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Abstract 

 

Risk and safety assessments performed on potentially hazardous industrial systems commonly 

utilise Fault Tree Analysis (FTA) to forecast the probability of system failure. The type of 

logic for the top event is usually limited to AND and OR gates which leads to a coherent fault 

tree structure. In non-coherent fault trees components’ working states as well as components’ 

failures contribute to the failure of the system. The qualitative and quantitative analyses of 

non-coherent fault trees can introduce  further difficulties over and above those seen in the 

coherent case. It is shown that the Binary Decision Diagram (BDD) method can be used for 

this type of assessment. The BDD approach can improve the accuracy and efficiency of the 

quantitative analysis of non-coherent fault trees. This article demonstrates the value of the 

Ternary Decision Diagram method (TDD) for the qualitative analysis of non-coherent fault 

trees. Such analysis can be used to provide information to a decision making process for future 

actions of an autonomous system and therefore it must be performed in real time. In these 

circumstances fast processing and small storage requirements are very important. The TDD 

method provides a fast processing capability and small storage is achieved when a single 

structure is used for both qualitative and quantitative analyses. The efficiency of the TDD 



method is discussed and compared to the performance of the established methods for analysis 

of non-coherent fault trees. 

 

Keywords: fault tree analysis, binary decision diagrams, non-coherent fault trees, ternary 

decision diagrams 

1. Introduction 

Fault Tree Analysis (FTA) was first introduced in the 1960s and it is commonly used for the reliability 

assessment of complex industrial systems. Causes of system failure are analysed by performing 

qualitative and quantitative analyses. A large number of combinations of events which can cause 

system failure may be produced for real systems (minimal cut sets/prime implicant sets) and the 

calculation of these failure combinations can be time-consuming. Also, the determination of the exact 

top event probability requires lengthy calculations. For real systems this demand may exceed the 

capability of the available computers, introducing approximations into the analysis with the resulting 

loss of accuracy. 

 

The Binary Decision Diagram (BDD) method [1] provides a more concise form for the logic function 

of a fault tree. It overcomes some disadvantages of conventional FTA techniques and provides an 

efficient and exact analysis of coherent and non-coherent fault trees. The BDD method is efficient for 

quantifying the likelihood of system failure occurrence because it does not require system failure 

modes as an intermediate step. It is also more accurate since approximations used in the traditional 

approach of kinetic tree theory [2] are not applied. Previous work on the efficiency and the accuracy of 

the BDD method is presented in [3, 4]. 

 

Instead of analysing the fault tree directly, the BDD method first converts the fault tree to a binary 

decision diagram, which encodes the Boolean equation for the top event. The resulting structure 

function BDD (SFBDD) can be used in the quantitative analysis to calculate the top event probability 



or frequency. An SFBDD is not of the correct form for the qualitative analysis and further processing 

is required. In the coherent case a list of minimal cut sets is obtained by using the minimisation 

technique [1]. In the non-coherent case a full set of prime implicants is determined by applying the 

consensus theorem [5] to pairs of prime implicant sets involving a normal and negated literal. There 

are several methods for the calculation of prime implicant sets proposed in the literature. A meta-

products BDD method, the first approach to this problem, was presented in [6] and further developed 

in [7]. It was followed by a zero-suppressed BDD method (ZBDD), presented in [8]. The third 

alternative method was developed in [9] and it uses a labelled binary decision diagram (L-BDD). 

These methods produce prime implicant sets and have their advantages and disadvantages in the 

conversion and representation techniques.  

 

A new alternative method for performing the qualitative analysis of non-coherent fault trees is 

proposed in this paper. In this approach a fault tree is converted to a ternary decision diagram (TDD). 

