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Abstract

The classification of breast cancer patients is of great
importance in cancer diagnosis. During the last few years,
many algorithms have been proposed for this task. In
this paper, we review different supervised machine learn-
ing techniques for classification of a novel dataset and per-
form a methodological comparison of these. We used the
C4.5 tree classifier, a Multilayer Perceptron and a naive
Bayes classifier over a large set of tumour markers. We
found good performance of the Multilayer Perceptron even
when we reduced the number of features to be classified.
We found naive Bayes achieved a competitive performance
even though the assumption of normality of the data is
strongly violated.

1 Introduction

Worldwide, breast cancer is the second most common
type of cancer and the fifth most common cause of can-
cer death. This disease poses a serious threat for women’s
health. Since the early years of cancer research, biologists
have used the traditional microscopic technique to assess
tumour behavior for breast cancer patients. Precise predic-
tion of tumours is critically important for the diagnosis and
treatment of cancer. Modern machine learning techniques
are progressively being used by biologists to obtain proper

tumour information from the databases. Among the exist-
ing techniques, supervised learning methods are the most
popular in cancer diagnosis [8].

According to John and Langley [6], methods for in-
ducing probabilistic descriptions from training data have
emerged as a major alternative to more established ap-
proaches to machine learning, such as decision-tree induc-
tion and neural networks. However, some of the most im-
pressive results to date have come from a much simpler –
and much older – approach to probabilistic induction known
as the naive Bayesian classifier. Despite the simplifying as-
sumptions that underlie the naive Bayesian classifier, ex-
periments on real-world data have repeatedly shown it to
be competitive with much more sophisticated induction al-
gorithms. Furthermore, naive Bayes can deal with a large
number of variables and large data sets, and it handles both
discrete and continuous attribute variables.

In this paper, we present a comparison of three different
classifiers that may be used in machine learning, namely
the naive Bayes algorithm, the C4.5 decision tree and the
Multilayer Perceptron function. The same machine learn-
ing techniques were already used in literature: in particular,
Bellaachia and Guven in [1], revising a study of Delen et al.
[3], used the above methods to find the most suitable one
for predicting survivability rate of breast cancer patients.
Our study was instead motivated by the necessity to find an
automated and robust method to validate our previous clas-
sification of breast cancer markers [4]. We had, in fact, ob-
tained six classes using agreement between different clus-
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Figure 1. Histogram of variable ER

tering algorithms. Starting from these groups, we wanted to
reproduce the classification keeping into account the high
non-normality of our data (see Figure 1 and 2). For this
reason we started using the C4.5 and the Multilayer Percep-
tron classifiers and then we compare results with the naive
Bayes one. Surprisingly, we found that when we reduce our
dataset to ten markers, the naive Bayes classifier performs
better than the C4.5, even though the normality assumption
is strongly violated by our features’ distribution.

A Bayesian classifier is a fast-supervised classification
technique which is suitable for large-scale prediction and
classification tasks on complex and incomplete datasets.
Naive Bayesian classification performs well if the values of
the attributes for the sessions are independent. The naive
Bayes classifier applies to learning tasks where each in-
stance x is described by a conjunction of attribute values
and where the target function f(x) can take on any value
from same finite set V [7].

C4.5 builds decision trees from a set of training data, us-
ing the concept of Information Entropy. Each attribute of
the data can be used to make a decision that splits the data
into smaller subsets. C4.5 examines the normalized infor-
mation gain (difference in entropy) that results from choos-
ing an attribute for splitting the data. The attribute with the
highest normalized information gain is the one used to make
the decision. The algorithm then recurs on the smaller sub-
lists.

A Multilayer Perceptron is a feed-forward network with
one or more layers of nodes between the input and out-
put layers of nodes. These additional layers contain hidden
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nodes that are not directly connected to both the input and
the output nodes. The capabilities of the Multilayer Percep-
trons come from the non-linearity used in these nodes. The
number of nodes in the hidden layer must be large enough
to form a decision region that is as complex as required by
a given problem.

The paper is organized as follows: in Section 2, a de-
scription of each technique is reported. Then in Section 3
we introduce the dataset worked on and explain in detail the
results obtained from the three classifiers using the WEKA
software [11]. Section 4 is reserved for discussion and fu-
ture work.

2 Methods

2.1 C4.5 Classifier

C4.5 is an algorithm used to generate a decision tree de-
veloped by Ross Quinlan. C4.5 is an extension of Quinlan’s
earlier ID3 algorithm. The decision trees generated by C4.5
can be used for classification, and for this reason, C4.5 is
often referred to as a statistical classifier.

