
Real-Time Alert Correlation with Type Graphs

Gianni Tedesco1 and Uwe Aickelin1

School of Computer Science,
University of Nottingham,

Nottingham NG8 1BB,
United Kingdom

Abstract. The premise of automated alert correlation is to accept that
false alerts from a low level intrusion detection system are inevitable and
use attack models to explain the output in an understandable way. Sev-
eral algorithms exist for this purpose which use attack graphs to model
the ways in which attacks can be combined. These algorithms can be
classified in to two broad categories namely scenario-graph approaches,
which create an attack model starting from a vulnerability assessment
and type-graph approaches which rely on an abstract model of the rela-
tions between attack types. Some research in to improving the efficiency
of type-graph correlation has been carried out but this research has ig-
nored the hypothesizing of missing alerts. Our work is to present a novel
type-graph algorithm which unifies correlation and hypothesizing in to a
single operation. Our experimental results indicate that the approach is
extremely efficient in the face of intensive alerts and produces compact
output graphs comparable to other techniques.

1 Introduction

The output of intrusion detection systems (IDS) is generally a time series of
discrete events called “alerts” with each event describing, at a low level, features
of the network traffic. These alert attributes typically include the endpoints and
communication channels implicated in an alert and the type of alert. Arguably
the most significant problem with analyzing IDS alerts is the high volume of
false alarms. Even without false alarms IDS alerts require some interpretation.
This is because attacks are often split in to several stages, each of which may
generate many alerts.

This observation has lead to the proposal that alerts be automatically cor-
related using a model of attacks which encodes their prerequisites and conse-
quences [10]. Typically these methods involve representing attack types as ver-
tices in a directed acyclic graph which we shall call an “attack graph”. Edges in
attack graphs represent the relationship between prerequisites and consequences
of attacks. Intuitively speaking, a directed edge will connect attack A to attack
B if A prepares for B.

Research has shown that such techniques are capable of:

1. Aggregating alerts which imply the same, or similar, consequences. An ag-
gregated group of alerts is called a hyper-alert.



2. Ignoring extraneous alerts which do not correlate with anything.
3. Uncovering missing alerts in an alert stream and hypothesizing their at-

tribute values where possible [8]. Hypotheses may optionally be compared
against other evidence sources such as system logs [11].

These automated alert correlation techniques may be divided in to two cat-
egories based on the type of attack model which is encoded in the attack graph.
We shall refer to the two categories as type-graph and scenario-graph algorithms.
Scenario graph algorithms rely on a complete and correct vulnerability assess-
ment to generate a graph of attack sequences specific to the protected network[6].
While this approach allows for real-time automated correlation it fails com-
pletely if network addresses are re-assigned or if the vulnerability assessment is
erroneous. Conversely, type graph algorithms model only abstract attack types
which allows for more robust correlation but with a higher computational cost.
In [10] correlation is performed in batch mode only and in [15], where vulnera-
bility assessment data is incorporated, a sliding correlation window is required
to keep the problem manageable.

We assert that real-time correlation is desirable because it allows for timely
automated responses. If the time lag between detection and response is too great
then attacks such as rapidly spreading worms may become much more difficult
to contain. Real-time operation also facilitates techniques such as [4] where cor-
relation output is used to perform a targeted forensic analysis of network traffic
for the purposes of discovering novel attacks and variations of known attacks.

Our work is motivated by the need for a correlation algorithm with both the
flexibility of an abstract attack type-graph and similar performance characteris-
tics to state of the art scenario graph algorithms. Specifically, we wish to avoid
relying on prior knowledge of network topology and the distribution of vulnera-
bilities in the protected network. It is also desirable to avoid relying on a sliding
correlation window which would allow “low and slow” attacks to become lost.

The aim of this paper is to develop an automated alert correlation algorithm
using attack type graphs which is suitable for deployment in a real-time setting.
A theoretical analysis of computational complexity will be provided. For verifi-
cation the algorithm will be experimentally evaluated in terms of performance
and accuracy.

Our proposed solution works by re-structuring the type graph correlation
algorithm presented by Ning et al. such that it acts on individual alerts in se-
quence rather than all alerts in batch. The basic approach is to keep an internal
database of hyper-alerts of each type and use in-memory indexes to efficiently
find prerequisites of each new hyper-alert. The size of the in-memory database
is minimized by eliminating redundant information which does not contribute
to the correlation process. Hypothesizing of missing alerts is a recursive special-
case of the correlation algorithm which can input hyper-alerts with wild-card
attributes. The main contributions of this work are a type-graph correlation
algorithm suitable for real-time use. The algorithm depends on a novel index
structure and unifies the correlation and hypothesising steps in to a single algo-
rithm.