The main concept of a TDD was presented in [10], which is expanded into an implementation 

methodology for fault tree analysis in this paper. Every node in a TDD has three branches: the 1 

branch which represents the failure relevance of the component, the 0 branch which represents the 

repair relevance of the component (so far this is a conventional BDD presentation) and the consensus 

branch which represents the irrelevance of the component to the system failure. A TDD encodes all 

prime implicant sets, because the consensus branch for a node is calculated by applying the consensus 

theorem which gives all “hidden” prime implicant sets. However, the TDD can be non-minimal, thus, 

the minimisation process is performed to remove non-minimal paths from the 1 and 0 branches. The 

obtained TDD can be used for the quantitative analysis as well as the qualitative analysis. 

2. Non-coherent fault trees 

Fault trees are classified according to their logic function. If during fault tree construction only AND 

gates and OR gates are used, the resulting fault tree is defined as coherent. If NOT logic is used or 

directly implied the resulting fault tree can be non-coherent.  



 

Introduce each component in the system by an indicator xi to show the status of the component: 






working.iscomponentif0

failed,iscomponentif1

i

i
xi  (1) 

where i = 1,2,…n, and n is the number of components in the system. 

 

The logic structure of the fault tree can be expressed by a structure function  :  






working.issystemif0

failed,issystemif1
  (2) 

 = (x), where x = (x1, x2, … , xn).  

According to the requirements of coherency [5], a structure function  (x) is coherent if:  

1.  Each component i is relevant to the system, i.e. 

iii  xxx somefor),0(),1(  . (3) 

2.   (x) is increasing (non-decreasing) for each xi, i.e. 

iii  ),0(),1( xx  . (4) 

where 

),,,1,,,(),1( 111 niii xxxx   x , (5) 

).,,,0,,,(),0( 111 niii xxxx   x  (6) 

 

The second condition means that the system condition does not change or deteriorates as the 

component deteriorates. If the system is non-coherent for component i then for a particular state of the 

rest of components the system is failed when component i works and when component i fails the 

system is restored to the non-failed condition. As a consequence of this property, system failure might 

occur due to the repair of a failed component or for a failed system the failure of an additional 



component may give a successful outcome of system performance. The fault tree becomes coherent if 

the NOT logic can be eliminated from the fault tree structure. 

 

Consider a simple example in Figure 1. Cars A and B are approaching the junction with lights on red 

and should stop. Car C has the right of way and should proceed through the junction. Three basic 

events are considered: 

A – Car A fails to stop, 

B – Car B fails to stop, 

C – Car C fails to continue. 

 

The collision at the crossroads can happen in two ways: 

 Car A fails to stop and hits car C which is moving 

 Car A stops but car B drives into the back of it. 

A fault tree representing causes of failure of the collision is shown in Figure 2. Working in a bottom-

up way the following logic expression is obtained.  

BACATop  , 

where “+” is OR, “·” is AND. 

 

Therefore,  CA,  and  BA,  are prime implicants, as combinations of component conditions 

(working or failed) which are necessary and sufficient to cause system failure. This list is incomplete 

because there is on more failure mode for the system: 

},{ CB  

i.e. if B fails to stop and C continues across the lights it does not matter what A does there will be a 

collision. 

 

Therefore, the full logic expression for the Top event is: 



CBBACATop  , 

which can be obtained by applying the consensus law: 

YXYAXAYAXA  . 

3. Fault tree conversion to Binary Decision Diagram 

For the fault tree to be converted to a BDD it first needs to be prepared so that in the non-coherent 

case the NOT logic is pushed down to the level of basic events by using De Morgan’s laws, i.e. 

BABA  , (7) 

BABA  . (8) 

Each node in a SFBDD is defined by an ite(if-then-else) structure. The ite structure ite(x, f1, f0) means 

that if x fails then consider function f1, else consider function f0. So, f1 lies on the 1 branch of x and f0 

lies on the 0 branch in the diagram.  

 

Before the conversion process takes place basic events in the fault tree are ordered. SFBDD 

construction then moves through the fault tree in a bottom-up manner applying the variable ordering in 

the conversion process.  