Tree induction methods are considered to be supervised
classification methods, which generate decision trees de-
rived from a particular data set. C4.5 uses the concept
of information gain to make a tree of classificatory deci-
sions with respect to a previously chosen target classifica-
tion [9]. The output of the system is available as a symbolic
rule base. The cases, described by any mixture of nomi-
nal and numeric properties, are scrutinized for patterns that



allow the classes to be reliably discriminated. These pat-
terns are then expressed as models, in the form of decision
trees or sets of if-then rules, which can be used to classify
new cases, with an emphasis on making the models under-
standable as well as accurate [9]. For real world databases
the decision trees become huge and are always difficult to
understand and interpret. In general, it is often possible to
prune a decision tree to obtain a simpler and more accurate
tree [9].

2.2 Multilayer Perceptron Classifier

A Multilayer Perceptron is a feedforward artificial neural
network model that maps sets of input data onto a set of ap-
propriate output. It is a modification of the standard linear
perceptron in that it uses three or more layers of neurons
(nodes) with nonlinear activation functions, and is more
powerful than the perceptron in that it can distinguish data
that is not linearly separable, or separable by a hyperplane
[5].

Multilayer feedforward networks are an important class
of neural networks. Typically, the network consists of a set
of sensory units that constitute the input layer, one or more
hidden layers of computation nodes, and an output layer of
computation nodes. Multilayer Perceptrons have been ap-
plied successfully to solve some difficult and diverse prob-
lems by training them in a supervised manner with a highly
popular algorithm known as the error back-propagation al-
gorithm. Basically, error back propagation learning consists
of two passes through the different layers of the network: a
forward pass and a backward pass. In the forward pass, an
activity pattern (input vector) is applied to the sensory nodes
of the network, and its effect propagates through the net-
work layer by layer. Finally, a set of outputs is produced as
the actual response of the network. During the forward pass
the synaptic weights of the network are all fixed. During
the backward pass, on the other hand, the synaptic weights
are all adjusted in accordance with an error-correction rule.
Specifically, the actual response of the network is subtracted
from a desired (target) response to produce an error sig-
nal. This error signal is the propagated backward through
the network, against the direction of synaptic connections
– hence the name “error back-propagation”. The synap-
tic weights are adjusted to make the actual response of the
network move closer to the desired response in a statistical
sense.

A Multilayer Perceptron has three distinctive character-
istics:

1. The model of each neuron in the network includes a
nonlinear activation function.

2. The network contains one or more layers of hidden
neurons that are not part of the input or output of the

network. These hidden neurons enable the network to
learn complex tasks by extracting progressively more
meaningful features from the input patterns (vectors).

3. The network exhibits a high degree of connectivity, de-
termined by the synapses of the network. A change in
the connectivity of the network requires a change in the
population of synaptic connections or their weights.

It is through the combination of these characteristics to-
gether with the ability to learn from experience through
training that the Multilayer Perceptron derives its comput-
ing power [5].

2.3 Naive Bayes Classifier

A naive Bayes classifier is a simple probabilistic clas-
sifier based on applying Bayes’ theorem with strong inde-
pendence assumptions. The performance goal is to predict
the class of test instances as accurately as possible. This
kind of classifier is termed naive because it is based on two
simplifying common assumptions: firstly, it assumes that
the predictive attributes are conditionally independent given
the class and secondly, the values of numeric attributes are
normally distributed within each class.

Naive Bayes treats discrete and continuous attributes
somewhat differently. For each discrete attribute, the proba-
bility that the attribute X will take on the particular x when
the class is c is modeled by a single real number between
0 and 1. In contrast, each continuos attribute is modeled
by some continuous probability distribution over a range of
that attribute’s values.

Let C be the random variable denoting the class of an
instance and X be a vector of random variables denoting
the observed attribute values. Let c be a particular class
label and x represent a particular observed attribute value.
If we have a test case x to classify, the probability of each
class given the vector of observed values for the predictive
attributes may be obtained using the Bayes’ theorem:

p(C = c|X = x) =
p(C = c)p(X = x|C = c)

p(X = x)

and then predicting the most probable class. Because the
event is a conjunction of attribute values assignments, and
because of the attributes conditional independence assump-
tion, the following equation may be written:

p(X = x|C = c) =
∏

i

p(Xi = xi|C = c).

which is quite simple to calculate for training and test data
[6].