This paper is structured as follows. First a brief discussion of related work is
given in section 2. From here we present a description and formal definition of
the problem in section 3. Building on this definition, a solution is presented in
section 4 which solves the minimal IAC problem where there are no false negative
alerts. This minimal algorithm is developed to the fuller solution presented and
analyzed in section 5. Section 6 provides an empirical analysis of the algorithm.
In the final section the results are discussed, conclusions drawn and future work
proposed.

2 Related Work

Seminal works such as [5, 13] laid the groundwork for automated analysis of
security related facts and events. These works proposed a formal theory of com-
puter attacks by modeling the prerequisites and consequences of vulnerabilities
in attack graphs and formal grammars respectively.

Wang et al. take a vulnerability-centric approach to alert correlation [6]. In
this work an automated vulnerability analysis [12, 14] creates an attack graph
consisting of two types of vertex, attacks and states. Only those attacks which
have been found on the protected system are included. All attack vertices are
bound with attribute values such as IP addresses and ports. The correlation
algorithm works by performing a breadth first search on the attack graph. High
performance is achieved by enumerating all possible fact assignments for every
attack type and pre-computing an optimized graph structure for correlation.
Another important concept in this work is “implicit correlation” whereby only
the latest alert which satisfies an attack step is stored in memory. However, we
have asserted that it is undesirable to assume that the defender can reliably
know of all vulnerabilities on the network. Therefore our work uses an abstract
attack-type model although we do use a similar hypothesizing technique and try
to preserve the notion of implicit correlation as far as possible.

Ning et al. take a logical approach to modeling attack sequences for auto-
mated correlation[2, 9, 10]. The technique is intended to be applied in batch to
an off-line database of collected hyper-alerts. The fundamental building block of
the approach is the definition of a “hyper-alert type” which represents a type
of attack and its prerequisites and consequences. Each hyper-alert type consists
of a triple of fact names and prerequisites and conclusions which are predicate
expressions with free variables bound from the fact names. If a predicate ap-
pears in the consequence of one hyper-alert type and the prerequisite of another
then the former “may prepare for” the latter. The assignment of facts to any
such shared predicate are used to calculate equality constraints between the two
types.

A hyper-alert of a given type is simply a tuple of attribute values correspond-
ing to the fact names for that type. Correlation is performed in batch on a set of
hyper-alerts, each hyper-alert is considered a potential vertex in the correlation
graph and if equality constraints are satisified between other hyper-alerts then



they are correlated by adding a directed edge between them provided that their
timestamps show the correct temporal order.

Hypothesizing of missing alerts is treated in [8, 11]. The problem here is that
when some steps in an attack have been missed by the underlying IDS then the
resultant correlation graphs may be split and require additional processing to
re-integrate them. The approach taken in their work involves four steps:

1. Subgraphs of the correlation graph are clustered according to the attribute
values of their hyper alerts.

2. Once candidate subgraphs have been selected for integration, a special hyper-
alert type-graph is consulted which has had indirect edges added to it.
Pairs of subgraphs are then correlated using these new edges to define the
indirectly-prepares-for relation.

3. When an indirect correlation occurs there are one or more paths in the type-
graph connecting the two hyper-alert types. New hyper-alerts are created to
connect the two correlation graphs and their attribute values inferred using
the equality constraints in the graph.

4. Because the prior steps may generate many redundant hypotheses with
equivalent fact values, a consolidation step reduces the size of the final cor-
relation graph.

The work presented in this paper takes a different approach and simply relies
on recursing backwards through the type-graph whenever a hyper-alert is input
which has not had it’s prerequisites met by another hyper-alert in the system.
Our method is at once more efficient and eliminates the consolidation step by
terminating recursion as soon as a duplicate hypothesis is generated.

In [15] correlation and hypothesizing is performed, again, in batch mode.
However in this case a state/event model is chosen so that evidence from com-
plementary sources such as vulnerability analysis and raw audit logs. The at-
tack model is converted in to a Bayesian network where prior probabilities are
assigned manually by human experts. A sliding time window is used to limit
memory usage and prevent a combinatorial explosion in run-time complexity
associated with the Bayesian inference algorithm.

