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Abstract: Robot-control designers have begun to exploit the properties of the human immune system in order to 

produce dynamic systems that can adapt to complex, varying, real-world tasks. Jerne’s idiotypic-network 

theory has proved the most popular artificial-immune-system (AIS) method for incorporation into 

behaviour-based robotics, since idiotypic selection produces highly adaptive responses. However, previous 

efforts have mostly focused on evolving the network connections and have often worked with a single, pre-

engineered set of behaviours, limiting variability. This paper describes a method for encoding behaviours as 

a variable set of attributes, and shows that when the encoding is used with a genetic algorithm (GA), 

multiple sets of diverse behaviours can develop naturally and rapidly, providing much greater scope for 

flexible behaviour-selection. The algorithm is tested extensively with a simulated e-puck robot that 

navigates around a maze by tracking colour. Results show that highly successful behaviour sets can be 

generated within about 25 minutes, and that much greater diversity can be obtained when multiple 

autonomous populations are used, rather than a single one. 

1 INTRODUCTION 

Short-term learning can be defined as the training 

that takes place over the lifetime of an individual, 

and long-term learning as that which evolves and 

develops as a species interacts with its environment 

and reproduces itself. The vertebrate immune system 

draws on both types since, at birth, an individual 

possesses a pool of antibodies that has evolved over 

the lifetime of the species; the repertoire also adapts 

and changes over the lifetime of the individual as the 

living body responds to invading antigens. Recently, 

researchers have been inspired by the learning and 

adaptive properties of the immune system when 

attempting to design effective robot-navigation 

systems. Many artificial-immune-system (AIS) 

methodologies adopt the analogy of antibodies as 

robot behaviours and antigens as environmental 

stimuli. Farmer’s computational model (Farmer et 

al., 1986) of Jerne’s idiotypic-network theory (Jerne, 

1974), which assumes this relation, has proved an 

extremely popular choice, since the antibody 

(behaviour) that best matches the invading antigen 

(current environment) is not necessarily selected for 

execution, producing a flexible and dynamic system. 

The idiotypic architecture has produced some 

encouraging results, but has generally suffered from 

the same problems as previous approaches, as most 

designs have used small numbers of pre-engineered 

behaviours, limiting the self-discovery and learning 

properties of the schemes. This research aims to 

solve the problem by encoding behaviours as a set of 

variable attributes and using a genetic-algorithm 

(GA) to obtain diverse sets of antibodies for seeding 

the AIS. Here, the first phase of the design is 

described, i.e. the long-term phase that seeks to 

produce the initial pool of antibodies. 

The long-term phase is carried out entirely in 

simulation so that it can execute as rapidly as 

possible by accelerating the simulations to 

maximum capacity. The population size is varied 

and, in addition, two different population models are 

considered, since it is imperative that an idiotypic 

system is able to select from a number of very 

diverse behaviours. In the first scheme there is only 

one population, but in the second, separate 

populations evolve in series but never interbreed. In 

each case the derived antibody-sets are scored in 

terms of diversity, solution quality, and how quickly 

they evolve. 



 

The paper is arranged as follows. Section 2 

shows how the vertebrate immune system depends 

on both short-term and long-term learning, and 

discusses how AIS has been used as a model for 

robotic controllers. It also highlights some of the 

problems with previous approaches to AIS robot-

control and with evolutionary robotics in general. 

Section 3 describes the test environments and the 

problem used, and section 4 focuses on the 

architecture of the long-term phase including details 

of the GA. The experimental procedures are outlined 

in Section 5 and the results are presented and 

discussed in Section 6. Section 7 concludes the 

paper. 

2 BACKGROUND AND 

MOTIVATION 

Throughout the lifetime of an individual, the 

adaptive immune system learns to recognise 

antigens by building up high concentrations of 

antibodies that have proved useful in the past, and 

by eliminating those deemed redundant. This is a 

form of short-term learning. However, the antibody 

repertoire is not random at birth and the mechanism 

by which antibodies are replaced is not a random 

process. Antibodies are built from gene libraries that 

have evolved over the lifetime of the species. This 

demonstrates that the immune system depends on 

both short-term and long-term learning in order to 

achieve its goals. 

When using the immune system as inspiration 

for robot controllers, many researchers opt to 

implement an idiotypic network based on Farmer’s 

model of continuous antibody-concentration change. 

