week 10, 

12 and GD16 and 21, shows that both adipose tissue and liver TCDD concentrations were at 

equilibrium (Table 4); however, body weight increases over this time period, and since the 

body fat was calculated on a metric where fat increases with body weight (Bailey et al. 1980), 

this resulted in a higher total body burden of TCDD, expressed both as an amount, and in ng 

kg-1 (Table 5). ANOVA demonstrated that there was a statistically significant difference 

between dose groups in the level of TCDD for all tissues (data not shown), with the exception 

of GD16 blood, where the difference between low and medium dose groups fell short of 

statistical significance.
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There was a reduction in liver mass of ~14% between GD16 and 21 ((Bell et al. 2007b)) whilst 

hepatic TCDD concentration remained unchanged (Table 4); thus redistribution of the hepatic 

TCDD as a result of the decrease in liver mass accounted for ~5% of total body burden of 

TCDD. The fetal TCDD concentrations had ~doubled by comparison to GD16, and with 

increased fetal mass, the total burden of TCDD in the fetal compartment had risen by ~20-fold 

compared to GD16 (Table 4).

Fetal disposition of TCDD and relationship with BPS

The ratio of fetal TCDD concentration to maternal body concentration was plotted against 

maternal body concentration for both acute and chronic studies (Fig. 2A). At GD16, this ratio 

was two-three fold lower after chronic administration of TCDD, compared with acute 

administration. At GD21, the rising concentration of fetal TCDD had brought the ratios closer 

together, although the acute ratios were still up to 50% higher than in the chronic study. These 

data showed that acute dosing leads to a higher fetal TCDD at earlier stages of pregnancy than 

chronic dosing, and confirms prior observations in Long-Evans rats (Aylward et al. 2005; 

Hurst et al. 2000a; Hurst et al. 2000b). Fetal TCDD concentrations from the acute and chronic 

studies were plotted against the delay in puberty (day of balanopreputial separation) in each 

study (Bell et al. 2007a, 2007b) (Fig. 2). Although each individual study supported a quasi-

linear relationship between delay in BPS and fetal TCDD concentration, the comparison of the 

two studies showed that there was no overall relationship between fetal TCDD concentration 

and delay in BPS, at either GD16 or GD21. These data are evidence that fetal TCDD 

concentration at GD16 to 21 was not related to delay in BPS. Although the delay in puberty 

(BPS) for individual animals did not show any relationship with body weight at the PND21 or 

42 (Bell et al. 2007a, 2007b), a plot of delay in BPS (presented as the hazards ratio) against 

group reduction in weight on PND4 (Fig. 2C) showed that there was an r2 of ~0.9 between 

delay in BPS and weight reduction relative to the control group on PND4.

RT-PCR analysis

RT-PCR was established with primers and an internal fluorescent probe, the Taqman 

methodology, for enhanced specificity (Table 1); the primer probe sets were validated to be 

resistant to contamination by genomic DNA (data not shown). Assays were run in the presence 
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of a no template control, which routinely produced Ct values of >40, demonstrating an absence 

of contaminating cDNA or cross-reacting genomic DNA.

Fig. 3 shows the analysis of β-actin, AhR, CYP1A2 and CYP1A1 RNA from maternal liver at 

GD16 and 21 from the two studies: CYP1A1 and CYP1A2 are graphed as a function of hepatic 

TCDD concentration. β-actin RNA was relatively constant with treatment, although the treated 

samples from the acute GD21 series showed a minor deviation from control, with values from 

1.5 to 1.9-fold of control (Fig. 3A), and these values showed no dose-related statistically 

significant differences from control by ANOVA. The rest of the TCDD-treated samples show 

β-actin RNA values close to 100% of control. The AhR RNA was not significantly perturbed 

by acute or chronic treatment with TCDD under the conditions which we assayed (Fig. 3B). 

Fig. 3C shows that there was statistically significant induction of CYP1A2 RNA and that, in 

the acute study, the GD16 values for induction of CYP1A2 were lower than the values for 

GD21, in spite of the higher TCDD concentrations at GD16; whereas in the chronic study, the 

CYP1A2 values for GD16 and GD21 were much closer, and the TCDD concentrations were 

similar. The threshold-doses for induction of CYP1A2 were distinct in the two studies, with 

low dose (50 ng kg-1) giving a ~3-fold induction on GD21 in the acute study, but high dose (46 

ng kg-1 day-1) required for a ~4-fold induction in the chronic dosing study, i.e. a liver 

concentration of TCDD that is ~30-fold higher to achieve similar induction of CYP1A2. 