Our work is most similar to [7] in which in-memory indexes are used to
significantly speed up correlation leaving the RDBMS just to store a log of hyper-
alerts on disk. The most relevant contribution in their work is the proposal to
index instances of predicates rather than hyper alerts. Their results indicate
that the algorithm would be suitable for real-time operation but hypothesizing
of missing alerts is not addressed and must presumably be performed as a post-
processing step on the correlation graph. The work presented in this paper takes
a different approach and instead indexes instances of the PrepareFor relation.

In summary, there are several automated correlation algorithms. Those which
are suitable for real-time operation either rely on the defender being able to
correctly and completely enumerate possible combinations of attacks on their
protected network, or worse, rely on a sliding time window which opens up the
correlator to “low and slow” or “alert injection” attacks. The abstract type-graph



approach appears more promising and has been partly optimized for real-time
deployment. Our work builds on prior techniques by using a novel indexing
structure and unifying the correlation and hypothesizing steps in to a single
real-time algorithm.

3 Problem Definition

For the purposes of clarity the intrusion alert correlation (IAC) problem will
be solved in two steps. Firstly the “minimal IAC problem” in which a totally
accurate alert stream is input and no alerts are hypothesized and secondly; the
“extended IAC problem” in which some alerts can be missing and the system
must hypothesize alerts. The following problem definition is based on that pro-
posed by Ning et al.[8–11].

Definition 1. An attack model consists of logical predicates, hyper-alert types
and implication relations. A hyper-alert type T is a triple (fact, prerequisite,

consequence) where fact is a set of attribute names associated with the type,
prerequisite and consequence are sets of predicate expressions with free vari-
ables bound from fact. Prereq(T ) and Conseq(T ) denote the set of predicate
expressions from the prerequisite and consequence elements of T respectively.
For brevity we assume all implied expressions to be included in Conseq(T ). We
shall refer to the set of all hyper-alert types in an attack model as τ .

For the purpose of our examples we will assume that there are always 4 ele-
ments in fact (say, source address, source port, destination address, destination
port).

Definition 2. Given an ordered pair of hyper-alert types (A,B) then A may

prepare for B if Conseq(A) and Prereq(B) share at least one predicate, with
possibly different arguments.

Definition 3. Given an ordered pair of hyper-alert types (A,B) where A may
prepare for B a set of equality constraints may be computed. Each such con-
straint is a set of logical conjunctions of equality comparisons between the at-
tributes of the two types.

Let the sequences u1, u2, ..., un and v1, v2, ..., vn be distinct facts in type A
and B respectively. Then each constraint takes the form:

u1 = v1 ∧ u2 = v2 ∧ ... ∧ un = vn

such that there exists p(u1, u2, ...un) ∈ Conseq(A) and p(v1, v2, ..., vn) ∈

Prereq(B) where p is the same predicate with possibly different fact assignments.

Note that the only substantial difference between our definition and that of
Ning et al. is the restriction that any given fact may appear at most once in the
arguments of a predicate. The purpose of this restriction will become clear in
the following sections.



Definition 4. Given an attack model, let us define an attack-type graph TG =
(V,E,C, T ). Where (V,E) is a directed acyclic graph. T is a bijection of vertices
on to hyper-alert types. An edge e(v0, v1) ∈ E if and only if T (v0) may prepare
for T (v1). C maps each edge to a set of constraints.

Definition 5. A hyper-alert h is simply a tuple of attribute values. Type(h)
is a mapping on to the set of hyper-alert types. Prereq(h) and Conseq(h) de-
note the set of predicates from the prerequisite and consequence of the hyper-
alert type with free variables bound from the attribute values of the hyper-alert.
Timestamp(h) denotes the timestamp of the hyper-alert. A hyper-alert stream

is any time-ordered series of hyper-alerts.

Definition 6. A hyper-alert h of type A is said to prepare for a hyper-alert
h′ of type B if and only if Type(h) may prepare for Type(h′) and at least one
equality constraint evaluates to true when fact names have been substituted with
actual values from the hyper alerts. Furthermore, since an event B can be the
cause of an event C if and only if B occurs before C, an implicit time constraint
ensures forward causality holds. In other words the directed edges in TG, like
time, move from past to future.

Two hyper alerts are said to be correlated if and only if the former prepares
for the latter. Since all that is required to correlate two hyper alerts is that any
one of the constraints holds. We might say that each edge in TG is labeled with a
predicate logical formula, consisting only of equality comparisons, in disjunctive
normal form.