In this model the concentrations are not only 

dependent on the antigens, but also on the other 

antibodies present in the system, i.e. antibodies are 

suppressed and stimulated by each other as well as 

being stimulated by antigens. In theory this design 

permits great variability of robot behaviour since the 

antibodies model the different behaviours, and the 

complex dynamics of stimulation and suppression 

ensure that alternative antibodies are tried when the 

need arises (Whitbrook et al., 2007). However, past 

work in this area has mostly focused on how the 

antibodies in the network should be connected and, 

for simplicity, has used a single set of pre-

engineered behaviours for the antibodies, which 

limits the potential of the method. For example, 

Watanabe et al. (1998a, 1998b) use an idiotypic 

network to control a garbage-collecting robot, 

utilizing GAs to evolve their initial set of antibodies. 

The antibodies are composed of a precondition, a 

behaviour, and an idiotope part that defines antibody 

connection. However, the sets of possible 

behaviours and preconditions are fixed; the GA 

works simply by mixing and evolving different 

combinations with various parameters for the 

idiotope. Michelan and Von Zuben (2002) and 

Vargas et al. (2003) also use GAs to evolve the 

antibodies, but again only the idiotypic-network 

connections are derived. Krautmacher and Dilger 

(2004) apply the idiotypic method to robot 

navigation, but their emphasis is on the use of a 

variable set of antigens; they do not change or 

develop the initial set of handcrafted antibodies, as 

only the network links are evolved. Luh and Liu 

(2004) address target-finding using an idiotypic 

system, modelling their antibodies as steering 

directions. However, although many behaviours are 

technically possible since any angle can be selected, 

the method is limited because a behaviour is defined 

only as a steering angle and there is no scope for the 

development of more complex functions. Hart et al. 

(2003) update their network links dynamically using 

reinforcement learning, but use a skill hierarchy so 

that more complex tasks are achieved by building on 

basic ones, which are hand-designed at the start. 

It is clear that the idiotypic AIS methodology 

holds great promise for providing a system that can 

adapt to change, but its potential has never been 

fully explored because of the limits imposed on the 

fundamental behaviour-set. This research aims to 

widen the scope of the idiotypic network by 

providing a technique that rapidly evolves simple, 

distinct behaviours in simulation. The behaviours 

can then be passed to a real robot as a form of 

intelligent initialization, i.e. a starting set of 

behaviours would be available for each known 

antigen, from which the idiotypic selection-

mechanism could pick. 

In addition, long-term learning in simulation 

coupled with an idiotypic AIS in the real world 

represents a novel combination for robot-control 

systems, and provides distinct advantages, not only 

for AIS initialization, but also for evolutionary 

robotics.  In the past, much evolutionary work has 

been carried out serially on physical robots, which 

requires a long time for convergence and puts the 

robot and its environment at risk of damage. For 

example, Floreano and Mondada (1996) adopt this 

approach and report a convergence time of ten days. 

More recent evolutionary experiments with physical 

robots, for example Marocca and Floreano (2002), 

Hornby et al. (2000), and Zykov at al. (2004) have 



 

produced reliable and robust systems, but have not 

overcome the problems of potential damage and  

slow, impractical convergence times. Evolving in 

parallel with a number of robots, (for example 

Watson et al. 1999) reduces the time required, but 

can still be extremely prohibitive in terms of time 

and logistics. Simulated robots provide a definite 

advantage in terms of speed of convergence, but the 

trade-off is the huge difference between the 

simulated and real domains (Brooks, 1992).  

Systems that employ an evolutionary training 

period (long-term leaning phase) and some form of 

lifelong adaptation (short-term learning phase) have 

been used to try to address the problem of domain 

differences, for example by Nehmzow (2002). 

However, the long-term learning phase in 

Nehmzow’s work uses physical robots evolved in 

parallel, which means that the method is slow and 

restricted to multi-agent tasks. Floreano and Urzelai 

(2000) evolve an adaptable neural controller that 

transfers to different environments and platforms, 

but use a single physical robot for the long-term 

phase. Keymeulen et al. (1998) run their long-term 

and short-term learning phases simultaneously, as 

the physical robot maps its environment at the same 

time as carrying out its goal-seeking task, thus 

creating the simulated world. They report the rapid 

evolution of adaptable and fit controllers, but these 

results apply only to simple, structured environments 

where the robot can always detect the coloured 

target, and the obstacles are few. For example, they 

observe the development of obstacle avoidance in 

five minutes, but this applies to an environment with 

only one obstacle, and the results imply that the real 

robot was unable to avoid the obstacle prior to this. 