CYP1A1 was a much more sensitive indicator of treatment with TCDD, with statistically 

significant induction, and the lowest exposure groups giving >10-fold induction of CYP1A1 

(Fig. 3D), at ~ 100-300 ng TCDD kg-1 liver. In the acute study, the CYP1A1 levels at GD16 

were consistently lower than GD21 values, in spite of the hepatic TCDD concentrations being 

3-5 fold higher at GD16 than at GD21. There was a similar trend to lower CYP1A1 RNA at 

GD16 than GD21 in the chronic study, but hepatic TCDD concentrations were approximately 

equal. Given that TCDD was administered on GD15, it is likely that the GD16 values in the 

acute study did not represent an organ at equilibrium in the TCDD induction response, but the 

comparison between GD16 and 21 values in the chronic study should have been at 

equilibrium. However, it is clear from considering liver weights that the liver was enlarged at 

GD16 (Bell et al. 2007a, 2007b; Weitman et al. 1986), but that the liver weight has decreased 
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by ~15% on GD21; thus it is likely that the physiological functionality of the liver may be 

different at these two times.

Fetal RNA analysis used samples of RNA from total fetus at GD16, but fetal liver from GD21; 

note that TCDD analysis was on fetus at both timepoints. Fig. 4A and B shows that β-actin 

RNA and AhR RNA stayed relatively constant with no statistically significant effect of TCDD 

dosing, under both dosing regimes. However, while the GD16 total fetus samples showed no 

effect of TCDD on CYP1A2, the GD21 fetal liver samples showed a strong induction effect, 

with >20-fold induction of CYP1A2 at medium dose, rising to >1000 fold induction at high 

dose; thus CYP1A2 was more inducible in fetal liver (compared to maternal liver), and there 

was little difference between chronic and acute dosing schedules. The CYP1A1 RNA also 

showed statistically significant and high inducibility, with total fetus showing >100-fold 

induction on GD16 in acute and chronic studies (tissue concentrations of 45 and 27 ng TCDD 

kg-1, respectively). At GD21 in fetal liver, high levels of induction of CYP1A1 were detectable 

at the medium dose level, and the high dose induction was >1000 fold. However, induction of 

CYP1A1 RNA in fetal liver was not statistically significant at low dose level after either 

chronic or acute administration of TCDD (but note that n is small). There was clear evidence 

for induction of CYP1A1 RNA in fetus at the medium dose in both acute and chronic studies, 

showing that TCDD had activated the AhR signalling pathway in the fetus at these higher dose 

levels.

 Fig. 4E compares the induction of CYP1A1 RNA in maternal liver and fetal tissue, as a 

function of tissue TCDD concentration; this shows that fetal tissue had reached comparable 

levels of fold-induction as maternal liver, at lower concentrations of TCDD in the tissue.

RT-PCR analysis of RNAs in the PND70 rats showed that β-actin RNA (Fig. 5A), and AhR 

RNA (Fig. 5B), were not statistically significantly perturbed by maternal treatment. By 

contrast, CYP1A1 RNA levels were statistically significantly induced in medium and high 

dose groups from the acute study, but at all three treatment groups in the chronic study; 

morever, the fold-induction of CYP1A1 RNA was higher in the chronic study, compared to the 

acute study, for all three dose groups (Fig. 5C).
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DISCUSSION

Analysis of TCDD concentrations using high-resolution Mass Spectrometry, with internal 

isotope-labelled standards, brings high specificity, sensitivity and quality control methods to 

the determination of TCDD concentrations. This method enables detection of TCDD in 

samples from control animals, and thereby allows comparison of the TCDD burden in control 

and in treated animals, thereby showing that there were at least forty-fold higher 

concentrations of TCDD in the adipose or liver of the lowest dose group of the treated animals 

than in the controls (Table 3, Table 4). Moreover, we undertook a direct determination of the 

WHO-TEQ burden, and Table 2 also shows that the levels of WHO-TEQ in the control 

animals from the chronic study are considerably lower than the TCDD levels in the lowest 

dose group. This clear separation of TCDD concentration in control, versus treated, tissues, is 

reflected in the marked induction of hepatic CYP1A1 RNA in the low dose groups, compared 

to control (Fig. 3), at GD16 or 21, in both studies. This shows that a biological effect of 

TCDD, which is dependent upon activation of the AhR by ligand, is orders of magnitude above 

comparable levels in control animals in the low dose groups.