Definition 7. The output correlation graph CG is (V,E,H) where (V,E) is
a DAG and H is a bijection of hyper-alerts to vertices and an edge e(v0, v1) ∈ E

if and only if H(v0) prepares for H(v1).

Definition 8. If a hyper-alert h exists where Prereq(h) is non-empty and there
does not exist a hyper-alert h′ such that h′ prepares for h then h is said to be
“unexplained”.

An unexplained alert h may sometimes be explained by the construction of
a sequence of hypothesized hyper alerts y1, y2, ..., yn such that yn prepares for h,
yn−1 prepares for yn, ..., and a real (unhypothesised) hyper alert h′ prepares for
y1. There may be several alternative explanations for any such hyper-alert.

The extended correlation graph EG therefore consists of (V,E,H, Y ) with
the same definition as CG with the addition of Y , a mapping of vertices on to
the set of hypothesised hyper-alerts which are required to explain any unexplained
alerts in H. V is formed by the union of H and Y .

In summary our problem is to propose an algorithm which:

1. Is initialized with TG, and an empty CG.
2. At each time step:

(a) Input a hyper-alert.
(b) Construct a correct and complete CG as per definition 7 or, for the

extended IAC problem, definition 8.



4 A Minimal Solution

The inner loop of our proposed algorithm consists of two steps. Firstly “search-
ing for correlations” and secondly “marking of consequences”. When marking
consequences of a type T hyper-alert h we find each type T ′ such that T may
prepare for T ′. Then the equality constraints between the two types are used
so as to index every possible combination of hyper-alert attributes for T ′ which
should be considered prepared for by h. Each index entry created in this stage
contains a pointer to h. Conversely when searching for correlations the indexes
on type T are searched using the attributes of h. If an earlier hyper-alert h′ has
been input and marked it’s consequences it will be found during the searching
for correlations stage if and only if h′ prepares for h. The structure of our index
is unique and, by indexing each attribute combination separately, the IAC is re-
duced to a sufficiently small constant number of search and insert operations on
balanced binary trees[1] rather than multi-dimensional searches with wild-cards.

This approach exploits two properties of the structure of the problem. Firstly
that time flows from past to future, meaning that prior alerts do not need to
be checked and correlated twice. Secondly although the number of possible con-
straints on a given edge are exponentially related to the number of facts, in
practice, the number of facts and therefore the maximum number of indexes
required is small.

Lemma 1. Given a pair of hyper-alert types (T0, T1) we take A and B to be their
attribute sets. The sets of attributes are equipotent, each containing n elements.
Each constraint may be represented as a set containing 0 <= m <= n ordered
pairs of attributes (a, b) such that a ∈ A and b ∈ B. No element of A may appear
as a left component more than once, and no element of B may appear as a right
component more than once since by definition 3 the problem is restricted to the
simplified case in which each fact referred to in an equality constraint may make
at most one appearance on each side of the equation.

There are P (n,m)·C(n,m) ways to arrange m distinct pairs from n elements
of A and n elements of B, where P and C are the permute and chose functions
respectively. The number of possible equality constraints is therefore the sum of
all constraints of each length m.

Proof. Our problem is to construct two sequences a1, a2, ..., am and b1, b2, ..., bm

where a1 is paired with b1, a2 is paired with b2, etc. We shall solve the problem
in two separate steps. First we chose m elements of A and m elements of B and
secondly we arrange the pairs. There are C(n,m)2 ways to select a pair (A′, B′)
where A′

∈ the set of all m-combinations of elements in A and B′
∈ the set of

all m-combinations of elements in B. Now to pair them up we keep elements of
A′ in a fixed order and simply count the ways to permute the elements of B′.
Since there are m! ways to permute m attributes:



C(n,m)2 · m! =
n!

m!(n − m)!
·

n!

m!(n − m)!
· m!

=
n!

m!(n − m)!
·

n!

(n − m)!

= C(n,m) · P (n,m) ⊓⊔

If we wish to count the maximum number of constraints when there is more
than one type of attribute then we can re-use the formula above to count the
ways of comparing the attributes of each type and take the product:

t∏

i=1

ci∑

j=0

P (ci, j) · C(ci, j) (1)

Where t is the number of types, ci is the number of attributes of the ith

type. Therefore, if we chose 4 facts: source and destination addresses and ports
where addresses and ports are not comparable with each other. Then there are
49 possible constraints to an edge in TG. Since there are less combinations than
permutations, the idea is to create an index for each of the 16 combinations of
facts for each type. Permutations capture the possibly different orderings for the
attributes in the equality constraints and will be used when inserting items in
to the indexes.