Furthermore, only eight different types of motion are 

possible in their system. Walker et al. (2006) use a 

GA in the simulated long-term phase and an 

evolutionary strategy (ES) on the physical robot. 

They note improved performance when the long-

term phase is implemented, and remark that the ES 

provides continued adaptation to the environment, 

but they deal with only five or 21 behaviour 

parameters in the GA, and do not state the duration 

of the long-term phase. 

The method described here aims to capitalize on 

the fast convergence speeds that a simulator can 

achieve, but will also address the domain 

compatibility issues by validating and, if necessary, 

modifying all simulation-derived behaviours in the 

real world. This will be achieved by transferring the 

behaviours to an adaptive AIS that runs on a real 

robot. The method is hence entirely practical for real 

world situations, in terms of delivering a short 

training-period, safe starting-behaviours, and a fully-

dynamic and adaptable system. 

3 TEST ENVIRONMENT AND 

PROBLEM 

The long-term phase requires accelerated 

simulations in order to produce the initial sets of 

antibodies as rapidly as possible. For this reason the 

Webots simulator (Michel, 2004) is selected as it is 

able to run simulations up to 600 times faster than 

real time, depending on computer power, graphics 

card, world design and the number and complexity 

of the robots used. The chosen robot is the e-puck 

(see Figure 1), since the Webots c++ environment 

natively supports it. It is a miniature mobile-robot 

equipped with a ring of eight noisy, nonlinear, infra-

red (IR) sensors that can detect the presence of 

objects up to a distance of about 0.1 m. It also has a 

small frontal camera that receives the raw RGB 

values of the images in its field-of-view. Blob-

finding software is created to translate this data into 

groups of like-coloured pixels (blobs). 

The test problem used here consists of a virtual 

e-puck that must navigate around a building with 

three rooms (see Figures 2 and 3) by tracking blue 

markers painted on the walls. These markers are 

intended to guide the robot through the doors, which 

close automatically once the robot has passed 

through. The course is completed once the robot has 

crossed the finish-line in the third room. Its 

performance is measured according to how quickly 

it reaches the finish-line and how many times it 

collides with the walls or obstacles placed in the 

rooms. Two different test environments are used; 

World 1 (see Figure 2) has fewer obstacles and no 

other robots. World 2 (see Figure 3) contains more 

obstacles, and there is also a dummy wandering-

robot in each room. 

 

 
 

Figure 1: A simulated e-puck robot. 

 



 

The simulations are run in fast mode (no 

graphics) with Webots version 5.1.10 using 

GNU/Linux 2.6.9 (CentOS distribution) with a 

Pentium 4 processor (clock speed 3.6 GHz).  The 

graphics card used is an NVIDIA GeForce 7600GS, 

which affords average simulation speeds of 

approximately 200-times real-time for World 1 and 

100-times real-time for World 2. The camera field-

of-view is set at 0.3 radians, the pixel width and 

height at 15 and 3 pixels respectively and the speed 

unit for the wheels is set to 0.00683 radians/s.  

 

 
 

Figure 2: World 1 showing e-puck start point. 

 
 

 
 

Figure 3: World 2 showing e-puck start-point, dummy-

robot start-point and dummy-robot repositioning points. 

4 SYSTEM ARCHITECTURE 

4.1 Antigens and Antibodies 

The antigens model the environmental information 

as perceived by the sensors. In this problem there are 

only two basic types of antigen, whether a door-

marker is visible (a “marker” type antigen) and 

whether an obstacle is near (an “obstacle” type 

antigen), the latter taking priority over the former. 