The chronic dosing study (Bell et al. 2007b) was designed by extrapolation from (Hurst et al. 

2000a; Hurst et al. 2000b) to achieve comparable concentrations of hepatic TCDD to those 

obtained on GD16 in the acute dose study (Table 3)(Bell et al. 2007a). Table 4 shows that the 

concentrations of hepatic TCDD obtained are approximately 50% of those obtained in the 

acute study, and cover a ~ten-fold range in total body burden of TCDD (Table 5). Thus the 

dosing regimen yielded an appropriate range of tissue concentrations of TCDD for 

comparability to the acute study. An important criterion for the chronic dosing regimen was 

that the tissue concentrations of TCDD should be at equilibrium, and the dosing period of 

twelve weeks prior to mating was based on (Rose et al. 1976). Table 4 shows that the 

concentration of TCDD in the liver and adipose tissue does not change appreciably from week 

10 of dosing through GD21 (i.e. ~five weeks later), thus demonstrating that the tissue 

concentrations are at steady state. However, there are differences in total body burden of 

TCDD over this period, whether expressed as an amount, or as a concentration (Table 5). This 

is due to the increase in body mass and in relative organ mass of the animals over this time, and 

due to pregnancy; a limitation of our study is that the estimates for adipose tissue mass (Bailey 
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et al. 1980) were based on data from Sprague-Dawley rats, and may not accurately represent 

the adipose depot in pregnant CRL:WI(Han) rats.

There are complications arising from the physiological consequences of pregnancy; for 

example, the food intake of pregnant rats increases by ~20%, resulting in a greater dose of 

TCDD when expressed on a ng kg-1 basis (Bell et al. 2007a, 2007b). A further issue is that the 

liver mass decreased by ~14% between GD16 and 21 (Bell et al. 2007a, 2007b; Weitman et al. 

1986); the hepatic TCDD concentration remains unchanged during this period (Table 4), so 

this must result in ~5% of the total body burden of TCDD redistributing during this period. 

There is some evidence for altered hepatic functionality between GD16 and GD21, insofar as 

GD21 CYP1A1 levels are consistently higher than GD16 levels (Fig. 3D), even though TCDD 

concentrations are approximately equal; it is not clear what the basis of this effect is. 

Disposition of TCDD into the fetus shows dose-dependency, with a greater proportion of the 

dose reaching the fetus at lower doses of TCDD. It has been shown that both AhR and 

CYP1A2 null mice show enhanced disposition of TCDD to the fetus (Dragin et al. 2006; 

Thomae et al. 2004), showing that this phenomenon is dependent on both AhR and also the 

CYP1A2 gene. Fig. 2A shows that the dosing regimen is a variable; after acute dosing with 

TCDD, the ratio of TCDD concentration in fetus: dam remains constant between GD16 and 

21. However, this is a different pattern from the chronic dosing regimen, where GD16 ratios 

are ~half the level at GD21. Acute and chronic dosing regimens thus result in dose- and time-

dependent differences in the proportion of TCDD dose reaching the fetus. The absolute 

concentration of TCDD in the fetus doubled between GD16 and 21 in the chronic study 

(Table 4), whilst staying constant in the acute study (Table 3); this is particularly notable since 

fetal mass increases by ~ten-fold during this period, and suggests that there is disposition of 

TCDD from lipid reserves into the fetus during this period of fetal growth.