Algorithm 1, requires several further definitions to determine which combi-
nations of fields must be indexed for each type and how to evaluate what are the
consequences for each hyper-alert so that they can be marked. A notion simi-
lar to implicit correlation in [6] is introduced. If two hyper-alerts have identical
attribute values then they must also have identical consequences meaning that
the correlation procedure is redundant the second time around. We define an
implict correlation so that all hyper-alerts of a given type are indexed based on
the combination of fact values which are used in marking of consequences.

Definition 9. The CorrelationSet is a relation on a given pair of types (T, T ′),
such that CorrelationSet(T, T ′) is a set of pairs of the form (a, b) where a is
a permutation of facts in T and b is an subset of facts in T ′ such that a and b

are eqipotent and there exists an equality constraint of the form u1 = v1 ∧ u2 =
v2 ∧ ...un = vn where sequence u1, u2, ..., un is the elements of a arranged in to
a fixed order and v1, v2, ..., vn is the sequence b.

Definition 10. The Index Set is a relation on a given type T and set of all
types τ which returns subsets of facts in T which must be indexed. IndexSet(T, τ)
returns every subset x of facts of T where there exists a T ′ such that T ′ may
prepare for T and x is a right-component of CorrelationSet(T ′, T ).

Definition 11. The Implicit Set is a relation on a given type T and set of
all types τ which returns a set of facts in T upon which future correlations may
depend. ImplicitSet(T, τ) returns the union of every subset x of facts in T where



there exists a T ′ such that T may prepare for T ′ and x is a left-component in an
element of CorrelationSet(T, T ′).

Input: Hyper alert stream H, Hyper-alert types τ

Output: All pairs (h′, h) such that h′ prepares for h and both are in H

foreach h ∈ H (input in ascending time order) do
Let T = Type(h);
Let i be a index on ImplicitSet(T, τ);
if Lookup(i, h) then

Continue with next alert;
end

foreach index i on IndexSet(T, τ) do
Let the set of hyper-alerts R = Lookup(i, h);
foreach h′

∈ R do
Add the pair (h′, h) to Output;

end

end

foreach Type T ′ where T may prepare for T ′ do

foreach Permutation p, index i on CorrelationSet(T , T ′) do
Insert(i, Permute(h, p));

end

end

end

Algorithm 1: The minimal ATG algorithm

5 Hypothesising Missing Alerts

Algorithm 1 does not attempt to deal with missing alerts in the input alert
stream. What should happen is that for any alert which arrives and is not ex-
plained by a prior alert then those alerts are hypothesized with appropriate fact
values. This is done recursively until either a hyper-alert type with in-degree zero
is found, no facts can be inferred for a hypothesis or until a real alert is found.
Only if a real alert is found will the hypothesized sequence be entered in to the
correlation graph. If no results are found in the “search for correlations” stage
then the current alert is unexplained. Alerts are hypothesized with attributes
satisfying each constraint on each incoming edge. Often times only a subset of
the fact values may be inferred for a hypothesized alert as not all values have to
be referred to in the equality constraints from the attack model.

This leads to a problem when we recurse more than one step. The recursion
needs to terminate when a real hyper-alert may prepare for a hypothesized one.
There is no guarantee that an index exists for the subset of fact values in the
hypothesized alert. Our approach leads us to consider the hypothesizing problem
as identical to the correlation problem, except that our hyper-alerts may contain
a partial set of attribute values.

A pre-processing step is introduced in which an expanded version of the
IndexSet is calculated so that all such partial sets of attribute values are indexed.



Also we intrdouce the relation HypothesisSet(T, τ) where T is a type and τ is
the set of all hyper-alert types. This relations maps on to a set of 5-tuples with
the components (t, i, p,m, o):

1. t is a type which may prepare for T .
2. i is an element of the IndexSet of t.
3. p is a permutation to apply to fact values of the current hyper-alert in order

to query the index i of type t.
4. m is the combination of facts which appear in p.
5. o is the combination of facts that were originally required for the current

constraint. In other words all facts mentioned on the right hand side of the
equality comparisons for this constraint.