An obstacle is detected if the IR sensor with the 

maximum reading Imax has value Vmax equal to 250 or 

more. (N. B. The IR sensors are used in active mode 

where the readings correspond to the quantity of 

reflected light.) If no obstacles are detected then the 

perceived antigen is of type “marker” and there are 

two varieties, “marker seen” and “marker unseen”, 

depending on whether appropriate-coloured pixel-

clusters have been recognized by the blob-finding 

software. If an obstacle is detected then the antigen 

is of type “obstacle”, i.e. the robot is no longer 

concerned with the status of the door-marker. The 

obstacle is classified in terms of both its distance 

from and its orientation toward the robot. The 

distance is “near” if Vmax is between 250 and 2400 

and “collision” if Vmax is 2400 or more. The 

orientation is “right” if Imax is sensor 0, 1 or 2, “rear” 

if it is 3 or 4 and “left” if it is 5, 6 or 7 (see Figure 

1). There are thus eight possible antigens, which are 

assigned a code value 0–7, see Table 1. 

Table 1: System antigens. 

Antigen 

Code 

Antigen 

Type 

Name 

0 Marker Marker unseen 

1 Marker Marker seen 

2 Obstacle Obstacle near right 

3 Obstacle Obstacle near rear 

4 Obstacle Obstacle near left 

5 Obstacle Collision right 

6 Obstacle Collision rear 

7 Obstacle Collision left 

 

The behaviours that form the core of the 

antibodies are encoded using a structure that has the 

attributes, type T, speed S, frequency of turn F, angle 

of turn A, direction of turn D, frequency of right turn 

Rf, angle of right turn Ra, and cumulative 

reinforcement-learning score L. There are six types 

of behaviour; wandering using either a left or right 

turn, wandering using both left and right turns, 

turning forwards, turning on the spot, turning 

backwards, and tracking the door-markers. The 



 

fusion of these basic behaviour-types with a number 

of different attributes that can take many values 

means that millions of different behaviours are 

possible. However, some behaviour types do not use 

a particular attribute and there are limits to the 

values that the attributes can take. These limits are 

carefully selected in order to strike a balance 

between reducing the size of the search space, which 

increases speed of convergence, and maintaining 

diversity, see Table 2.  

4.2 System Structure 

The control program uses the two-dimensional array 

of behaviours Bij, i = 0, …, x-1, j = 0, …, y-1, where 

x is the number of robots in the population (x ≥ 5) 

and y is the number of antigens, i.e. eight. When the 

program begins i is equal to zero, and the array is 

initialized to null. The infra-red sensors are read 

every 192 milliseconds and the camera is read every 

384 milliseconds, but only if no obstacles are found, 

as this increases computational efficiency. 

Once an antigen code is determined, a behaviour 

or antibody is created to combat it by randomly 

choosing a behaviour type and its attribute values. 

For example, the behaviour WANDER_SINGLE 

(605, 50, 90, LEFT, NULL, NULL) may be created. 

This behaviour consists of travelling forwards with a 

speed of 605 Speed Units/s, but turning left 50% of 

the time by reducing the speed of the left wheel by 

90%. If the antigen code is 7 then the S, F, A, D, Rf 

and Ra attributes of B07 take the values 605, 50, 90, 

LEFT, NULL, NULL respectively. The action is 

executed and the sensor values are read again to 

determine the next antigen code. If the antigen has 

been encountered before, then the behaviour 

assigned previously is used, otherwise a new 

behaviour is created. The algorithm proceeds in this 

manner, creating new behaviours for antigens that 

have not been seen before and reusing the 

behaviours allotted to those that have.  

However, the performance of the behaviours in 

dealing with the antigen they have been allocated to 

is constantly assessed using reinforcement learning 

(see section 4.4), so that poorly-matched behaviours 

can be replaced with newly-created ones when the 

need arises. Behaviours are also replaced if the 

antigen has not changed in any 60-second period, as 

this most likely means that the robot has not 

undergone any translational movement. The 

cumulative reinforcement-score of the previously 

used behaviour L is adjusted after every sensor 

reading, and if it falls below the threshold value of -

14 then replacement of the behaviour occurs. The 

control code also records the number of collisions ci 

for each robot in the population. 

A separate supervisor-program is responsible for 

returning the virtual robot back to its start-point once 

it has passed the finish-line, for opening and closing 

the doors as necessary, and for repositioning the 

wandering dummy-robot, so that it is always in the 

same room as the mission robot. Another of the 

supervisor’s functions is to assess the time taken ti to 

complete the task. Each robot is given 1250 seconds 

to reach the end-point; those that fail receive a 1000-

second penalty if they did not pass through any 

doors. Reduced penalties of 750 and 500 seconds are 

awarded to failing robots that pass through one door 

and two doors respectively. When the whole 

population has completed the course, the relative-

fitness µi of each individual is calculated. Since high 

values in terms of both ti and ci should yield a low 

relative-fitness, the following formula is used: 
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Table 2: System antibody types. 