3 Experiments and Results

3.1 Patients

A series of 1076 patients from the Nottingham Tenovus
Primary Breast Carcinoma Series were used in a previous
study [4] where we had applied different clustering tech-
niques to classify data in robust and clinically significant
groups. For clustering analyses, we had used a panel of
25 tumour markers, which are listed in Table 1. Consen-
sus between four different clustering techniques was used
to determine six core classes. 62% (663 cases) of the popu-
lation was classified into one of these six groups, while the
remaining 38% presented indeterminate or mixed charac-
teristics. In this study we only focused on the subset of the
‘in-class’ cases to run the classifiers on in order to find an
automated way to justify and reproduce the classification
obtained before [4]. This subset represents a novel clini-
cal categorisation of breast cancer which is interesting in
its own right and presents a challenging classification task.
Further understanding of undetermined cases is left open
for future investigation.

Still based on previous research [4], we selected 14 ‘im-
portant’ markers candidates that were discriminant in the
categorisation process and whose distribution was very dif-
ferent among the six classes. These 14 markers were se-
lected on the basis of clinical importance as indicated by
pathologists involved in previous studies. We then per-
formed an exhaustive search of the best combination of 10
markers out of these 14 based on the naive Bayes classifica-
tion results. This was done as reducing the number of mark-
ers used for classification is a clinical aim, as this would
both simplify and reduce the costs of a clinical test based
on these markers. We used this ‘new’ smaller dataset to re-
peat our experiments applying the above classifiers on this.

3.2 Results

After loading our data in the WEKA software [11], we
chose the C4.5 algorithm classifier. As it can handle con-
tinuous attributes, there was no need to discretize any of
the attributes and in our experiments we accepted the de-
fault values for the parameters. The default version does
perform some pruning (using the subtree raising approach),
but does not perform error pruning. We chose to run the
classifier 10 times using the 10-fold cross validation option
and evaluate the accuracy of the obtained classification sim-
ply by looking at the percentage of the corrected classify
instances. We will use the same ‘initial conditions’ and we
will repeat the experiments for the same number of times
also when running the other classifiers. We will then com-
pute the mean of the returning results. The results we ob-
tained were quite good, precisely we got 582 cases correctly

Antibody, clone Short Name
Luminal phenotype

CK 7/8 [clone CAM 5.2] CK7/8
CK 18 [clone DC10] CK18
CK 19 [clone BCK 108] CK19

Basal Phenotype
CK 5/6 [cloneD5/16134] CK5/6
CK 14 [clone LL002] CK14
SMA [clone 1A4] Actin
p63 ab-1 [clone 4A4] p63

Hormone receptors
ER [clone 1D5] ER
PgR [clone PgR 636] PgR
AR [clone F39.4.1] AR

EGFR family members
EGFR [clone EGFR.113] EGFR
HER2/c-erbB-2 HER2
HER3/c-erbB-3 [clone RTJ1] HER3
HER4/c-erbB-4 [clone HFR1] HER4

Tumour suppressor genes
p53 [clone DO7] p53
nBRCA1 Ab-1 [clone MS110] nBRCA1
Anti-FHIT [clone ZR44] FHIT

Cell adhesion molecules
Anti E-cad [clone HECD-1] E-cad
Anti P-cad [clone 56] P-cad

Mucins
NCL-Muc-1 [clone Ma695] MUC1
NCL-Muc-1 core [clone Ma552] MUC1co
NCL muc2 [clone Ccp58] MUC2

Apocrine differentiation
Anti-GCDFP-15 GCDFP

Neuroendocrine differentiation
Chromogranin A [clone DAK-A3] Chromo
Synaptophysin [clone SY38] Synapto

Table 1. Antibodies used and their dilutions

classified (87.8%) and just 81 (12.2%) incorrectly classi-
fied. Our main concern in using this classifier came from
the set of rules that were produced: they appear to be quite
numerous and not straightforward, especially if they should
be used by scientists not familiar with computational anal-
ysis.

We then considered the Multilayer Perceptron classifier:
again we used the default parameters, leaving the number of
neurons in the hidden layer as 15, which is the sum of the
number of attributes and classes divided by two. The default
backpropagation learning algorithm was used. Compari-



son of alternative learning algorithms is outside the scope
of this study. This method performed better than the C4.5
succeeding in correctly classifying 647 instances (97.6%)
out of 663; just 16 cases (2.4%) were misclassified.

We finally applied the naive Bayes classifier, which is
based on the assumption that numeric attributes are condi-
tionally independent. This method performed worse than
the previous ones, classifying properly a smaller amount of
cases (576, corresponding to 86.9%). A summary of the
above results can be found in Table 2.

Whole data

Method Classified Misclassified

C4.5 582 (87.8%) 81 (12.2%)

MLP 647 (97.6%) 16 (2.4%)

NB 576 (86.9%) 87 (13.1%)

Table 2. Comparison of results on three clas-
sifiers using 25 markers.