 

Each basic event in the system is assigned an ite structure: 

a = ite(a,1,0). (9) 

Alternatively, a basic event a  is assigned an ite structure: 

a = ite(a,0,1). (10) 

For gates whose inputs have already been defined as an ite structure the main rule of the conversion 

process is applied, i.e. if J = ite(x, f1, f0) and H = ite(y, g1, g0) represent two inputs to a gate of logic 

type , then: 










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ordering.theinif),,(

ordering,theinif),,(

0011

01

yxgfgfx

yxHfHfx
HJ

ite

ite
 (11) 

For small examples the variable ordering is largely irrelevant. Variable ordering schemes are discussed 

in [11, 12]. For the fault tree example in Figure 2 consider the variable ordering scheme A < B < C. 

Applying the conversion rules (9) - (11) to the fault tree results in a SFBDD presented in Figure 3. 

4. Calculation of prime implicant sets 

Knowledge of prime implicant sets can be valuable in gaining an understanding of the system and the 

causes of system failure. It can help to develop a repair schedule for failed components if a system 

cannot be taken off line for repair. For systems whose state has all the failed components in any prime 

implicant care should be taken to ensure that the repair of other components does not then cause the 

remaining functioning events in the prime implicant. The SFBDD which encodes the structure 

function cannot be used directly to produce the complete list of prime implicant sets of a non-coherent 

fault tree and a conversion process is usually performed to produce a different form of a BDD which 

encodes only the prime implicants. 

 

Consider a general component x in a non-coherent system. In a prime implicant set component x can 

appear in a failed or working state, or can be excluded from the failure mode. In the first two situations 

x is said to be relevant, in the third case it is irrelevant to the system state. Component x can be either 

failure relevant (the prime implicant set contains x) or repair relevant (the prime implicant set contains 

x ). A general node in the SFBDD, which represents component x, has two branches. The 1 branch 

corresponds to the failure of x; therefore, x is either failure relevant or irrelevant. Similarly, the 0 

branch corresponds to the functioning of x and so x is either repair relevant or irrelevant. Hence it is 

impossible to distinguish between the two cases for each branch and the prime implicant sets cannot 

be identified directly from the BDD. Therefore, additional methods for encoding prime implicant sets 

are required. 



5. TDD method 

An approach to build a Ternary Decision Diagram (TDD) for the analysis of non-coherent fault trees is 

proposed in this section. It employs the consensus theorem and creates, in addition to the two branches 

of the BDD, a third branch for every node, called the consensus branch. This third branch  encodes the 

“hidden” prime implicant sets. The minimisation algorithm [1] is applied to remove non-minimal 

paths and obtain prime implicant sets only. 

 

5.1 Conversion 

Every node in the TDD has three exit branches. A new ifre structure is defined which separates 

relevant and irrelevant components and also distinguishes between the type of relevancy, i.e. failure 

relevant and repair relevant. The ifre structure for a node x is given in Figure 4. So, if: 

 = ifre(x, f1, f0, f2), (12) 

then 

 = x f1+ x f0 + f2, (13) 

where 

 f2 = f1·f0. (14) 

The 1 branch encodes prime implicant sets for which component x is failure relevant, the 0 branch 

encodes prime implicant sets for which component x is repair relevant, and the “C” (consensus) branch 

encodes prime implicant sets for which component x is irrelevant. The ifre structure shown in Figure 4 

can be interpreted as follows: 

If x is failure relevant 

 then consider f1, 

 else if x is repair relevant  



 then consider f0 

 else consider f2 

endif  

Function f2 encodes prime implicant sets for which x is irrelevant, but this branch is not important for 

all components. For components that are only failure or repair relevant but not both this branch can be 

kept “empty”. In our method we assign f2 = NIL, if the conjunction of the two branches f1·f0 is not 

required. While operating the new symbol in the Boolean algebra, it is defined that NILA= NIL. 

Symbol NIL is used to identify cases when the “C” branch is not required and no Boolean operations 

that involve this branch are needed.  

  

The conversion technique to compute the TDD from the non-coherent fault tree is an extension of the 

method used to develop the conventional BDD. First of all, basic events of the fault tree must be 

ordered. Then the following process is presented: 

 By the application of De Morgan’s laws push NOT logic down through the fault tree until the 

basic event level is reached. 