S 
Speed Units / 

s 

F 
% of time 

A 
% reduction 

in speed of 

one wheel 

D 
Either 

left or 

right 

Rf 
% of time 

Ra 
% reduction 

in right 

wheel-speed 

No. Description 

MIN MAX MIN MAX MIN MAX 1 2 MIN MAX MIN MAX 

0 Wander single 50 800 10 90 10 110 L R - - - - 

1 Wander both 50 800 10 90 10 110 - - 10 90 10 110 

2 Forward turn 50 800 - - 20 200 L R - - - - 

3 Static turn 50 800 - - 100 100 L R - - - - 

4 Reverse turn 500 800 - - 20 200 L R - - - - 

5 Track markers 50 800 - - 0 30 - - - - - - 

 



 

The five fittest robots in the population are 

selected, and their mean tn, cn and absolute-fitness fn 

are calculated, where n represents the generation 

number, and  fn = tn + cn. In addition, the value of fn 

is compared with that of the previous generation fn-1 

to assess rate-of-convergence. The genetic algorithm 

is complete when any of the four conditions shown 

in Table 3 are reached. These are selected in order to 

achieve fast convergence, but also to maintain a high 

solution quality. Once convergence is achieved the 

attribute values representing the behaviours of the 

five fittest robots are saved for seeding the AIS 

system. If there is no convergence then the GA 

proceeds as described in section 4.3.  

Table 3: Stopping criteria. 

 Criteria - World 1 Criteria - World 2 

1 

n > 0 AND tn < 400 AND 

cn < 60 AND |fn – f n-1| < 

0.1 

n > 0 AND tn < 600 AND 

cn < 90 AND |fn – f n-1| < 

0.2 

2 n > 30 n > 30 

3 tn < 225 AND cn < 35 tn < 400 AND cn < 45 

4 
n > 15 AND |fn – f n-1| < 

0.1 

n > 15 AND |fn – f n-1| < 

0.2 

 

Note that when adopting the scenario of five 

separate populations that never interbreed, the five 

robots that are assessed for convergence are the 

single fittest from each of the autonomous 

populations. In this case, convergence is dependent 

upon the single best tn, cn and fn values. The final 

five robots that pass their behaviours to the AIS 

system are the single fittest from each population 

after convergence.  

4.3 The Genetic Algorithm 

Two different parent robots are selected through the 

roulette-wheel method and each of the x pairs 

interbreeds to create x child robots. This process is 

concerned with assigning behaviour attribute-values 

to each of the x new robots for each of the y antigens 

in the system. It can take the form of complete 

antibody replacement, attribute-value mutation, 

adoption of the attribute values of only one parent or 

crossover from both parents.  

Complete antibody replacement occurs according 

to the prescribed mutation rate ε. Here, a completely 

new random behaviour is assigned to the child robot 

for the particular antigen, i.e. both the parent 

behaviours are ignored.  

Crossover is used when there has been no 

complete replacement, and the method used depends 

on whether the parent behaviours are of the same 

type. If the types are different then the child adopts 

the complete set of attribute values of one parent 

only, which is selected at random. If the types are 

the same, then crossover can occur by taking the 

averages of the two parent values, by randomly 

selecting a parent value, or by taking an equal 

number from each parent according to a number of 

set patterns. In these cases, the type of crossover is 

determined randomly with equal probability. The 

purpose behind this approach is to attempt to 

replicate nature, where the offspring of the same two 

parents may differ considerably each time they 

reproduce.  

Mutation of an attribute value may also take 

place according to the mutation rate ε, provided that 

complete replacement has not already occurred. 

Here, the individual attribute-values (all except D) 

of a child robot may be increased or decreased by 

between 20% and 50%, but must remain within the 

prescribed limits shown in Table 2.  