The absolute fetal concentrations of TCDD in treated animals are >30-fold below the 

corresponding level in maternal liver, but are twenty-fold greater than the concentration of 

TCDD in control fetus. CYP1A1 and CYP1A2 RNA are not significantly induced at low dose 

in either study, but this is not due to fetal tissue being refractory to induction of CYP1A/2 

RNA; a plot of CYP1A1 RNA versus tissue TCDD concentration shows that equivalent fold 
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induction of CYP1A1 RNA is obtained at approximately thirty-fold lower TCDD 

concentrations in fetus/ fetal liver, as compared to maternal liver (Fig. 4E). The higher 

apparent potency of  TCDD in fetus/ fetal liver, as compared to adult liver, may be due to a 

lower proportion of free TCDD in adult liver, as a consequence of greater biochemical 

sequestration of TCDD by CYP1A2 in adult liver (Poland et al. 1989a; Poland et al. 1989b); 

the absolute levels of CYP1A2 RNA are ~104 lower in fetal liver than in maternal liver (Fig. 4, 

supplementary data). (Vandenheuvel et al. 1994) have shown that a hepatic concentration of 

2.5-21 ng TCDD kg-1 represents the limit of detection for induction of CYP1A1 RNA, 

consistent with our data, and (Kawakami et al. 2006) have found a similar threshhold for tissue 

TCDD concentration to induce CYP1A1 RNA in fetal liver on GD20. Both CYP1A1 and 

CYP1A2 are highly inducible (~ 103-fold) in fetal liver, whereas CYP1A2 shows much lower 

induction (ten-fold) in maternal liver; this could be due to the lower basal levels of CYP1A2 in 

fetal, as compared to maternal, liver. Whilst fetal TCDD concentrations are sufficient to 

activate AhR-mediated gene transcription of CYP1A1 and CYP1A2 in total fetus (GD16) or 

fetal liver (GD21) at medium and high doses, the evidence for AhR-mediated gene activation 

(CYP1A1/2) at low dose does not attain statistical significance; moreover, given that the acute 

study only showed toxicity (lethality, delay in BPS) at high dose, whereas the chronic study led 

to delay in puberty in all three dose groups, the pattern of AhR mediated gene activation in 

fetus or fetal liver at GD16 and GD21 fails to correlate with these endpoints. The induction of 

CYP1A1 is regarded as one of the most sensitive endpoints of AhR activation (Vandenheuvel 

et al. 1994), and so the failure to detect significant and marked induction of CYP1A1 RNA in 

fetus at low dose levels argues against a toxic effect of TCDD mediated by AhR either between 

GD16 and GD21, or before GD16; however, it is not possible to exclude the possibilies either 

that there is a tissue within the fetus which accumulates TCDD to higher levels, or that there is 

an AhR responsive gene which is more sensitive to TCDD levels than CYP1A1, and which 

mediates toxicity.

Acute administration of TCDD on GD15 has much less effect on delay of BPS than chronic 

administration of TCDD (Bell et al. 2007a, 2007b) at doses that yield comparable 

concentrations of TCDD either in the fetus (Table 3, Table 4), or in total maternal body burden 

(Table 5), and this finding demonstrates that TCDD is a more potent developmental toxin after 
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chronic, as opposed to acute, administration. A plot of fetal TCDD against delay in puberty 

seen in the acute or chronic studies fails to correlate simply at either GD16 or 21, e.g. Fig. 2B. 

This finding shows that the greater potency of TCDD after chronic administration is not due to 

enhanced disposition of TCDD to the fetus between GD15-21, and suggests that if the 

offspring have a window of enhanced susceptibility to TCDD, it is either prior to GD15 or 

after GD21. The fact that fetal CYP1A1 RNA is barely perturbed at low dose in fetus in both 

studies (Fig. 4) strongly suggests that the AhR has not been sufficiently activated to mediate a 

physiologically relevant response at GD16-21. However, a plot of relative decrease in 

bodyweight on PND4 versus delay in BPS (Fig. 2C) shows a correlation (r2~0.9) between 

these two variables. It is possible that the decrease in bodyweight, and subsequent delay in 

BPS, is due to lactational transfer of comparatively large amounts of TCDD. The disposition of 

TCDD from the diet into breast tissue (and milk) may not be accurately reflected in the 

abdominal adipose depot concentrations of TCDD, since dietary fats (and presumably, dietary 

TCDD) can be directly taken up by the mammary gland (Neville and Picciano 1997); thus 

when comparing the dose of TCDD administered by lactation between the chronic and acute 

studies, this may not be simply reflected in the liver and abdominal adipose depot 

concentrations. This is important, since lactational transfer of TCDD accounts for the majority 

of pup TCDD after an acute dose of TCDD on GD18 (Li et al. 1995) or GD15 (Nishimura et 

al. 2005), and a chronic dosing regimen can achieve high concentrations of TCDD in the 

offspring (Hurst et al. 2000a; Korte et al. 1992). Further, TCDD causes hypothyroidism and 

hydronephrosis in F1 rats via lactational transfer of TCDD (Nishimura et al. 2003; Nishimura 

et al. 2005; Nishimura et al. 2006). Thus it is not clear whether acute and chronic TCDD 

dosing regimens result in a different lactational delivery of TCDD to the offspring.