As we previously reported we considered a smaller
dataset containing just 10 ‘important’ markers. We repeated
our experiments applying the above classifiers on this ‘new’
smaller dataset. For the C4.5 decision tree we could not see
a particular difference, having 581 cases (87.6%) correctly
classified. Also for the Multilayer Perceptron (MLP) we
have an increased number of misclassified instances, this
time being 34 (5.1%). The naive Bayes (NB), instead, per-
formed very well compared to the previous run. Now we
found that 617 cases (93.1%) were classified properly and
just 46 (6.9%) were misclassified.

A summary of the latter results is reported in Table 3.

Ten Markers

Method Classified Misclassified

C4.5 581 (87.6%) 82 (12.4%)

MLP 629 (94.9%) 34 (5.1%)

NB 617 (93.1%) 46 (6.9%)

Table 3. Comparison of results on three clas-
sifiers using only 10 markers.

As Bouckaert did in [2], the 10 accuracies of each al-
gorithm were compared using t-tests, after checking for
normality using the Shapiro test [10]. We found that, for
both the whole data and the 10-markers datasets, the Mul-
tilayer Perceptron classifier performed significantly better

than the other two (p << 0.01). The C4.5 decision tree
algorithm was significantly more accurate than the naive
Bayes (p < 0.01) when we consider the whole data, but
was not when we reduced the number of features. Table 4
summarizes our findings.

Average accuracies

C4.5 MLP NB

Whole data 87.8 (6.3) 97.6 (1.8) 86.9 (2.5)

10 Markers 87.6 (6.6) 94.9 (2.6) 93.1 (2.5)

Table 4. Average accuracies on 10×10 cross
validation experiments for the three classi-
fiers (standard deviation in brackets).

4 Discussion

In this paper we reviewed three different classifiers and
used them over a novel dataset of tumour markers for breast
cancer. From our experiments we got different results for
each of them.

Using the whole dataset (25 markers × 663 instances)
we obtained the best performance from the Multilayer Per-
ceptron classifier: in fact just 16 cases were incorrectly clas-
sified. The naive Bayes and C4.5 decision tree returned sim-
ilar results (but worse than the MLP), with the latter being
a bit more accurate than the naive Bayes.

When we moved to consider just the 10 ‘most important’
markers, we found a substantial improvement in the naive
Bayes performance: even though it did not return the high-
est number of correctly classified instances, it performed
much better than with all the markers, decreasing the num-
ber of misclassified instances from 87 to 46. Again, the
best results were obtained using the Multilayer Perceptron,
but this time the network did not perform as well as before:
there were 18 more cases of misclassification. Finally, the
C4.5 decision tree was the worst classifier among the three
used, performing almost identically as with all markers.

From the results, all classifiers achieved a reasonable
performance. They all are suitable for large-scale predic-
tion and classification tasks on complex datasets. However,
each of them has weak points.

The C4.5 classifier may be considered what is called ‘a
white box model’: the reason for arriving at the classifica-
tion can be explicitly determined by examining the model.
It also achieves good classification accuracy with large data
in a short time.

On the other hand, for real world datasets, the decision
tree may become huge. In particular, for scientists not fa-



miliar with computational analysis, the set of rules coming
from a decision tree may not be straightforward.

Multilayer Perceptrons, using a backpropagation algo-
rithm, are a standard algorithm for any supervised-learning
pattern recognition process. However, like the majority
of neural networks, it is a good example of a ‘black box
model’, since explanation of the results is not available in
an easily comprehended form. If one tries to write down
the network model and the function representing the entire
process, this might take a long time and in some cases it
might be extremely complicated.

Naive Bayes is a fast-supervised classification technique
and, in general, it is a good approach for a classification
problem. It is easy to understand and reproduce manually,
being basically based on a product of conditional probabil-
ities.

However, one must be aware that naive Bayes relies on
two fundamental assumptions: the first one is the complete
independence of features (which is largely satisfied in our
data), and the second is that the attributes should follow a
normal distribution, which is not always true. Considering
the latter assumption, it is immediately apparent that our
data does not have a normal distribution. However, despite
the violation in its assumptions, the naive Bayesian classi-
fier is remarkably effective on our dataset in practice, show-
ing a good performance.

Given the violation of the naive Bayes hypothesis of nor-
mality, we have begun exploring other methods to repre-
sent features’ distributions and to classify our data. We are
now trying to implement a ‘non-parametric’ version of the
naive Bayes classifier, which should be able to categorize
instances independently from their distribution. In conclu-
sion, we have found a standard MLP to be a highly effective
classifier, but with poor interpretability. We have also found
that naive Bayes achieves almost as good performance, with
good interpretability, despite the strong violation of one of
its assumptions.
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