4.4 Reinforcement Learning 

Reinforcement learning is used in order to accelerate 

the speed of the GA’s convergence. It can be 

thought of as microcosmic short-term learning 

within the long-term learning cycle. The 

reinforcement works by comparing the current and 

previous antibody codes, see Table 4. Ten points are 

awarded for every positive change in the 

environment, and ten are deducted for each negative 

change. For example, 20 points are awarded if the 

antigen code changes from an “obstacle” type to 

“marker seen”, because the robot has moved away 

from an obstacle as well as gaining or keeping sight 

of a door-marker.   

Table 4: Reinforcement scores. 

Antigen code 

Old  New  

Reinforcement status (score) 

0 0 Neutral (0) 

1 0 Penalize - Lost sight of marker (-10) 

2-7 0 Reward - Avoided obstacle (10) 

0 1 Reward - Found marker (10) 

1 1 Reward – Kept sight of marker  

(Score depends on orientation of 

marker with respect to robot) 

2-7 1 Reward - Avoided obstacle and gained 

or kept sight of marker (20) 

0 2-7 Neutral (0) 

1 2-7 Neutral (0) 

2-7 2-7 Reward or Penalize  

(Score depends on several factors) 



 

In the case where the antigen code remains at 1 (a 

door-marker is kept in sight), the score awarded 

depends upon how the orientation of the marker has 

moved with respect to the robot. In addition, when 

an obstacle is detected both in the current and 

previous iteration, then the score awarded depends 

upon several factors, including changes in the 

position of Imax and in the reading Vmax, the current 

and previous distance-type (“collision” or “near”) 

and the tallies of consecutive “nears” and 

“collisions”.  

5 EXPERIMENTAL 

PROCEDURES 

5.1 General Procedures 

The GA is run in Worlds 1 and 2 using single 

populations of 25, 40, and 50 robots, and using five 

autonomous populations of five, eight, and ten. A 

mutation rate ε of 5% is used throughout, as 

previous trials have shown that this provides a good 

compromise between fast convergence, high 

diversity and good solution-quality. Solution quality 

is measured as q = (t + 8c)/2, as this allows equal 

weighting for the number of collisions. For each 

scenario, ten repeats are performed and the means of 

the program execution time τ, solution quality q, and 

diversity in type Zt and speed Zs are recorded. The 

mean solution-quality is also noted when 240 repeats 

are performed in each world using a hand-designed 

controller. This shows how well the GA-derived 

solutions compare with an engineered system and 

provides an indication of problem difficulty. Two–

tailed standard t-tests are conducted on the result 

sets, and differences are accepted as significant at 

the 99% level only.  

In World 2 the stopping criteria is relaxed in 

order to improve convergence speed, see Table 3. 

This is necessary since there are more obstacles and 

moving robots to navigate around, which means that 

completion time is affected. 

5.2 Measuring Diversity 

Diversity is measured using the type T and the speed 

S attributes of each of the final antibodies passed to 

the AIS system, since these are the only action-

controlling attributes that are common to all 

antibodies. The antibodies are arranged into y groups 

of five (y is the number of antigens) and each group 

is assessed by comparison of each member with the 

others, i.e. ten pair-wise comparisons are made in 

each group. A point is awarded for each comparison 

if the attribute values are different; if they are the 

same no points are awarded. For example, the set of 

behaviour types [1 3 4 4 1] has two pair-wise 

comparisons with the same value, so eight points are 

given. Table 5 summarizes possible attribute-value 

combinations and the result of conducting the pair-

wise comparisons on them. 

Table 5: Diversity scores. 

Expected: Attribute-

value status 

Points  

Frequency  

for T 

Score for 

T 

All five different 10 9.26 0.926 

One repeat of two 9 46.30 4.167 

Two repeats of two 8 23.15 1.852 

One repeat of three 7 15.43 1.080 

Two repeats, one 

of two, one of three 

6 3.86 0.231 

One repeat of four 4 1.93 0.077 

All five the same 0 0.08 0.000 

Total 100.00 8.333 

 

The y individual diversity-scores for each of T 

and S are summed and divided by σy to yield a 

diversity score for each attribute. Here σ is the 

expected diversity-score for a large number of 

randomly-selected sets of five antibodies. This is 

approximately 8.333 for T (see Table 5) and 10.000 

for S. It is lower for T since there are only six 

behaviours to select from, whereas the speed is 

selected from 751 possible values, so one would 

expect a random selection of five to yield a different 

value each time.   The adjustment effectively means 

that a random selection yields a diversity of 1 for 

both S and T.  The diversity calculation is given by: 
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where Z represents the overall diversity-score and z 

represents the individual score awarded to each 

antigen.  