To examine the possibility that lactational transfer of TCDD to the pups was different under 

chronic and acute dosing regimens, we examined the levels of CYP1A1 in liver RNA of rats at 

PND70 (Fig. 5). This experimental design is inherently limited, since the pups were principally 

dosed through lactation, which finished on PND21; the time from PND21 to PND70 is three-

fold the apparent whole body half life of TCDD in the dams, without considering the dilution 

of TCDD caused by the ~900% growth in body mass between PND21 and 70. Hence TCDD 

concentrations would be expected to be considerably lower than at puberty, and the 
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comparison between groups would be complicated by any dose-dependent decrease in half-

life. There was no reliable correlation between day of puberty and CYP1A1 RNA abundance 

in either the acute or chronic study (data not shown). However, the induction of CYP1A1 RNA 

was significantly elevated above control values in all three dose groups in the chronic dosing 

study, whereas only the highest dose group showed an elevation above control in the acute 

dosing study (Fig. 5C). Since the induction of CYP1A1 is both AhR- and TCDD-dependent, 

this suggests that the pups in the chronic dosing study received a higher dose of TCDD 

lactationally than the pups in the acute dosing study.

Although we have restricted our analysis in this paper principally to explaining the biology of 

delay in BPS, the information in Table 3 and Table 4 also provides insight into maternal 

pharmacokinetics of TCDD, which is determinative of the fetal effects. The Supplementary 

Data contains analysis of the pharmacokinetics, and shows that TCDD disposition is 

dependent on dose, and whether dosing is acute or chronic; that the proportion of the TCDD 

dose reaching extrahepatic tissues increases with decreasing dose; and that the apparent half-

life of TCDD is dose-dependent.

In summary, we have characterised the concentration of TCDD and marker genes in tissue 

samples from acute and chronic dosing studies. Our data confirm that TCDD was adequately 

dosed, that the chronic study animals were at steady state, and that the tissue TCDD 

concentrations in the chronic study were comparable to those in the acute dosing study. 

Whereas maternal CYP1A1 RNA is highly induced at all dose levels, the concentration of 

TCDD in fetus is insufficient to induce fetal CYP1A1 at the low dose group in either study, 

suggesting that activation of the AhR in fetus is insufficient to account for the subsequent 

delay in puberty. In agreement with a role for lactational transfer of TCDD in delay in puberty, 

hepatic CYP1A1 RNA in PND70 males from the chronic study were at higher levels than the 

corresponding group from the acute study, showing that there was greater transfer of TCDD to 

pups during lactation in the chronic study. These results illustrate the complexity of 

pharmacokinetic and biological responses to TCDD, and are key to understanding, and inter-

species extrapolation, of the toxicity of TCDD. 
6/28/07 Page 20



Bell et al. Developmental toxicity of TCDD
SUPPLEMENTARY DATA

Individual animal data is provided as an appendix. Analysis of maternal pharmacokinetics is 

analysed separately in the supplementary data.
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FIGURES

 FIG. 1. Cartoon of TCDD dosing regimes.

 The dosing schemes are taken from (Bell et al. 2007a, 2007b). In the chronic dosing protocol, 

the time of dosing is marked by an underline showing when the dams were dosed, whereas in 

the acute study protocol, the time of dosing is marked by an arrow. The cartoon is not to scale.

 FIG. 2. Role of fetal TCDD concentration.