 Each basic event is assigned an ifre structure: 

o If a is only failure or repair relevant: 

a = ifre(a,1,0,NIL), (15) 

a  = ifre(a,0,1,NIL). (16) 

o If a is failure and repair relevant: 

a = ifre(a,1,0,0) (17) 

a  = ifre(a,0,1,0) (18) 

 Traversing the fault tree in a bottom-up manner and considering gates whose inputs have been 

expressed in an ifre format gives: 



If J = ifre(x, f1, f0, f2) and H = ifre(y, g1, g0, g2),  

then 









),,,(

),,,(
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0101

LLLLx

KKKKx
HJ

ifre

ifre
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ordering,theinif
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


 

(19) 

here HfK  11 , HfK  00 , 111 gfL  , 000 gfL  , K1· K0 – consensus of K1 and K0, L1· L0 

– consensus of L1 and L0. 

 

If component x is failure or repair relevant, K1· K0 = NIL, L1· L0 = NIL in equation 19. 

 

Within each ifre calculation an additional consensus calculation is performed to ensure all the 

“hidden” prime implicant sets are encoded in the TDD. It calculates the conjunction of the 1 and the 0 

branch of every node and thus identifies the consensus of each node. If a node in the TDD encodes 

component which is only failure or repair relevant the conjunction of the 1 and 0 branch for the node 

is not required, because there are no “hidden” prime implicant sets associated with this component. 

This property makes the TDD method an efficient technique for performing the qualitative analysis of 

non-coherent fault trees. 

 

Consider the fault tree in Figure 2. Introducing the ordering of basic events A < B < C and applying the 

rules described in (15)-(19) gives the TDD in Figure 5. 

 

It can be seen that the TDD in Figure 5 is different from the SFBDD in Figure 3 only with its “C” 

branch that represents the intersection of the 1 and 0 branches. Only for node F1 there is a new 

structure F4 created as the “C” branch. The other nodes have the “C” branch leading to value NIL, 

since they encode variables that only appear as failure or repair relevant. To obtain prime implicant 

sets non-minimal combinations from every path need to be removed.   

 



5.2 Minimisation 

Once a fault tree is converted to a TDD there is no guarantee that the resulting structure will be 

minimal and give exact prime implicant sets. In order to perform the qualitative analysis a 

minimisation procedure needs to be implemented.  

 

The algorithm developed by Rauzy for minimising the BDD [1] was extended to create a minimal 

TDD. Consider a general node in the TDD which is represented by the function F, where  

F = ifre(x, G, H, K). (20) 

The process of minimisation is described in three cases: 

1. Component x is failure and repair relevant 

2. Component x is failure relevant 

3. Component x is repair relevant 

 

In case 1, the set of all minimal solutions of F is minimal solutions of G and H (Gmin and Hmin), that are 

not minimal solutions of K, and also all minimal solutions of K (Kmin). Then if δ is a set of minimal 

solutions of G, which are not a minimal solution of K, then the intersection of δ and x ( x ) will be 

minimal solutions of F. Similarly, let γ be a set of minimal solutions of H which are not minimal 

solutions of K, then the intersection of γ and x  ( x ) will be minimal solutions of F. 

 

The set of all the minimal solutions of F (solmin(F)) will also include the minimal solutions of K, so: 

solmin(F) = min)()( Kxx   . (21) 

The set solmin(F) represents the minimal solutions of F by removing any minimal solutions of G and H 

that are also minimal solutions of K. 

 



In case 2, where x is failure relevant, K = NIL and the calculation of prime implicant sets is equivalent 

adequate to the BDD case where the “C” branch does not exist, i.e.  

solmin(F) = min)( Hx  . (22) 

The set solmin(F) represents the minimal solutions of F by removing any minimal solutions of G that 

are also minimal solutions of H. 

 

In case 3, where x is repair relevant, K = NIL and the calculation of prime implicant sets is defined as: 

solmin(F) = min)( Gx  . (23) 

The set solmin(F) represents the minimal solutions of F by removing any minimal solutions of H that 

are also minimal solutions of G. 