6 RESULTS AND DISCUSSION 

Table 6 presents mean τ, q, Zt, and Zs values in 

World 1, and Table 7 summarises the significant 

difference levels when comparing single and 

multiple populations. The schemes that are 



 

compared use the same number of robots, for 

example a single population of 25 is compared with 

five populations of five. In addition, the smallest and 

largest population sizes are compared for both single 

and multiple populations.  

Table 6: World 1 means. 

Pop. 
size 

τ (s) q Zt 
(%) 

Zs 
(%) 

25 417 220 40 86 

40 530 216 53 95 

50 811 191 49 90 

5 x 5 508 155 55 100 

5 x 8 590 146 54 100 

5 x 10 628 144 58 100 

 

Table 7: World 1 significant differences. 

Comparison τ (s) q Zt 
(%) 

Zs 
(%) 

25 5 x 5 77.40 99.94 99.90 99.99 

40 5 x 8 72.58 99.97 43.07 99.97 

50 5 x 10 97.13 99.80 98.36 99.96 

25 50 99.99 91.76 96.10 75.81 

5 x 5 5 x 10 88.41 58.13 60.40 00.00 

 

The tables show that there are no significant 

differences between controller run-times when 

comparing the single and multiple populations. Type 

diversity is consistently higher for the multiple 

populations, but only significantly higher when 

comparing a single population of 25 with five 

populations of five. However, solution quality and 

speed diversity are significantly better for the 

multiple populations in all three cases. Multiple 

populations always demonstrate a speed diversity of 

100%, indicating that the final-selected genes are 

completely unrelated to each other, as expected. In 

contrast, single-population speed-diversity never 

reaches 100% as there are always repeated genes in 

the final-selected robots. Evidence from previous 

experiments with single populations of five, ten and 

20 suggests that the level of gene duplication 

decreases as the single population size increases. 

This explains the lower Zt and Zs values for a 

population of 25 robots. However, when comparing 

the results from single populations of 25 with 50, the 

only significant difference is in the run-time, with 

25-robot populations running much faster. This is 

intuitive, since fewer robots must complete the 

course for every generation. There are no significant 

differences when comparing five-robot and ten-robot 

multiple populations. Run-times may be comparable 

here because the course has to be completed fewer 

times for the smaller population, but it requires more 

generations for convergence since there seems to be 

a reduced probability of producing successful robots. 

In all cases, mean type-diversity ratings never 

reach 100%, yet mean speed-diversity is always 

100% in the multiple populations, which shows 

there are no repeated genes. The reduced type-

diversity ratings must therefore occur because the 

types are not randomly selected but chosen in a more 

intelligent way. The relatively small number of types 

(six) means that intelligent selection reduces the type 

diversity, whereas speed diversity is unaffected 

because there are many potentially-good speeds to 

choose from and convergence is rapid. It is likely 

that both intelligent selection and repeated genes 

decrease the type-diversity scores for the single 

populations, but in the multiple populations, the 

phenomenon is caused by intelligent selection only. 

The hand-designed controller demonstrates a 

mean solution-quality of 336. (The scores from the 

49 robots that failed to complete the course are not 

counted.) This is significantly worse than all of the 

multiple populations, but not significantly different 

to the single populations, although single-population 

quality scores are considerably better. The multiple 

populations may have an advantage over the single 

populations in terms of solution quality because, for 

each population, they require a fast time and few 

collisions for only one member in order to meet the 

convergence criteria. The single-population case 

demands good mean-scores from five robots. 

Table 8 presents the significant difference levels 

when comparing the results from World 1 with those 

from World 2. There is a significant difference in 

run-time in every case, which is not surprising 

because the GAs in World 2 take, on average, 2.25 

times as long to converge. This is partly due to the 

World 2 simulations running only half as fast as 

those in World 1 (because there are two robots to 

control) and partly because the problem is harder to 

solve. There are also significant differences in 

solution quality for 50-robot single populations and 

all the multiple populations, with World 2 producing 

the lower-quality solutions. (The 25-robot and 30-

robot populations are almost significant.) This 

difference is due to the less-stringent convergence 

criteria in World 2. There are no significant 

differences in type diversity or speed diversity 

between the two worlds. 