The hypothesizing algorithm then is a recursive procedure with two param-
eters the first of which is a TG vertex v′ and the second is a hyper-alert h. The
function returns true if a real hyper-alert was correlated or false otherwise. The
procedure is that for each element in the HypothesisSet associated with v′:

1. Let f be the set of hypothesized fact attributes in h. Continue the loop if
the union of f and o is not equal to m. This avoids generating unnecessary
hypotheses based on a strict subset of the actually available fact attributes.

2. Let h′ be a new hyper-alert. Use p to permute the facts in h and assign them
to h′.

3. Create a key from h′ which combines facts required for index i of t. Query i

and if a result is found, correlate the result with h′ and continue the loop.
4. Recurse to the vertex for type t passing hyper-alert h′. If the recursion returns

true then correlate h′ with h.

With this procedure hyper-alerts with identical attributes may be created in
order to satisfy different paths through the attack graph even though they may
eventually lead to the same place. Such alerts add nothing to the intelligibility
of the result since one real alert could conceivably account for all such identical
hypotheses.

We define two hyper-alerts as strategically indistinguishable provided that
they are of the same type, have the same combination of facts assigned with
the same values and appear before the hyper-alert they have been hypothesized
to explain. Similarly to the implicit correlation step described in the previous
section a hypothesized alert database is added to each vertex in the type-graph.

6 Empirical Results

To verify the theory the algorithm is implemented in C[3]. Trivial sub-graph
elimination is implemented by keeping count of vertex degress in CG as edges are
added, only vertices with degree greater than zero are output. This small addition
makes output graphs more manageable. The Lincoln Labs 1.0 dataset is used
in the experiments for the purposes of generating results comparable to prior



works. These data-sets include labeling data which allows for the construction
of a perfectly accurate series of alerts. An attack model almost identical to that
in [11] is used. The only difference is in fixing an error in the original in which
UDP port-scans could be said to discover TCP services and vice versa, which is
not the case. All experiments were run on a PC with 1.6GHz Intel Core 2 Duo
CPU and 1GB RAM running a contemporary Linux distribution.

Two experiments are proposed: experiment #1 is designed to verify that the
algorithm is suitable for application in a real-time correlation setting as intended.
Experiment #2 is designed to qualitatively assess the hypothesizing algorithm
when a random subset of relevant alerts have been deleted from a perfectly
accurate alert stream.

6.1 Performance

The aim of this experiment is to test the suitability of our algorithm for real-
time correlation. The method is to intersperse a true scenario consisting of 855
alerts within a large number of randomly generated alerts such that there are
1,000,000 alerts in total. No direct comparison with prior work is possible here
since comparable algorithms are either not intended for real-time setting, do
not perform the hypothesizing step or use a different attack model. Instead, the
time taken for the software to perform the work will be recorded and divided
by the number of alerts which will give us a correlation-rate. As long as the
correlation-rate is higher than the rate at which we expect alerts to be produced
by the underlying IDS then the algorithm ought to be suitable for real-time
operation. The size of the output graphs is also recorded representing the bulk
of the memory utilization of the program.

There are several parameters in this experiment. Firstly we will run the
experiment with variations of the algorithm so that we can get an idea of the
costs and benefits of each.

1. Algorithm 1. Minimal IAC problem.
(a) With implicit correlations disabled.
(b) With implicit correlations enabled.

2. Algorithm 2. Extended IAC problem.
(a) Without consolidating strategically indistinguishable hypotheses.
(b) Strategically indistinguishable hypotheses consolidated.

The question arises of how precisely to generate a large number of random-
ized false positive alerts. The attribute space is 96 bits in total, based on two
32 bit IP addresses, and two 16 bit port numbers. If all attributes are totally
randomized the probability of false correlations being generated is exceedingly
small. Conversely if we devise a non-random worst-case data-set in which false
alarms are crafted specifically to generate correlations then we are venturing in
to the area of specific attacks aimed at the correlator itself which is a problem
beyond the scope of this paper.

The chosen solution is based on the observation that in a real-world setting
the IDS is most often connected to a point in an IP network where it can observe



all traffic entering or leaving that network. Therefore while one out of the source
and destination addresses of a packet may be any of 232 possible IP address
values, the other side will be set to one of the addresses on the monitored network
which will be a small subset of that address space. Traffic not conforming to these
rules is taking place outside of the range of communications systems that the
underlying IDS is placed to observe. Similarly, IP services tend to listen on well
known ports, typically those under 1024.