 

5.3 Obtaining prime implicant sets 

Traversing the TDD in Figure 5, which is already in its minimal form, from the root vertex to terminal 

1 vertices give all three prime implicant sets. Again, the algorithm depends on the relevance of node 

variable and the value of “C” branch.  

1. If K ≠ NIL, traversing the 1 branch of node x results in a failed state of a component in a 

particular failure mode. Traversing the 0 branch of node x results in a working state of a 

component in a particular failure mode. Finally, traversing the “C” branch of node x 

does not include that component in a particular failure mode at all.  

2. If K = NIL and x is failure relevant, traversing the 1 branch of node x results in a failed state 

of a component in a particular failure mode. Traversing the 0 branch of node x does not 

include that component in a particular failure mode.  

3. If K = NIL and x is repair relevant, traversing the 0 branch of node x results in a repaired 

state of a component in a particular failure mode. Traversing the 1 branch of node x does 

not include that component in a particular failure mode.  

 



The three paths obtained give the three prime implicant sets: 

F1-F2 },{ CA  

F1-F3 },{ BA  

F1-F4-F5 },{ CB  

 

This method provides an advanced technique for encoding prime implicant sets. 

 

5.4 Established methods for qualitative analysis 

This section presents the existing methods for converting non-coherent fault trees to BDDs and 

obtaining prime implicant sets. In the later sections the efficiency of all methods, including the TDD 

method, will be investigated and compared using some example fault trees.  

 

5.4.1  Meta-products BDD method 

This method converts a SFBDD to a meta-products BDD which produces all prime implicant sets. A 

meta-products BDD obtained is in its minimal form. The method was developed in [6,7] where two 

variables are associated with every component x. The first variable, Px, denotes relevancy and the 

second variable, Sx, denotes the type of relevancy, i.e. failure or repair relevant. A meta-product, 

MP(π), is the intersection of all the system components according to their relevancy to the system state 

and π represents the prime implicant set encoded in meta-product MP(π): 


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

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(24) 

Consider node F in a SFBDD, where F = ite(x, F1, F0). The meta-products BDD, that describes prime 

implicant sets using equation (20), is expressed as: 

PI(F) = ite(Px, ite(Sx, P1, P0), P2), (25) 

where  



P2 = PI(F1·F0), 
(26) 

P1 = PI(F1) · 2P , 
(27) 

P0 = PI(F0) · 2P . 
(28) 

x is the first element in the variable ordering, PI(F) represents the structure of a meta-products BDD, 

PI is used to denote the prime implicants. P2 encodes the prime implicants for which x is irrelevant, 

P1 encodes the prime implicants for which x is failure relevant and P0 encodes the prime implicants 

for which x is repair relevant. 

 

The SFBDD in Figure 3 has been converted to a meta-products BDD, shown in Figure 6. 

 

Now it is possible to obtain the meta-products and identify the prime implicant sets. Every path from 

the root node to a terminal 1 gives a prime implicant set. 

 CCBAA SPPSP  },{ CA  

 CBBAA PSPSP  },{ BA  

 CCBBA SPSPP  },{ CB  

The number of nodes in a meta-products BDD increases largely since every basic event x is presented 

by two nodes, Px and Sx. The process can be time-consuming. 

 

5.4.2 ZBDD method 

An alternative method presented by Rauzy in [8] uses the idea of zero-suppressed BDDs (ZBDD). 

This method requires to label nodes with failed and/or working states of basic events and to 

decompose prime implicant sets according to the presence of a given state of a basic event. Zero-

suppressed BDDs are BDDs based on a reduction rule. This data structure provides a unique and 

compact representation which is more efficient and simpler than the usual BDDs when manipulating 

sets in combinatorial problems. 

 



The principle of this algorithm is to traverse the SFBDD that encodes structure function   in a depth-

first way and to build a ZBDD that encodes the prime implicant sets of   in a bottom-up way. The 

conversion rule is divided in four cases. Consider node F in a SFBDD, where F = ite(x, F1, F0). 