Tables 9 and 10 summarise the same data as 

Tables 6 and 7, but for World 2. When comparing 

single with multiple populations, the results reveal a 

similar pattern to World 1 in terms of run-time, type-



 

diversity and speed-diversity, i.e., there are no 

significant differences between run-times, although 

they are slightly higher for the multiple populations.  

Type diversity is consistently better for the multiple 

populations, but only significantly higher when 

comparing a single population of 25 with a five-

robot multiple population. Speed diversity is 

consistently significantly higher for the multiple 

populations, with all multiple populations producing 

100% diversity. However, unlike World 1, there are 

no significant differences in solution quality, 

although the figures for the multiple populations are 

better in each case.  

Table 8: World 1 compared with World 2. 

Pop. 

size 

τ (s) q Zt 
(%) 

Zs 
(%) 

25 99.99 97.61 50.34 11.19 

40 99.99 96.61 24.70 84.41 

50 99.93 99.97 80.09 87.67 

5 x 5 99.99 99.99 57.16 66.94 

5 x 8 100.00 99.99 14.38 0.00 

5 x 10 100.00 99.86 27.51 66.94 

 

Table 9: World 2 means. 

Pop. 
size 

τ (s) q Zt 
(%) 

Zs 
(%) 

25 972 314 37 85 

40 1292 266 51 89 

50 1414 250 56 94 

5 x 5 1211 258 58 100 

5 x 8 1325 225 55 100 

5 x 10 1498 208 57 100 

 

Table 10: World 2 significant differences. 

Comparison τ (s) q Zt 
(%) 

Zs 
(%) 

25 5 x 5 88.47 84.51 99.96 99.63 

40 5 x 8 20.91 94.09 61.19 99.28 

50 5 x 10 40.78 97.31 18.34 99.87 

25 50 98.79 90.17 99.50 93.43 

5 x 5 5 x 10 94.36 97.97 22.16 00.00 

 

When comparing the results from single 

populations of 25 robots with 50 robots, the only 

significant difference is in type diversity, with 50-

robot populations producing more diverse sets of 

behaviour type. Since type diversity is also 

significantly higher in the five-robot multiple 

populations, this suggests there may be a threshold 

single population size, below which single 

populations are significantly less diverse in 

behaviour-type than their multiple-population 

counterparts. There are no significant differences 

when comparing five-robot and ten-robot multiple 

populations, although the higher solution-quality for 

ten robots almost reaches significance. 

In World 2 the hand-designed controller 

produces a mean solution-quality of 623 (not 

counting the results from the 109 robots that failed 

to complete the course). The performance is 

significantly worse than the GA-derived solutions 

from both the single and multiple populations in 

World 2. 

7 CONCLUSIONS AND FUTURE 

WORK 

This paper has described a GA method for 

intelligently seeding an idiotypic-AIS robot control-

system, i.e. it has shown how to prepare an initial set 

of antibodies for each antigen in the environment. 

Experiments with static and dynamic worlds have 

produced solution-sets with significantly better mean 

solution-quality than a hand-designed controller, and 

the system has been able to deliver the starting 

antibodies within about ten minutes in the static 

world, and within about 25 minutes in the dynamic 

world. These are fast results compared with GAs 

that have used physical robots and reported 

convergence in terms of number of days rather than 

minutes. The method hence provides a practical 

training-period when considering real-world tasks. 

The resulting antibody sets have also been tested 

for quality and diversity, and it has been shown that 

significantly higher antibody diversity can be 

obtained when a number of autonomous populations 

are used, rather than a single one. For sets of five 

populations, the mean diversity of antibody speed is 

100%, and one can run the genetic algorithm without 

significantly increasing the convergence time or 

reducing solution quality. In fact, for simpler 

problems, multiple populations may help to improve 

solution quality. Results have also shown that the 

diversity ratings are not affected by the difficulty of 

the problem.  

The potential of the method to create high 

behaviour-diversity augurs well for the next stage of 

the research, which is transference to a real robot 

running an AIS. This part of the work will 

investigate how the idiotypic-selection process 

should choose between the available solutions, and 



 

how antibodies should be replaced within the system 

when they have not proved useful. The work will 

also examine how closely the simulated-world needs 

to resemble the real-world in order that the initial 

solutions are of benefit. 
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