Two randomization methods are chosen, one based on a class C IP network
and the other on a class B network. These types of networks are defined as
having 28 and 216 addresses each. The algorithm for generating the data is:

1. Pick a totally random IP address and port number.
2. Pick a random IP address within the allowable range of our network class.
3. Pick a random 10 bit port number.
4. Toss a coin, if heads then the fully random IP is the source address, else it’s

the destination address.
5. Toss another coin, if heads then the fully random port number is the source

address, else vice versa.

Five versions of the random data-set are created for each type of network,
making ten data sets in total. Each of the four variations of the algorithm were
run on each of the 10 data-sets making 40 runs in total. Each run is repeated
three times and the mean CPU time taken as the final result. The variation in
run time on the program on the same data-set turned out extremely low so, for
the sake of concision, the individual run-timings are not presented here. The
885 real alerts from the LLDOS labeling data are interspersed randomly, but
correctly ordered, within each dataset.

Table 1. CPU Times for Class B and Class C Respectively.

Class Exp. Min. (s) Max. (s) Mean (s) Mean Rate (a/s)

1(a) 7.47667 9.21 7.905 126,502
B 1(b) 5.31 6.26333 5.675 176,221

2(a) 6.55333 6.67667 6.599 151,541
2(b) 6.45333 6.48 6.461 154,772

1(a) 7.0533 7.14667 7.088 141,088
C 1(b) 6.79667 6.87 6.818 146,675

2(a) 11.46 11.6033 11.52 86.380
2(b) 10.9067 19.9233 12.43 80,440

If we look at the final column of table 1 we can observe that the correlation
rate is on the order of 100,000 alerts per second. This seems likely to be much
faster than an IDS, certainly the majority of deployments in any case.

In table 2 the columns stand for the total number of vertices and edges in
the output CG respectively. The number of false alerts seems rather alarming



Table 2. Output size for Class B and Class C Respectively.

Exp. Hyper-Alerts Correlations Hyper-Alerts Correlations

Class B Class C

1(a) 194,817 157,734 346,782 888,262

1(b) 182,727 148,457 129,220 641,115

2(a) 376,786 401,974 190,986 691,809

2(b) 299,395 302,553 190,417 691,112

considering only 885 of them are part of our scenario. Although, bear in mind
that our noise is distributed over only 20 alert types which are quite highly
connected. Further we have opted to restrict alert values to “realistic” ranges.
In practice a million alerts do not occur over a few seconds but perhaps days or
weeks.

6.2 Quality of Output

The aim of this experiment is to take the same totally accurate data-set and
remove random alerts and test the accuracy of hypothesizing by how accurate
the the graphs are as an increasing number of alerts are missed. Unfortunately
the number of ways of doing this with a data-set of of 855 alerts, such as ours, is
astronomical and our sample sizes would have to be inappropriately large to gain
results which can be interpreted with any confidence. From experience the algo-
rithm is extremely robust either when all alerts of one or two types are removed
or scores of alerts removed randomly. This intuition leads us on to an alterna-
tive experimental setup. There are only four types of alerts in the experimental
data set. At least two types are required for there to be correlations and if all
alerts are present then the output is ideal. We shall experiment with removing
all 2 and 3 combinations of alert types and examining the false correlation rates
which are calculated by hand in this case.

These experiments are run with Algorithm 2(b) only. To calculate false alert
rates the output graphs are compared against the complete correlation graph
which contains 58 hyper-alerts. A false negative is counted for every alert in
the complete CG for which no hypothesis exists. Conversely a false positive
is counted for every hypothesis which does not correspond to a hyper-alert in
the complete CG. For labeling purposes alert types are named A, B, C and
D, standing for ping-sweep, sadmind-ping, sadmind-exploit and mstream-zombie
respectively.

The results in table 3 are difficult to analyze without taking a closer look
at the output graphs produced. For attack sequences which are short in length,
missing alerts can have a drastic effect on the false negative correlation rates.
False positive hypotheses are a slightly less serious problem and in this case
would be entirely eliminated with existing audit-record correlation techniques,
as proposed in [15].



Table 3. Hypothesis Accuracy.