Case 1: if basic event x appears in its failed and working states then:  

PI(F) = 201 PPxxP  , (29) 

where  

P2 = PI(F1∙F0), (30) 

P1 = PI(F1) \ P2, (31) 

P0 = PI(F0) \ P2. (32) 

Here “\” is operator “without” [1] that is used minimising conventional BDDs.  

Case 2: if basic event x appears in its failed state only then 

PI(F) = 01 PxP  , (33) 

where  

P0 = PI(F0), (34) 

P1 = PI(F1) \ P0. (35) 

Case 3: if basic event x appears in its working state only then it is considered in a similar way to case 

2. 

Case 4: if basic event x does not appear in the system then  

PI(F) = PI(F1 + F0). (36) 

Applying this method to the SFBDD in Figure 3 gives the ZBDD in Figure 7. 

 

Every path from the root vertex to terminal vertex 1 presents a prime implicant set. Therefore, this 

ZBDD contains three prime implicant sets:  

CA  },{ CA
 

 BA  },{ BA
 



CB  },{ CB  

 

The ZBDD is an efficient technique where all prime implicant sets are described by a compact and 

easy handling structure.  

 

5.4.3 Labelled variable method 

The labelled variable method [9] provides another alternative method for constructing BDDs for non-

coherent fault trees. BDDs constructed using this approach consist of variables that are labelled 

according to their type. They are called labelled binary decision diagrams (L-BDDs). The structure 

function  (x) of a non-coherent fault tree may contain three different types of basic events. For 

example, the function cbcabax )(  contains a double form (DF) variable a that appears 

in both states, a single form positive (SFP) variable b and a single form negative (SFN) variable c. In 

the further presentation the SFP variable x will be simply presented by x, the SFN variable x will be 

labelled as “$x” and the DF variable x will be labelled as “&x”. 

 

The conversion process for computing the L-BDD from the non-coherent fault tree is an extension to 

the method used to develop the SFBDD. Considering the ordering &x < x < $x implements the 

additional equations: 

If J = ite(x, f1, f0) and H = ite($x, g1, g0), 

then ),,(& 1001 gfgfxHJ  ite  
(37) 

If J = ite(&x, f1, f0) and H = ite(x, g1, g0), 

then ),,(& 0011 gfgfxHJ  ite  
(38) 

If J = ite(&x, f1, f0) and H = ite($x, g1, g0), 

Then ),,(& 1001 gfgfxHJ  ite  
(39) 



Applying the conversion rules to the fault tree in Figure 2 results in a L-BDD presented in Figure 8 

(the top BDD). The L-BDD does not provide all the information for the qualitative analysis, therefore 

some additional calculations are performed in order to get all prime implicant sets.  

 

Visiting the L-BDD in the bottom-up way the procedure to be applied to the node F = ite(x, F1, F0) to 

determine the prime implicants is as follows: 

If x has label “&”, then: 

20$1)( PxPxPFPI   (40) 

where  

2\00,2\11,012 PFPPFPFFP  . (41) 

Else: 

01)( FPFPI   (42) 

where  

0\11,$ FFPxorx  . (43) 

“\” is the operator “without” proposed by Rauzy [1]. Some extra rules are applied in the cases with 

labelled variables. 

 

The heaviest operation is the intersection P2 = 01 FF  , shown in Figure 8, the bottom BDD. The 

three prime implicant sets are obtained, tracing all paths from root vertex to terminal vertex 1 and 

taking into account the results of intersection: 

 CA $&  },{ CA
 

 BA&  },{ BA
 

 CB $  },{ CB
 

 



The L-BDD method uses the prior information about the type of every variable, however, the labelling 

introduces some additional variables and increases the size of the structure. 

 

The three established methods for the calculation of prime implicant sets will be considered for the 

efficiency test of the TDD method. 

 

5.5 Quantitative analysis using TDDs 

In order to perform the quantitative analysis for non-coherent fault trees using the BDD method, a 

non-coherent fault tree is converted to a SFBDD that represents the structure function of the fault tree. 