 A. Dose dependency of fetal disposition in acute and chronic dosing. The fetal TCDD 

concentration was divided by the total maternal concentration, and plotted against maternal 

body concentration. Data points from the acute study are circles on a solid line, whereas the 

chronic study is represented by squares on a dashed line. GD16 points are in black, and GD21 

data points are in white. Results are presented as mean ± SD; note that the SD is shown both 

for the ratios, and for TCDD concentration. B. Correlation between fetal TCDD concentration 

and delay in BPS. Fetal TCDD concentration at GD16 (black symbols) or GD21 (white 

symbols) was plotted against days of developmental delay compared to control, after dosing 

with TCDD by acute (circles) or chronic (squares) dosing. Values are shown as mean and SD; 

note that the SD is shown for both parameters. C. Delay in Balano-Preputial Separation (BPS, 

in days) is shown as the percentage decrease in the incidence rate of BPS (Bell et al. 2007a, 

2007b), and plotted against the relative reduction in body weight on PND4. The relative 

reduction in body weight on PND 4 is derived by subtracting the natural log of the weight of 

the appropriate treatment group from the corresponding control group; an increasing value 

shows a greater weight reduction in a treated group. Acute study data points are circles, and 

chronic study data points are squares. Linear regression was undertaken with SigmaPlot, and 

the line of best fit is shown.

 FIG. 3. RT-PCR analysis of maternal liver.

 RT-PCR for β-actin (A), AhR (B), CYP1A2 (C) and CYP1A1 (D) was performed as 

described in materials and methods, on n=5 samples per group. A, B, Cand D are presented as 

% of control, as mean ± SD. A and B are plotted against dose group, whereas C and D are 

plotted against the group mean TCDD concentration, and have error bars both for RNA level, 
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and TCDD concentration. Acute dose samples are shown as circles, and chronic study samples 

are triangles; GD16 samples are shown by black symbols, and GD21 samples as white 

symbols.

 FIG. 4. RT-PCR analysis of fetal samples.

 Total fetus RNA (GD16), or fetal liver RNA (GD21), was analysed by RT-PCR for β-actin 

(A), AhR (B), CYP1A2 (C) and CYP1A1 (D) was performed as described in materials and 

methods. A, B C and D are presented as % of control. A and B are plotted against dose group, 

whereas C and D are plotted against the group mean TCDD concentration, and have error bars 

both for RNA level, and TCDD concentration. Acute dose samples are shown as circles, and 

chronic study samples are triangles; GD16 samples are shown by black symbols, and GD21 

samples as white symbols. E. Comparison of CYP1A1 induction and tissue TCDD 

concentration. CYP1A1 RNA is plotted as percent of control on a log scale, and TCDD 

concentration was determined as described in materials and methods. Maternal values are with 

black symbols, whereas fetal samples are white; chronic GD21 samples are circles, and acute 

GD16 samples are squares. Samples are mean ± S.D.

 FIG. 5. RT-PCR analysis of F1 PND70 liver samples.

 Liver RNA was prepared from n=20 or 21 PND70 liver samples per group from the acute 

(circle) or chronic (triangle) studies, and analysed by RT-PCR for β-actin (A), AhR (B), and 

CYP1A1 (C), as described in materials and methods. Samples are mean ± S.D.
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TABLES

 TABLE 1: Sequence of oligonucleotides used in qPCR

Gene name
primer Sequence

Genbank 
Accession 

number
Label

CYP1A1 X00469

Primer (f) CCACAGCACCATAAGAGATACAAG

Primer (r) CCGGAACTCGTTTGGATCAC

Probe ATAGTTCCTGGTCATGGTTAACCTGCCAC FAM-BH1

CYP1A2 K02422

Primer (f) ACC ATC CCC CAC AGT ACA A

Primer (r) GTT GAC CTG CCA CTG GTT TA

Probe ACATTCCCAAGGAGCGCTGCAT CY5-BH3

AhR Af082124

Primer (f) GCAGCTTATTCTGGGCTACA

Primer (r) CATGCCACTTTCTCCAGTCTTA

Probe TATCAGTTTATCCACGCCGCTGACATG HEX-BH1

β-actin V01217

Primer (f) CTGACAGGATGCAGAAGGAG

Primer (r) GATAGAGCCACCAATCCACA

Probe CAAGATCATTGCTCCTCCTGAGCG ROX-BH2

GAPDH Ab017801

Primer (f) GTATCGGACGCCTGGTTAC

Primer (r) ACTGGAACATGTAGACCATGTAGTT

Probe TTGCCATCAACGACCCCTTCA ROX-BH2

The sequence of primers used for qPCR are shown from 5’ to 3’. Forward (f) and reverse (r) primers, and 
probe sequence, are indicated. The genbank accession number from which these sequences are derived is 
indicated, and the gene name is given. GAPDH is glyceraldehyde 3-phosphate dehydrogenase. The labels 
for the probe are abbreviated; BHx represents Black Hole quencher 1-3; FAM iscarboxy fluorescein; CY5 
is the Cy5 dye; Hex is hexachlorofluorescein; ROX is 5(6)-Carboxy-X-rhodamine. 
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 TABLE 2: Dioxin WHO-TEQ in control CRL:WI(Han) rats