Input Types False Negatives False Positives

ABD 3 12

BCD 32 0

ACD 26 0

ABC 14 0

AC 37 0

BD 35 12

CD 41 0

BC 44 0

AD 35 12

AB 20 0

7 Conclusions and Future Work

In this paper a real-time correlation algorithm using hyper-alert type graphs was
proposed. Our general approach was to reduce the minimal IAC problem to a
series of insertions to and removals from a balanced binary tree. We proceeded
from there to approach the extended (hypothesizing) problem by re-phrasing the
minimal problem such that we can recursively input hyper-alerts with unknown
(or wild-card) attributes. It was shown that such algorithms are feasible provided
a few conditions are met:

– The number of comparable facts in hyper-alerts is small.
– If hyper-alerts are to be hypothesized then type-graphs should be chosen

carefully in order to prevent a exponential explosion in time complexity.

The algorithm was implemented and validated through a series of experi-
ments which showed that a good implementation is suitable for real-time corre-
lation even in cases where the IDS alert rate is alarmingly high. In these cases
the size of the output graph becomes the overriding factor in determining the
practical utility of the algorithm. It was also confirmed that picking the right
aggregation function is invaluable in this respect by allowing many hyper-alerts
to be merged in to a single logical unit. However it is not immediately clear
how best to design these functions such as to minimize large output graphs to a
satisfactory degree.

Although our approach does not require a vulnerability assessment it has
been shown that it is possible to make use of such information if it is there
[15]. It appears that our algorithm could be modified for similar purposes. The
basic approach here would be to incorporate special constraints which depend
on external evidence sources. These would be checked before correlating or hy-
pothesizing an alert. However this leads to question of how to determine when
to ignore false negative vulnerability assessments if a successful attack of the
relevant type has been observed? This may also be a fruitful direction for inves-
tigation.



Bibliography

[1] Rudolf Bayer. Symmetric Binary B-Tees: Data structure and maintenance
algorithms. Acta Inf., 1:290–306, 1972.

[2] Dingbang Xu and Peng Ning. Alert Correlation through Triggering Events
and Common Resources. In Proc. 20th Annual Computer Security Appli-
cations Conference, 2004.

[3] Gianni Tedesco. ATG correlator source code and documentation, 2008.
URL http://www.scaramanga.co.uk/atg/.

[4] Gianni Tedesco, Jamie Twycross, and Uwe Aickelin. Integrating innate and
adaptive immunity for intrusion detection. In Proc. International Confer-
ence on Artificial Immune Systems, 2006.

[5] Laura P. Swiler, Cynthia Phillips, David Ellis, and Stefan Chakerian. Com-
puter Attack Graph Generation Tool. In Proc. DARPA Information Sur-
vivability Conference & Exposition II, 2000.

[6] Lingyu Wang, Anyi Liu, and Sushil Jajodia. An Efficient, Unified Approach
to Correlating, Hypothesizing, and Predicting Intrusion Alerts. In Proc.
European Symposium on Computer Security, 2005.

[7] Peng Ning and Dingbang Xu. Adapting Query Optimization Techniques for
Efficient Intrusion Alert Correlation. Technical Report TR-2002-14 NCSU
Dept. of Computer Science, 2002.

[8] Peng Ning and Dingbang Xu. Hypothesizing and Reasoning about Attacks
Missed by Intrusion Detection Systems. ACM Transactions on Information
and System Security, 7(4):591–627, November 2004.

[9] Peng Ning, Yun Cui, and Douglas S. Reeves. Analyzing Intensive Intrusion
Alerts Via Correlation. In Recent Advances in Intrusion Detection, 2002.

[10] Peng Ning, Yun Cui, and Douglas S. Reeves. Constructing Attack Scenarios
through Correlation of Intrusion Alerts. In Proc. 9th ACM Conference on
Computer & Communications Security, pages 245–254, 2002.

[11] Peng Ning, Dingbang Xu, Christopher G. Healy, and Robert St. Amant.
Building Attack Scenarios through Integration of Complementary Alert
Correlation Methods. In Proc. 11th Annual Network and Distributed System
Security Symposium, pages 97–111, 2004.

[12] Renaud Deraison. Nessus automated vulenrability scanner, 2008. URL
http://www.nessus.org/.

[13] Steven J. Templeton and Karl Levitt. Requires/Provides Model for Com-
puter Attacks. In Proc. Workshop on New Security Paradigms, 2000.

[14] Steven Noel, Sushil Jajodia, and Brian O’Berry. Managing Cyber Threats:
Issues Approaches and Challenges, chapter Topological Analysis of Network
Vulnerability. 2005.

[15] Yan Zhai, Peng Ning, Purush Iyer, and Douglas S. Reeves. Reasoning about
Complementary Intrusion Evidence. Proc. 20th Annual Computer Security
Applications Conference, 2004.