In the TDD method the non-coherent fault tree is converted to the TDD that has three branches from 

each node. The third branch is created to encode all prime implicants of the system. However, the 

TDD can be used not only for the qualitative analysis but also for the quantitative analysis.  

 

5.5.1  Top event probability 

Consider node F in the TDD, F = ifre(x, f1, f0, f1 f0). The structure function )(x  was expressed in 

(12), i.e. 0101)( fffxxf x . Using the pivotal decomposition to the structure function of order n it 

is possible to express it in terms of structure functions that are of order n-1. Pivoting )(x  about 

variable x and applying the absorption law gives:  

    01010011),0(),1()( fxxffffxfffxxx ii  xxx  . (44) 

Then the expectation of )(x  is obtained and the top event probability is calculated: 

     )(1)( 01 fQqfQqEQ xxSYS  x . (45) 

where qx is the failure probability of component x. 

Therefore, the probability of the top event, QSYS, is the sum of the probabilities of the disjoint paths 

through the TDD. The disjoint paths, that are taken into account, can be found by tracing all paths 

from the root vertex via the 1 and 0 branches to terminal 1 vertices. The disjoint paths via the “C” 

branch are not included in the quantification process.  



 

If f1 f0 = NIL, 01)( fxxf x  which allows to calculate the QSYS in the same way. 

 

5.5.2  Birnbaum’s measure of importance 

The probability that component i is critical to system failure can be expressed as the probability that 

component i is failure critical, )(qG F
i , or the probability that component i is repair critical, )(qG R

i , 

[15]: 

)()()( qGqGqG R
i

F
ii  . (46) 

Beeson and Andrews [16] showed how to define Birnbaum’s measure of component failure 

importance as the probability that component i is failure relevant to the system state given by 

][][)( ''1   ii
F
i EEqG  . (47) 

where ][ 1iE   is the probability that component i is either failure relevant or irrelevant to the state of 

the system; and ][ ''iE   is the probability that component i is irrelevant to the state of the system. 

Similarly is defined Birnbaum’s measure of component repair importance: 

][][)( ''0   ii
R
i EEqG  . (48) 

where ][ 0iE   is the probability that component i is repair failure relevant or irrelevant to the state of 

the system.  

 

It is possible to calculate ][ 1iE  , ][ 1iE   and ][ 1iE   from the ternary decision diagram. The 

procedure for calculating the failure and repair criticality of component i is outlined below: 



i

ii

x

C
xxi qpoqprE )()(][
,1

1 . (49) 



i

ii

x

C
xxi qpoqprE )()(][
,0

0 . (50) 





i

ii

x

C
xxi qpoqprE )()(][ '' . (51) 

where: 

)(qpr
ix - the probability of the path section from the root vertex to node xi, 

)(
,1

qpo
C

xi

- the probability of the path section from the 1 branch of node xi to a terminal 1 vertex via 1 

or 0 branches of non-terminal nodes, 

)(
,0

qpo
C

xi

- the probability of the path section from the 0 branch of node xi to a terminal 1 vertex via 1 

or 0 branches of non-terminal nodes, 

)(qpoC
xi

- the probability of the path section from the “C” branch of node xi to a terminal 1 vertex via 

1 or 0 branches of non-terminal nodes. 

 

Therefore, the failure and repair criticality of component i using the TDD are expressed as: 

  
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iii
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C
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F
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,1
. (52) 

  
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iii
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C
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C
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R
i qpoqpoqprqG )()()()(

,0
. (53) 

These expressions are true for every component i that is failure and repair relevant [17].  

 

For the other two cases, i.e. when component i is either failure or repair relevant and the “C” branch is 

“empty”, Birnbaum’s measure of importance is expressed in the following equations. If component i is 

only failure relevant, then: 

  
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iii
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C
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C
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,0,1
. (54) 

0)( qGR
i . (55) 

 



If component i is only repair critical, then:  

0)( qGF
i . (56) 

  
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Using the TDD in Figure 5 and applying the above equations, the Birnbaum’s measure of importance 

can be calculated for all components in the system.  