Tissue WHO-TEQ concentration (ng kg-1)

GD16 GD21

Adipose 1.93±0.199 1.7±0.319

Fetus 0.28±0.079 0.08±0

Liver 0.44±0.106 0.43±0.081

Animals of 5-6 weeks of age were provided with diet that had been treated with acetone control vehicle 
(see supplementary materials) ad libitum, i.e. this is the control group. After 12 weeks of treatment, 
animals were mated and mating confirmed by a vaginal plug. 15 animals per group were killed on 
GD16 and GD21 (as indicated in the Table), and tissues were analysed from individual animals (n=5). 
Results are presented as mean±Standard Deviation.
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 TABLE 3 
TCDD concentration in maternal tissue and fetus after a single dose on GD15

Tissue TCDD concentration (ng kg-1)
[ng per tissue]

Dose of TCDD (ng kg-1) 0 50 200 1000

GD16

Adipose 0.65±0.27
[0.014±0.006]

108±44
[2.33±0.95]

338±83
[7.18±1.77]

1570±450
[34.6±9.95]

Blood 0.024±0.005 2.03±0.36 4.47±0.45 44.2±14.5

Fetus 0.04±0.02
[0.00021±0.00009]

3.3±1.2
[0.017±0.006]

8.9±1.6
[0.042±0.007]

51.4±14
[0.291±0.079]

Liver 0.66±0.38
[0.008±0.005]

256±116
[3.06±1.38]

1300±437
[15.5±5.21]

6880±2340
[87.3±29.7]

GD21

Adipose 5.2±5.6
[0.14±0.15]

212±93
[5.52±2.43]

685±111
[17.9±2.91]

3640±1060
[93.2±27]

Blood 0.05±0.03 0.62±0.15 2.5±0.18 13.8±1.49

Fetus 0.04±0.02
[0.002±0.0009]

2.07±0.89
[0.11±0.046]

7.74±1.91
[0.36±0.089]

45.2±12.7
[2.46±0.69]

Liver 0.41±0.14
[0.004±0.001]

75.4±53.4
[0.77±0.54]

310±257
[3.38±2.81]

2400±573
[25.2±6]

Animals of 16-18 weeks of age were time mated, with the day after mating designated as day 0 of 
gestation (GD0). 75 animals were treated with control vehicle (corn oil) by oral gavage, and 55 animals 
with 50, 200 and 1000 ng TCDD kg-1 bodyweight on GD15; the concentration of TCDD in the dosing 
vehicle was verified by GC-MS (104.6-106.1% of target concentration). 25 vehicle-treated rats and 15 
TCDD-treated rats were killed on GD16 and GD21 for tissue sampling prior to TCDD analysis. For the 
control animals, tissues were pooled from five animals, and five samples of pooled tissue were analysed. 
In the TCDD-treated groups, blood samples were pooled from five animals, and three pools analysed; 
adipose and liver tissue from five individual animals were analysed. The adipose, blood and liver are 
maternal tissues. Fetuses from five individual animals were pooled and analysed. The exceptions, where 
six animals per group are analysed, are set out in Materials and Methods. Liver and fetus weight were 
directly determined, and adipose tissue assumed to be 10% of body weight, in the calculation of amount of 
TCDD per tissue. Results are presented as mean ± Standard Deviation.
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 TABLE 4 
TCDD concentration in maternal tissue and fetus after chronic dosing

Tissue TCDD concentration (ng kg-1)
[ng per tissue]

Dose of TCDD (ng kg-1 day-1) 0 2.4 8 46

Week 10

Adipose NP 363±82
[4.99±1.13]

832±235
[11.1±3.14]

2730±1180
[40.9±17.7]

Liver NP 173±48
[1.17±0.32]

569±63
[3.96±0.44]

4050±1070
[30.3±8.04]