For component A: cBCBC
F
A pppqpqG )( , cBCBB

R
A qqpqqqG )( . 

For component B: 
A

F
B pqG )( , 0)( qGR

B . 

For component C: 0)( qGF
C , A

R
C qqG )( . 

 

Summarising, if the quantitative analysis is required as well as the qualitative analysis, the TDD 

before the minimisation can be used for the quantification process. Additional calculations for 

obtaining the SFBDD are not required as it is required in some of the established methods. This 

property makes the TDD method an efficient approach for full analysis of non-coherent fault trees 

 

5.6 Efficiency comparison between the TDD method and the established methods 

The efficiency of the TDD method and the established methods for calculating prime implicant sets 

were investigated and compared using a benchmark set of medium sized fault trees for engineering 

systems from several industries. The performance over 16 example fault trees was obtained, since each 

method may perform well on some fault trees dependent upon the fault tree structure. The 

performance of each method over a range of test cases is monitored. The complexity of the 16 fault 

trees is indicated in columns 2, 3 and 4 of Table 1, representing the number of gates, the number of 

events and the number of prime implicant sets in their solution. Example fault trees were simplified 

prior to the conversion process, using the reduction [13] and modularisation [14] techniques. The 

number of complex and modular events are shown in columns 5 and 6. 



 

The number of nodes using the TDD method, the meta-products BDD method, the ZBDD method and 

the L-BDD method are presented in columns 7-10. The number of nodes in the TDD method describes 

the sum of the number of nodes in the TDD before the minimisation (which is also used for the 

quantitative analysis) and the number of nodes in the TDD after the minimisation. The number of 

nodes for the second method covers the number of nodes in the SFBDD and the meta-products BDD. 

For the ZBDD method the sum of the number of nodes in the SFBDD and the number of nodes in the 

ZBDD is presented. The number of nodes in the L-BDD method contains the sum of the number of 

nodes in the L-BDD before applying the minimisation, the number of nodes of the additional 

structures after applying the conjunction and the number of nodes in the minimised L-BDD. Similarly, 

the processing time covers the time taken to convert example fault trees to BDDs and perform the 

qualitative analysis. Results of processing time are shown in columns 11-14 of Table 1 for the four 

methods respectively. Total number of nodes and processing time for the four methods are shown in 

Table 2. 

 

As it is shown in Table 2 the TDD method performed as well as the ZBDD method. Both methods out 

performed the meta-products and L-BDD methods resulting in the smallest final BDDs in shortest 

calculation time. The L-BDD method gave the second worst result and the meta-products BDD 

method required the longest processing time since the size of the problem increased marginally.  

 

These results showed that the TDD method provides an efficient way to represent prime implicant 

sets, where “hidden” sets are obtained by applying the conjunction of the two branches. It also has an 

ability to do so only if it is required, avoiding the generation of a structure that is not needed. This is 

achieved using the information about the failure/repair relevance of the component which determines 

if the conjunction of the two branches is performed or not. The final advantage of this technique is the 

fact that the quantitative analysis can be also performed using the TDD before the minimisation.  

 



6. Conclusions 

This paper presents a new technique which is developed for application to finding prime implicant sets 

of non-coherent fault trees. Since the introduction of NOT logic to the logic function expands the 

calculation time and increases the size of the problem, the BDD method can be used as an efficient 

way for qualitative and quantitative analyses of non-coherent fault trees. This paper proposes a new 

alternative technique that produces a ternary decision diagram, which allows the calculation of all 

prime implicants directly. Its efficiency is analysed and compared with the established methods - the 

conventional algorithm that produces a meta-products BDD, the zero-suppressed BDD method and the 

labelled BDD method - using some example fault trees. Efficiency analysis indicates that the new 

proposed TDD method provides as good a representation of prime implicant sets as other methods and 

has the advantage of being suitable for both qualitative and quantitative analyses of non-coherent fault 

trees.  
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