Week 12

Adipose NP 411±57
[6.23±0.86]

827±161
[12.4±4.21]

2830±950
[42.7±14.4]

Liver NP 162±50
[1.21±0.038]

680±124
[4.77±0.04]

5010±935
[40.3±0.41]

GD16

Adipose 1.66±0.15
[0.038±0.0035]

394±146
[8.09±3]

647±131
[13.1±2.65]

2790±1170
[56.4±23.7]

Blood 0.25±0.26 1.52±0.22 1.91±0.49 7.61±2.2

Fetus 0.1±0.03
[0.0006±0.0002]

2.27±0.63
[0.013±0.0035]

4.65±0.29
[0.023±0.0015]

17.3±5.75
[0.072±0.024]

Liver 0.2±0.06
[0.0023±0.0007]

156±48
[1.75±0.54]

665±224
[7.46±2.51]

3980±770
[46.1±8.93]

GD21

Adipose 1.45±0.32
[0.0417±0.0039]

470±74
[11.7±1.83]

862±401
[22.2±10.3]

2590±1300
[68.3±34.3]

Blood 0.06±0.01 1.34±0.19 2.9±0.99 8.82±4.22

Fetus 0.03±0
[0.001±0]

4.79±0.92
[0.28±0.055]

9.08±2.7
[0.51±0.151]

26.9±11.6
[1.5±0.65]

Liver 0.21±0.05
[0.002±0.0005]

154±49
[1.39±0.44]

700±160
[6.77±1.54]

4050±813
[40.9±8.21]

Animals of 5-6 weeks of age (100-146g) were provided with diet containing 0, 28, 93 and 530 ng TCDD kg-1 diet (the TCDD was dissolved 
in acetone) ad libitum. After 12 weeks of treatment of the P females, one female was housed with one untreated male for up to 15 days, and 
mating confirmed by a vaginal plug. 5 and 10 animals per group (treated groups only) were killed in weeks 10 and12 after starting on the diet, 
and on gestation day 16 and 21, 15 animals from the control group and 10 animals from the treated group were killed; tissue samples from 
these culls were used for TCDD analysis For the control and treated animals, adipose, fetus and liver tissues were obtained from five 
individual animals, and individual tissues were analysed. Blood samples were pooled from five animals, and three pools analysed for all dose 
groups. Fetuses from five individual animals were pooled and analysed. The exceptions, where six animals per group are analysed, are set out 
in Materials and Methods. Liver and fetus weight were directly determined, and adipose tissue assumed to be 10% of body weight, in the 
calculation of amount of TCDD per tissue. Results are presented as mean ± Standard Deviation. NP= no analysis performed
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 TABLE 5 
Estimated body burden of TCDD

Body burden ng
(ng kg-1)

TCDD dose group Control Low Medium High

Acute study

GD16 0.022±0.01
(0.078±0.024)

5.41±1.7
(18.8±5.91)

22.7±7.14
(80±25.2)

122±38.5
(418±132)

GD21 0.14±0.046
(0.44±0.14)

6.41±2.01
(19.6±6.18)

21.7±6.83
(66.3±20.9)

121±38
(375±118)

Chronic study

Week 10 NP 6.17±1.68
(28.8±7.86)

15.1±4.1
(71.8±19.6)

71.3±19.4
(316±86)

Week 12 NP 7.44±2.03
(32.7±8.92)

17.1±4.67
(76±20.7)

83±22.6
(366±99.7)

GD16 0.041±0.011
(0.14±0.037)

9.85±2.71
(35.4±9.74)

20.6±5.6
(74.9±20.4)

103±28
(373±102)

GD21 0.045±0.012
(0.14±0.039)

13.4±3.68
(42.4±11.6)

29.4±8.08
(91.2±25)

111±30.4
(337±92.6)

Tissues were analysed as described in Tables 1, 2 and in the materials and methods. Fetus and liver were 
weighed, and adipose tissue was assumed to be 10% of body weight; body burden is assumed to be the sum 
of liver, fetus and adipose burden for five animals (or pools for control) per group. Results are presented as 
mean ± an indicative estimate of variation, which is the mean multiplied by the the coefficient of variation 
of the TCDD analyses in the acute (36%) and chronic (27%) studies, respectively. NP= no analysis 
performed.
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